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Abstract: Obesity and Western-like diet consumption leads to gut microbiome dysbiosis, which is as-
sociated with the development of cardio-metabolic diseases and poor health outcomes. The objective
of this study was to reduce Western diet-mediated gut microbial dysbiosis, metabolic dysfunction,
and systemic inflammation through the administration of a novel combined intervention strategy
(oral probiotic bacteria supplements and muscadine grape extract (MGE)). To do so, adult female
C57BL/6 mice were fed a low-fat control or Western-style diet and sub-grouped into diet alone,
probiotic intervention, antibiotic treatments, MGE supplementation, a combination of MGE and pro-
biotics, or MGE and antibiotics for 13 weeks. Mouse body weight, visceral adipose tissue (VAT), liver,
and mammary glands (MG) were weighed at the end of the study. Fecal 16S rRNA sequencing was
performed to determine gut bacterial microbiome populations. Collagen, macrophage, and monocyte
chemoattractant protein-1 (MCP-1) in the VAT and MG tissue were examined by immunohistochem-
istry. Adipocyte diameter was measured in VAT. Immunohistochemistry of intestinal segments was
used to examine villi length, muscularis thickness, and goblet cell numbers. We show that dietary
interventions in Western diet-fed mice modulated % body weight gain, visceral adiposity, MG weight,
gut microbial populations, and inflammation. Intervention strategies in both diets effectively reduced
VAT and MG fibrosis, VAT and MG macrophages, adipocyte diameter, and VAT and MG MCP-1.
Interventions also improved intestinal health parameters. In conclusion, dietary intervention with
MGE and probiotics modulates several microbial, inflammatory, and metabolic factors reducing poor
health outcomes associated with Western diet intake.

Keywords: muscadine grape extract; Lactobacillus; inflammation; macrophages; diet; fibrosis; gut
microbiome; obesity; visceral adipose tissue

1. Introduction

A calorically dense Western Diet (WD) contributed to the doubling of the obesity
prevalence between 1980 and 2014 [1]. WD is rich in refined sugar, purified animal fats,
processed meats, salt, and food additives and low in vitamins, minerals, and fiber [2]. When
combined with a sedentary lifestyle, WD consumption is associated with chronic diseases
including obesity-associated metabolic syndrome, type II diabetes mellitis, cardiovascular
disease, non-alcoholic fatty liver disease, and cancer [2]. WD consumption has also been
associated with chronic inflammation in both human and rodent models [3,4].
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Rodent microbiome transplant studies illustrate that dietary change can rapidly alter
the gut microbial composition and intestinal mucosal layer for associated health effects
including dysbiosis, microbiota encroachment, inflammation, and metabolic disease [5–7].
Oral probiotic supplements contain live commensal bacteria and are a potential means
to combat these changes. Probiotics containing Lactobacillus and Bifidobacterium produce
anti-inflammatory effects; Lactobacillus supplementation reduced circulating levels of pro-
inflammatory cytokines in ulcerative colitis patients while Bifidobacterium infantis modu-
lated both gut mucosal and systemic inflammation [8,9].

Muscadine grapes (Vitus rotundifolia) are rich in polyphenolic compounds includ-
ing ellagic acid, gallic acid, quercetin, cyanidin, and delphinidin [10]. Muscadine grape
extract (MGE) has antibacterial properties and has successfully inhibited pathogenic bac-
teria (Helicobacter pylori) in cell culture [11]. Rodent models of MGE consumption report
anti-inflammatory properties in the gut and distal tissues [12]. MGE may be beneficial
in modulating diet-associated pathogenesis; clinical MGE supplementation suppressed
plasma endotoxin, lipoprotein binding protein, and pro-inflammatory protein expression
following a meal high in fat and carbohydrates [13].

We utilize adult female C57BL/6 mice to investigate the beneficial metabolic, microbial,
and anti-inflammatory effects of MGE and probiotic intervention in animals consuming
WD. We report that the addition of MGE and probiotic interventions to a WD reduced
adiposity, inflammation, and fibrosis. These pro-health metabolic outcomes were associated
with shifts in the gut microbiome and intestinal health parameters.

2. Materials and Methods
2.1. Materials

Murine diets (TD.08806 and TD.180300) were purchased from Envigo (Indianapolis,
IN, USA). Dako EnVision®+ Dual Link System-HRP (DAB+) staining kits (K4065) were
obtained from Agilent (Santa Clara, CA, USA). F4/80 antibody (catalogue #: 70076S)
was purchased from Cell Signaling Technologies (Danvers, MA, USA). MCP-1 antibody
(catalogue #: ab25124) was obtained from Abcam (Waltham, MA, USA). Sirius red F3B
(catalogue #: 36-554-8), saturated aqueous picric acid (catalogue #: P6744), and solid picric
acid (catalogue #: 239801) were obtained from Sigma-Aldrich (Burlington, MA, USA).
Harris hematoxylin (catalogue #: 1201) and eosin phloxine working solution (catalogue #:
1082) were obtained from Newcomer Supply (Middleton, WI, USA). Alcian Blue (catalogue
#: 56735) and Nuclear Fast Red (catalogue #: 56733) were obtained from Abcam (Waltham,
MA, USA).

