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Abstract: The hypothalamus, one of the major regulatory centers in the brain, controls various home-
ostatic processes, and hypothalamic neural stem cells (htNSCs) have been observed to interfere with
hypothalamic mechanisms regulating aging. NSCs play a pivotal role in the repair and regeneration
of brain cells during neurodegenerative diseases and rejuvenate the brain tissue microenvironment.
The hypothalamus was recently observed to be involved in neuroinflammation mediated by cellular
senescence. Cellular senescence, or systemic aging, is characterized by a progressive irreversible
state of cell cycle arrest that causes physiological dysregulation in the body and it is evident in many
neuroinflammatory conditions, including obesity. Upregulation of neuroinflammation and oxidative
stress due to senescence has the potential to alter the functioning of NSCs. Various studies have
substantiated the chances of obesity inducing accelerated aging. Therefore, it is essential to explore
the potential effects of htNSC dysregulation in obesity and underlying pathways to develop strategies
to address obesity-induced comorbidities associated with brain aging. This review will summarize
hypothalamic neurogenesis associated with obesity and prospective NSC-based regenerative therapy
for the treatment of obesity-induced cardiovascular conditions.

Keywords: aging; cardiovascular conditions; hypothalamus; neural stem cells; neuroinflammation;
obesity

1. Introduction

Neural stem cells (NSCs) in an adult brain are responsible for neurogenesis and re-
generation of brain functions. The two primary NSC reservoirs (neurogenic niches) in an
adult mammalian brain are the sub-ventricular zone (SVZ) of the lateral ventricles and the
hippocampal dentate gyrus (DG) [1–3]. In recent times, a third NSC pool, hypothalamic
neural stem cells (htNSCs), were discovered [4–6]. The htNSC population is sensitive to
variations in nutrient intake and signaling. An increase in neurogenesis in the hypotha-
lamus was observed upon acutely feeding a high fat diet (HFD) [7], whereas a reduced
neurogenesis in the hypothalamus was noticed as a result of chronic HFD feeding [8], and
‘inflammation’ was suggested as a major factor in causing such pronounced changes in
neurogenesis. Upon htNSCs culturing, we observed a significant increase in htNSCs after
eight months in HFD-fed C57BL/6J male adult mice compared to the chow-fed controls
(unpublished).

Cellular senescence is an irreversible growth arrest in proliferating cells, which has
been implicated in several neurodegenerative diseases [9,10]. During the process of senes-
cence, the NSCs lose their ability to proliferate and generate neurons [11–14]. Supplement-
ing mono-unsaturated fatty acids, such as oleic acid, in the diet caused lipid droplets to
develop in ependymal cells and contributed to a decrease in neurogenesis in SVZ in the
Alzheimer’s disease mouse model, 3xTg-AD [15]. Likewise in obesity, SVZ showed an
increase in senescent glial cells carrying excessive fat deposits, and genetically ablating
these senescent glial cells restored neurogenesis [16]. Thus, modifying the lipid content
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in the diet can replenish the old neurogenic pool. In this review, we will summarize hy-
pothalamic neurogenesis associated with obesity and aging and explore the possibilities of
NSC-based regenerative therapy to treat obesity-induced cardiovascular conditions.

2. HtNSCs and Obesity

NSCs are multipotent and they generate neurons, oligodendrocytes, and glia in the
nervous system [17]. Varied levels of neural inflammation are observed in many neurologi-
cal disorders or neurodegenerative diseases in human beings [18,19]. Their progression
involves mediators of inflammation that are synthesized and secreted by various CNS cells,
such as astrocytes, microglia, and oligodendrocytes [20]. Both beneficial and detrimental
effects are observed in inflammatory conditions, which makes it unclear to specify the
exact role of inflammation on NSCs. Certain pathways, after long term activation, cause
energy imbalance, abnormal nutrient metabolism, restricted neurogenesis, proliferation,
and differentiation of neural stem cells leading to metabolic and cognitive abnormalities.
In the hypothalamus, the medio-basal hypothalamus (MBH) and the 3rd ventricle wall are
observed to be the NSC niches [8]. Some studies state that mainly adult NSCs are observed
in the MBH [7,21]. The MBH is a predominant region for physiological homeostasis of
the entire body. Many neural progenitors or specialized ependymal cells that line the
3rd ventricle are observed to be glia-like tanycytes. They send processes to the arcuate
nucleus and ventro-medial nucleus of the hypothalamus. Functionally these tanycytes
are observed to be glucosensitive, reacting to metabolic stimulation and signal variations