2.2. Animal Model

Animal procedures were performed in compliance with IACUC-approved protocols.
Healthy and drug-naïve female 7-week-old C57BL/6 mice were purchased from Jackson
Laboratory (Bar Harbor, ME, USA) and socially housed in individually ventilated cages
with a 12-h light/dark cycle (4 per cage, n = 96). At 8 weeks of age, mice were randomized
into 12 groups (n = 8/group). Mice were administered either CD or WD (Table 1). Mice
received diet alone, probiotics (1 × 105 CFU Lactobacillus acidophilus, Lactobacillus plan-
tarum, Bifidobacterium bifidum, Lactobacillus rhamnosus, Lactobacillus bulgaricus, Lactobacillus
salivarius, Lactobacillus brevis, Bifidobacterium lactis, Lactobacillus paracasei, and Lactobacillus
casei suspended in auto-claved water 3 times weekly via oral gavage in housing room),
antibiotics (5 mg/mL streptomycin, 1 mg/mL ampicillin, and 1 mg/mL colistin in drinking
water), MGE (0.1 phenolics/mL in drinking water), combined MGE and probiotics, or
combined MGE and antibiotics. MGE phenolic contents were previously characterized
and shown to be high in epicatechin, gallic acid, ellagic acid, procyanidin B2, catechin, and
catechin gallate [14]. Diets and intervention strategies were administered for 13 weeks.
Body weight was monitored weekly.
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Table 1. The nutritional composition of murine chow diets.

CD WD
(TD.08806) (TD.180300)

Protein (% kcal) 20.5% 15.9%
Carbohydrates (% kcal) 69.1% 39.6%

Fat (% kcal) 10% 44.5%
Saturated Fat 27% 43.3%

Monounsaturated Fat 36.5% 35.1%
Polyunsaturated Fat 36.5% 20.5%

Sucrose 11.2% 25.5%
Cholesterol (mg/kg) 0.017 0.056

Sodium (g/kg) 0.28 1.59

At the end of the study, plasma samples were collected and snap-frozen. Visceral
adipose tissue (VAT), mammary glands (MG), and intestines were isolated. VAT, liver, and
lower right inguinal 4/5 MG were weighed. Liver fat content was determined by EchoMRI.
All tissues were fixed in 4% paraformaldehyde overnight and paraffin was embedded.

2.3. Gut Microbial Analysis

DNA isolation and 16S sequencing were performed by Microbiome Insights (Vancou-
ver, BC, Canada). In brief, samples were plated in a MoBio PowerMag Soil DNA Isolation
Bead Plate. Fecal DNA extraction was completed using a KingFisher robot according to
MoBio’s instructions. Bacterial genes were PCR-amplified using dual-barcoded primers
targeting the V4 region of the 16S rRNA genes. Amplicons were sequenced using the
Illumina MiSeq system and the 300-bp paired-end kit (v.3). The resulting sequences were
denoised and taxonomically classified using the Greengenes (v. 1.39_8) reference database.
The Mothur software package (v.1.39.5) was used to identify and cluster OTUs [15].

2.4. Immunohistochemistry

MG and VAT slides were stained for F4/80 and MCP-1 immunoreactivity using the
Dako DAB+ Staining kit following the manufacturer’s protocol with the addition of a
Protein Block solution incubation. Antibodies were diluted 1:100 in Antibody Diluent.
Slides were counter-stained with hematoxylin. MG and VAT slides were stained with
filtered 0.1% Picrosirius red (PicRed) solution. Hematoxylin and Eosin (H&E) staining of
intestines was performed as previously reported [16]. Alcian Blue staining of the intestines
was completed following the manufacturer’s protocol.

Microscope imaging was completed using a Mantra microscope. For DAB+, PicRed,
and Alcian Blue staining, five representative 20× magnification images were taken with no
overlap between image borders. For H&E staining, three images were taken of each slide
with no overlap between borders.

DAB+ and PicRed staining were analyzed using InForm image analysis software
(version 2.6, Perkin Elmer (Waltham, MA, USA)). F4/80-positive cells were identified using
cell segmentation and phenotyping tools. The number of F4/80-positive cells identified
with a confidence of 70% or greater was used to calculate macrophages per million pixels.
Optical densities of 0.450 and 0.500 were selected as the minimum positive staining for
PicRed and MCP-1, respectively. The percent of total positive pixels was calculated.

Alcian Blue quantification was completed manually. The average positive cells per
villus was calculated for each image.

H&E staining was quantified using ImageJ software (version 1.53s). The average villus
length was calculated for each image. The observable muscularis was separated into thirds
across the image and width measurement was taken in each third.

Adipocyte diameter was quantified in ImageJ. Adipocyte diameter was measured
across the widest point of the adipocyte. The average of the three representative adipocytes
was calculated for each image.
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2.5. RT-PCR

RNA was isolated from snap-frozen liver tissue using the Trizol reagent according to
the manufacturer’s protocol (Invitrogen (Carlsbad, CA, USA), reference number 15596018).
RNA concentration was measured with a Bio-Rad SmartSpec 3000. cDNA was synthe-
sized from 5 µg of total RNA using Superscript first strand RT-PCR reagents (Thermo
Fisher (Waltham, MA, USA), catalogue #: 12574026). RT-PCR was then performed us-
ing SYBR green real-time PCR Master Mix (Applied Biosystems (Foster City, CA, USA),
catalogue #: A25777) with specific primers for CD68 (F. ACCGCCATGTAGTCCAGGTA,
R. ATCCCCACCTGTCTCTCTCA), IL-1 alpha (F. TCTATGATGCAAGCTATGGCTCA, R.
CGGCTCTCCTTGAAGGTGA), and TNF alpha (F. GGTCTGGGCCATAGAACTGA, R.
CAGCCTCTTCTCATTCCTGC). HPRT (F. CATAACCTGGTTCATCATCGC, R. TCCTC-
CTCAGACCGCTTTT) served as an internal control. Results were quantified as cycle
threshold (Ct) values and expressed as the ratio of target/control (relative Gene Expression
to HPRT) using the 2−∆∆Ct method.

2.6. Statistical Analysis

Body weight, VAT weight, mammary gland weight, liver weight, liver adiposity,
Shannon Diversity Index, and proportional abundance of bacterial taxa were compared
using one-way ANOVA with Tukey’s multiple comparisons test. To compare bacterial
β-diversity, Principal Component analysis was performed using an Adonis test with a post-
hoc pairwise test with FDR correction for multiple comparisons. Immunohistochemistry
data was analyzed by grouping images from each animal and completing a main effects
two-way ANOVA and Tukey’s multiple comparisons test. Graphs are plotted with standard
error bars.

3. Results

Dietary intervention modulates body condition and tissue morphology. At the end of
the study, WD-fed mice had a 1.15-fold increased body weight compared to CD (p = 0.0001,
Figure 1A). Mice consuming WD undergoing interventions with probiotics, antibiotics,
MGE, combined MGE and probiotics, and MGE and antibiotics displayed significantly
reduced body weight compared to WD alone (Figure 1A). Percent change in body weight
is shown in Figure 1B. WD-fed mice had an average 2.66-fold increase in visceral adipose
tissue weight compared to CD (p < 0.0001, Figure 1C). In WD-fed animals, visceral adiposity
was reduced by all interventions. Visceral adipose tissue weight was normalized to initial
body weight (Figure 1D). Compared to CD-fed mice, mammary glands from WD-fed
animals were 2.27-fold heavier (p < 0.0001, Figure 1E). The average mammary gland weight
of WD-fed animals was reduced by probiotics, antibiotics, MGE, MGE and probiotics, and
by MGE and antibiotics interventions (p < 0.0001). Inguinal mammary gland weight was
normalized to initial body weight (Figure 1F).

Dietary intervention strategies modulate liver adiposity and glucose metabolism in
WD-fed mice. CD-fed mice consuming MGE and antibiotics had reduced liver weight com-
pared to diet alone (p = 0.0032, Figure S1A). WD-fed mice receiving probiotics, combined
MGE and antibiotics, or combined MGE and probiotics had reduced liver weight com-
pared to WD alone (p = 0.0225, p = 0.006, p = 0.006). Compared to WD-fed animals, those
receiving probiotics (alone or combined with MGE) had reduced liver adiposity (p < 0.0001,
Figure S1B). Combined MGE and probiotic intervention was associated with lower liver
adiposity than MGE alone (p = 0.002). We also measured inflammatory gene expression in
the livers of mice. A combination of MGE and probiotics reduced liver TNFα gene expres-
sion in both CD and WD-fed animals (Figure S1C). In WD-fed animals, administration of
antibiotics, MGE, a combination of MGE and probiotics, and MGE + antibiotics reduced
liver IL-1α gene expression (Figure S1D). WD consumption increased liver CD68 expression
compared to livers of CD-fed mice. All interventions in WD-fed animals reduced liver
CD68 gene expression (Figure S1E). WD-fed mice had higher glucose tolerance test areas
under the curve compared to CD animals (p = 0.005). WD-fed mice displayed elevated
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area under the curve compared with all CD-fed mice except those receiving antibiotics
(Figure S2A,B).
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Figure 1. Dietary intervention modulates body condition and tissue morphology. (A) Body weight
of female C57BL/6 mice following 13 weeks of exposure to diets and intervention strategies. (B) %
change in body weight. (C) Visceral adipose tissue weight at study completion. (D) Normalized
visceral adipose tissue weight at the end of the study. (E) Weight of the right lower (4/5) mammary
gland at study completion. (F) Normalized inguinal mammary gland weight. n = 7–8. * p < 0.05,
** p < 0.01, *** p < 0.001, **** p < 0.0001.

Diet composition and intervention strategies modulate gut microbiome composition.
The Shannon α-diversity index of fecal bacteria did not significantly vary between groups
(Figure 2A). An Adonis test determined that Treatment, Diet, and Treatment: Diet interac-
tions all significantly impacted gut bacterial beta diversity with R2 values of 0.1681, 0.2724,
and 0.1661, respectively (p = 0.0001, Figure 2B). Post-hoc pairwise testing demonstrated that
CD-fed mice receiving probiotics, MGE, and combined MGE and probiotics all significantly
varied from animals receiving CD alone (p = 0.004, p = 0.002, p = 0.003). CD-fed mice
receiving either MGE or probiotics alone expressed different gut bacterial contents than
those receiving combined MGE and probiotic intervention (p = 0.024, p = 0.002). WD-fed
mice were significantly different from CD (p = 0.002). In WD-fed mice, those receiving
combined intervention with MGE and probiotics expressed a gut bacterial diversity differ-
ent from those consuming chow alone, probiotics, or MGE (p = 0.003, p = 0.002, p = 0.002).
Observed bacterial phyla are illustrated in a bar graph (Figure 2C). The proportional abun-
dance of the Bacteroidetes and Firmicutes phyla were compared (Figure 2D–F). WD-fed
mice had 1.44-fold lower Bacteroidetes abundance than CD (p = 0.0349, Figure 2D). Com-
bined MGE and probiotic intervention of WD-fed animals prevented this effect (p = 0.0381).
No significant diet and intervention-mediated effects on Firmicutes abundance or Bac-
teroidetes/Firmicutes ratio were observed (Figure 2E,F).
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Figure 2. Diet composition and intervention strategies modulate gut microbiome composition.
(A) Shannon diversity index of fecal samples collected after 13 weeks of diet and intervention expo-
sure. (B) Principal component analysis of fecal microbial composition. (C) Proportional abundance
of bacterial phyla identified in fecal samples. Each bar represents data collected from one mouse.
(D) Proportional abundance of fecal Bacteroidetes. (E) Proportional abundance of fecal Firmicutes.
(F) The ratio of Bacteroidetes to Firmicutes. n = 7–8, * p < 0.05.

Dietary intake and MGE consumption mediate gut colonization of probiotic bacte-
rial species. The bacterial species’ proportional abundance is illustrated in a bar graph
(Figure 3A). Bifidobacterium were enriched in WD-fed mice receiving combined intervention
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with MGE and probiotics compared to those receiving diet alone (proportional abundance
0.001457 vs. 0, p = 0.002, Figure 3B). The proportional abundance of unclassified Lactobacillus
species was not significantly altered between groups (p > 0.2, Figure 3C). Lactobacillus brevis
was not observed in samples from WD or CD-fed mice but had an average proportional
abundance of 7.784 × 10−5 in WD-fed mice receiving probiotics (p = 0.0003, Figure 3D).
WD-fed animals receiving probiotics expressed a 215-fold increase in fecal Lactobacillus
plantarum compared to diet alone (p < 0.0001, Figure 3E).
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Figure 3. Dietary intake and MGE consumption mediate gut colonization of probiotic bacterial
species. (A) Proportional abundance of bacterial species were identified in murine feces following
13 weeks of diet and intervention exposure. Each bar represents the fecal bacterial composition of a
single mouse. (B–E) Proportional abundance of probiotic bacterial species identified in murine feces.
(B) Bifidobacterium. (C) Lactobacillus unclassified. (D) Lactobacillus brevis. (E) Lactobacillus plantarum.
*** p < 0.001. **** p < 0.0001.
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Diet and intervention strategies mediate gut colonization of disease-associated mi-
crobes. Lactococcus were enriched 1810-fold in WD-fed mice compared to CD (p < 0.0001,
Figure S3A). In WD-fed animals, MGE reduced this effect while combined intervention
was associated with reduced Lactococcus (p = 0.0269, p = 0.0213). Ruminococcaceae was
reduced in WD-fed mice consuming combined MGE and probiotics compared to diet
alone (Figure S3B). Anaerovorax were observed in WD-fed mice but not in mice receiv-
ing MGE (alone or combined with probiotics) or CD (p = 0.0049, Figure S3C). Alistipes
were enriched in WD-fed mice with combined MGE and probiotics compared to WD
(Figure S3D). Tukey multiple comparison analysis did not identify differences in Oscil-
lospira enrichment between groups, but ANOVA analysis of the entire dataset suggests a
trend (p = 0.0127, Figure S3E). Enterococcus was enriched in WD-fed mice compared to CD
(p = 0.0003, Figure S3F). Probiotics reduced this effect while combined intervention yielded
a reduction in WD-fed animals (p = 0.008, p = 0.0012).

Diet and intervention strategies mediate changes in visceral adipose tissue physiology.
VAT was stained with Picrosirius Red (a pan-collagen stain to determine tissue fibrosis
(Figure 4)) or antibodies to F4/80 (a pan-macrophage marker to determine immune cell
recruitment to the tissue (Figure 5) and MCP-1 (a monocyte-attracting chemokine as a
marker for tissue inflammation (Figure 6). CD-fed mice receiving antibiotics had an
average PicRed positivity 2.09-fold greater than diet alone (p = 0.0439, Figure 4). The
addition of MGE to mice consuming antibiotic water was associated with a 2.87-fold
reduction of this effect (p = 0.0024). In WD-fed mice, combined MGE and antibiotics
yielded a 2.06-fold increase compared to diet alone (p = 0.0067). Comparatively, those
receiving either antibiotics or MGE alone had respective 3.80 and 5.00-fold reduced PicRed
positivity (p < 0.0001). CD-fed mice receiving antibiotics had an average 1.77-fold increase
in macrophages compared to CD (p = 0.0422, Figure 5). CD-fed mice receiving combined
MGE and probiotics had an average macrophage count 3.42-fold lower than probiotics
alone and 3.61-fold lower than MGE alone (p = 0.0002, p < 0.0001). Macrophages in WD-fed
mice receiving probiotics, antibiotics, and combined MGE and probiotics were reduced 2.93,
2.60, and 1.98-fold, respectively, compared to diet alone (p = 0.0003, p = 0.0009, p = 0.0228).
WD-fed mice consuming antibiotics and combined MGE and antibiotics had an average
of 2.50 and 2.93-fold increases in MCP-1 positivity compared to diet alone (p = 0.0066,
p < 0.0001, Figure 6B). Compared to WD-fed mice receiving MGE alone, those consuming
MGE combined with probiotics had an average 2.56-fold lower MCP-1 positivity (p = 0.0248).
CD-fed mice receiving antibiotics had an average 1.26-fold reduced adipocyte diameter
than diet alone (p = 0.0226, Figure 6C). Mice receiving combined MGE and antibiotics had
1.42 and 1.36-fold higher average adipocyte diameter compared to antibiotics or MGE alone
(p < 0.0001). WD-fed mice had a 1.73-fold greater adipocyte diameter than CD (p < 0.0001).
This effect was reduced by probiotics, antibiotics, MGE, combined MGE and probiotics,
and combined MGE and antibiotics by respective magnitudes of 1.99, 1.44, 2.32, 1.72, and
1.51-fold (p < 0.0001). Consumption of MGE alone in WD-fed mice resulted in an average
adipocyte diameter of 1.35 and 1.53-fold greater than combined intervention with MGE
and probiotics or MGE and antibiotics (p = 0.0006, p < 0.0001).
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Figure 4. Diet and intervention strategies mediate changes in visceral adipose tissue fibrosis. Repre-
sentative 20× images of visceral adipose tissue stained with Picrosirius Red. Percentage of pixels
positive for PicRed staining. * p < 0.05. ** p < 0.01. **** p < 0.0001.
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Figure 5. Diet and intervention strategies mediate changes in visceral adipose tissue immune cell
infiltration. Representative 20× images of visceral adipose tissue stained with anti-F4/80. Number of
F4/80-positive macrophages identified per million pixels. * p < 0.05. *** p < 0.001. **** p < 0.0001.
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Figure 6. Diet and intervention strategies mediate changes in visceral adipose tissue physiology and
inflammation. (A) Representative 20× images of visceral adipose tissue stained with anti-MCP-1.
(B) Percentage of pixels positive for anti-MCP-1 staining. (C) Average adipocyte diameter calculated
from three representative adipocytes per image. * p < 0.05. ** p < 0.01. *** p < 0.001. **** p < 0.0001.
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Diet and intervention strategies mediate factors associated with mammary gland
fibrosis and inflammation. MG were stained with PicRed, F4/80, and MCP-1 (Figure S5A).
In CD-fed mice, probiotics and combined MGE and probiotics reduced PicRed positivity
2.63 and 2.16-fold, respectively (p = 0.0021, p = 0.0166, Figure S5B). Compared to mice
receiving WD alone, mammary gland PicRed positivity was reduced 3.51-fold by probi-
otics, 2.04-fold by MGE, and 2.46-fold by combined MGE and probiotics (p = 3.51, p = 2.04,
p = 2.46). Compared to CD alone, the number of macrophages per million pixels increased
1.73 and 2.21-fold in mice receiving MGE and combined MGE and antibiotics, respectively
(p = 0.0439, p < 0.0001, Figure S5C). Mice receiving combined MGE and antibiotic interven-
tion had an average macrophage count 2.38-fold higher than antibiotic intervention alone
(p < 0.0001). WD-fed mice receiving antibiotics had 1.92-fold more macrophages than those
consuming WD alone (p < 0.0001). WD-fed mice receiving combined MGE and antibiotics
had 1.85-fold fewer macrophages than antibiotics alone (p < 0.0001). MCP-1 positivity was
elevated in CD-fed mice receiving antibiotics and combined MGE and antibiotic interven-
tion compared to diet alone by respective magnitudes of 48.63 and 31.76-fold (p < 0.0001,
p = 0.0002, Figure S5D). Antibiotic intervention of WD-fed animals was associated with a
3.53-fold increased MCP-1 positivity compared to diet alone, while combined antibiotic
and MGE intervention yielded a 2.16-fold reduction compared to antibiotics (p < 0.0001).

Diet and intervention strategies mediate factors associated with intestinal inflamma-
tion. Intestines were stained with H&E and Alcian Blue (Figure 7A). CD-fed mice receiving
combined MGE and probiotics had an average villus length 1.35, 1.41, and 1.30-fold higher
than those receiving diet alone, probiotics, and MGE respectively (p = 0.0012, p = 0.0001,
p = 0.0072 Figure 7B). WD-fed mice receiving antibiotics, MGE, and combined MGE and
probiotics had average villus lengths greater than diet alone by magnitudes of 1.50, 1.43,
and 1.42-fold, respectively (p < 0.0001, p = 0.0012, p = 0.0021). WD-fed mice receiving com-
bined MGE and probiotics had an average villus length 1.30-fold greater than probiotics
alone (p = 0.0439). We did not observe a significant impact of diet or intervention strategy
on muscularis width (Supplemental Figure S6). CD-fed mice receiving antibiotics (alone
or combined with MGE) had 1.98 and 2.00-fold more goblet cells per villus compared to
CD (p = 0.0009, p = 0.0006, Figure 7C). Intestines of mice receiving combined MGE and
antibiotics had 1.80-fold more goblet cells/villus than MGE alone (p = 0.0041). WD-fed
mice had 2.10-fold more goblet cells per villus than CD-fed animals (p < 0.0001). WD-fed
mice receiving intervention with probiotics and combined MGE and probiotics had 1.68
and 1.97-fold reduced goblet cells/villus compared to WD alone (p = 0.0082, p = 0.0003).
Combined MGE and probiotic intervention was associated with a goblet cell count 1.83-fold
lower than MGE alone (p = 0.0041).
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Figure 7. Diet and intervention strategies mediate factors associated with intestinal inflammation.
(A) Images of intestinal sections stained with H&E and Alcian Blue. (B) Average villus length
measured in H&E images. (C) Alcian Blue-positive goblet cells counted per villus. * p < 0.05.
** p < 0.01. *** p < 0.001. **** p < 0.0001.
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4. Discussion

Clinical dietary polyphenol interventions report anti-inflammatory and antioxidant
properties [17]. Lactobacillus-based probiotics reduced inflammation, glucose intolerance,
and insulin resistance in a study using a male murine model of diet-induced obesity [18].
These models suggest polyphenols and probiotics as potential strategies for the modulation
of WD-associated inflammatory, microbial, and metabolic effects. We investigated a unique
combination of a Lactobacillus and Bifidobacterium probiotic with an extract high in dietary
polyphenols (MGE) for the intervention of WD-fed female mice.

The increase in WD-mediated body weight and visceral adipose were alleviated by
dietary intervention. High visceral adipose tissue deposition in obese patients is asso-
ciated with cardiometabolic disease risk [19]. MGE combined with probiotics reduced
body weight and all interventional strategies reduced visceral adiposity in WD-fed mice.
Muscadine grape phytochemical supplementation of high-fat diet-fed male C57BL/6 mice
was associated with a 12% body weight reduction compared to diet alone [20]. Clinical
models report beneficial effects of Lactobacillus-based probiotic supplementation on weight
loss [21]. A trial of obese subjects supplemented with Lactobacillus rhamnosus demonstrated
that probiotic-mediated weight loss and fat mass reduction were greater in women than
men [22]. Antibiotic-mediated gut microbiome depletion contributed to visceral adipose tis-
sue browning in high-fat diet-fed male mice [23]. While we did not measure brown adipose
tissue in this study, these effects may have contributed to the observed perturbations in
visceral adiposity in WD-fed mice receiving antibiotics in our model. While sex differences
have been reported in body weight gain and lipid accumulation, many of the available
dietary intervention models rely on male animals. Our findings contribute important data
regarding female responses to dietary intervention.

We previously reported that WD was associated with reduced gut bacterial α-diversity
compared to Mediterranean Diet in a nonhuman primate (NHP) model [24]. We did not
observe significant variation in gut microbial alpha diversity in our model, but we report
that diet, intervention, and diet + intervention all significantly impacted β-diversity. Our
NHP model demonstrated that diet (Western or Mediterranean) was the main determinant
of gut microbial β-diversity [24], but our observation of the impact of intervention strategy
(probiotics, MGE, and antibiotics) on gut β-diversity is a novel finding. We examined the
bacterial phyla abundance present in the gut. Bacteroidetes and Firmicutes are the most
abundant bacterial phyla observed in human adults [25]. Reduced gut Bacteroidetes are
associated with obesity [26]. WD-fed mice echoed this response and combined MGE and
probiotic intervention was associated with increased Bacteroidetes in WD-fed mice. A
study of male Wistar rats consuming a high-fat diet reported that the diet was associated
with reduced Bacteroidetes but animals receiving polyphenol intervention (quercetin and
resveratrol) did not significantly differ from CD [27]. Clinical intervention with Lacto-
bacillus-based probiotics in inflammatory bowel disease patients restored Bacteroidetes
to normal levels [28]. We report that neither MGE nor our administered probiotic al-
tered Bacteroidetes colonization in WD-fed animals alone, but the combined intervention
may have an additive effect. Gut enrichment of Firmicutes is associated with obesity
and a low Bacteroidetes/Firmicutes ratio indicates an obesity-favoring gut microbial pop-
ulation [29]. We did not observe significant alteration in Firmicutes abundance or the
Bacteroidetes/Firmicutes ratio. In the previously discussed rat model of polyphenol inter-
vention, the supplement was associated with reduced gut Firmicutes compared to high-fat
diet-fed animals [27]. Our administered dietary polyphenol solution (MGE) is low in both
resveratrol and quercetin but does contain catechin. An in vitro model of cultured fecal
samples supplemented with polyphenols demonstrated that catechin inhibited both Bac-
teroidetes and Firmicutes growth and was associated with reduced energy metabolism [30].
This effect may explain why MGE alone did not increase Bacteroidetes colonization as well
as the resulting insignificant Bacteroidetes/Firmicutes ratios.

We examined the abundance of fecal probiotic bacteria. Bifidobacterium, Lactobacillus
unclassified, Lactobacillus brevis, and Lactobacillus plantarum were only observed in the fecal
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microbial contents of WD-fed mice. Bifidobacterium was enriched in animals receiving
combined MGE and probiotics while Lactobacillus brevis and Lactobacillus plantarum were
enriched in those receiving probiotics alone. When Lactobacillus and Bifidobacterium were
supplemented in vitro with either grape seed extract, monomeric-rich grapeseed extract,
or oligomeric-rich grapeseed extract, Bifidobacterium reached maximal growth with the
monomeric-rich and oligomeric-rich varieties and not with whole extract [31]. These results
suggest that MGE-mediated gut bacterial colonization changes with the composition of the
specific extract being administered.

Adipose tissue fibrosis is an obesity-associated response in which extracellular matrix
deposition accumulates collagen fibers that trap adipocytes, reducing tissue plasticity [19].
Mature adipocytes cultured with decellularized material from obese patient adipose tissue
indicated that adipose tissue fibrosis may result in reduced adipokine secretion, decreased
lipolysis, and increased pro-inflammatory cytokine secretion [32]. In WD-fed mice, com-
bined MGE and antibiotics were associated with elevated collagen deposition compared
to WD alone, MGE alone, or antibiotics alone. Adipose tissue inflammation is associated
with obesity-mediated insulin resistance in rodents [33,34]. This is largely macrophage-
mediated and macrophage accumulation has been identified in the adipose tissue of obese
humans [35]. WD-fed mice receiving probiotics, antibiotics, and combined MGE and
probiotics had fewer visceral adipose macrophages compared to diet alone. MCP-1 is
a chemotactic factor for monocytes that is primarily produced by epithelial cells and
macrophages [36]. MCP-1 mRNA was enriched in the adipose tissue and plasma of mice
with high-fat diet-induced obesity [36]. We anticipated that WD intake would result in
increased MCP-1, but we did not observe this effect. Visceral adipose MCP-1 was elevated
in WD-fed mice receiving antibiotics (both alone and with MGE), linking VAT fibrosis
and inflammation. The gut microbiome can have immunomodulatory effects [37]. It is
possible that microbiome depletion removed protective effects against WD intake, allowing
an MCP-1-mediated inflammatory response. Adipocyte hypertrophy (enlarged adipocyte
size) results in increased secretion and expression of pro-inflammatory cytokines [19,34]. In
CD-fed mice, antibiotics were associated with reduced adipocyte diameter while combined
MGE and antibiotics ameliorated this effect. WD-fed mice receiving antibiotics (either alone
or with MGE) had reduced adipocyte size compared to diet alone. These results corrobo-
rate our fibrosis staining, as antibiotics were associated with a fibrotic response. Excessive
collagen deposition in the adipose tissue prevents adipocytes from expanding [19]. WD-fed
mice displayed adipocyte hypertrophy compared to controls, while probiotics, MGE, and
combined MGE and probiotics reduced this effect. Lactobacillus paracasei ameliorated lipid
accumulation in the epididymal white adipose tissue of high-fat diet-fed mice, prevent-
ing adipocyte hypertrophy [38]. In vitro study of polyphenol-treated 3T3-L1 adipocytes
resulted in reduced adipocyte triglyceride content and down-regulation of lipogenic genes,
suggesting a potential metabolically beneficial response [39].

Elevated breast volume is associated with high BMI [40]. MG weight was signifi-
cantly increased in mice consuming WD. We report a novel effect of dietary intervention
strategies (antibiotics, MGE, MGE and probiotics, and MGE and antibiotics) in reduc-
ing WD-mediated MG weight. As many dietary intervention studies have utilized male
rodents, MG weight has not been reported. These results concur with available knowl-
edge regarding dietary intervention and adiposity; however, further study examining
MG will be beneficial. MG fibrosis contributes to increased breast density which is cor-
related with breast cancer risk [41]. Intervention with probiotics, MGE, and combined
MGE and probiotics reduced MG collagen deposition in WD-fed mice, suggesting that oral
probiotics and polyphenol administration could modulate diet-associated breast fibrosis.
Damaged inflammatory homeostasis in obese patients can contribute to a feed-forward loop
upregulating macrophage-mediated inflammation in the mammary tissue [42]. CD-fed
mice receiving both MGE and combined MGE and antibiotic intervention had more MG
macrophages than controls. In WD-fed animals, antibiotics were associated with a larger
macrophage population compared to diet alone. MG tissue maintains a population of
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resident macrophages that function in tissue development and remodeling [43]. MCP-1
was elevated in CD-fed mice receiving both antibiotics and combined MGE and antibiotics,
while in WD-fed mice the effect was observed in those receiving antibiotics alone. Elevated
MG MCP-1 was associated with increased MG density and breast cancer risk in a murine
model [44]. We observed MCP-1 enrichment in animals with depleted gut microbiota,
which suggests a novel effect of the gut microbiome in protecting mammary tissue from
WD-mediated fibrosis.

Intestinal inflammation is associated with reduced villus length and muscularis thick-
ening [45,46]. Combined MGE and probiotic intervention increased villus length in mice.
This effect was greater in mice receiving combined intervention than in those receiving MGE
or probiotics on CD or probiotics on WD. Oral polyphenols alleviated colitis symptoms by
modulating the gut microbiome in a murine model [47]. Probiotic administration yielded
immunomodulatory effects on murine colitis [48]. The number of goblet cells increases
from the duodenum to the distal colon, but microbiota also plays a role as germ-free mice
have fewer goblet cells than wild-type mice [49]. Antibiotic interventions were associated
with a significant increase in goblet cells of CD-fed mice, identifying a difference between
antibiotic microbiome depletion and germ-free mice. WD-fed mice had more goblet cells
than control mice which was modulated by probiotic intervention. This suggests that gut
microbial contents influence goblet cell count, a concept corroborated by germ-free mouse
goblet cell reduction [50].

5. Conclusions

In conclusion, our study presents a novel dietary intervention strategy combining
commensal probiotics and polyphenol-enriched MGE to induce metabolic, microbial, and
immunomodulatory shifts in WD-fed mice. We utilized female mice, which are often not
included in obesity dietary intervention models. Our study is limited by this factor. Future
studies are needed to determine the exact molecular mechanisms connecting observed gut
microbial shifts to the beneficial effects observed in the VAT, MG, and intestinal tissues.

Supplementary Materials: The following supporting information can be downloaded at:https:
//www.mdpi.com/article/10.3390/cells12222599/s1, Figure S1: Dietary intervention strategies
modulate liver adiposity in Western diet-fed mice; Figure S2: Diet and antibiotic administration
modulate glucose homeostasis; Figure S3: Diet and intervention strategies mediate gut colonization
of disease-associated microbes; Figure S4: IHC negative controls; Figure S5: Diet and intervention
strategies mediate factors associated with mammary gland fibrosis and inflammation; Figure S6:
Average intestinal muscularis thickness calculated from measurements of the H&E images.
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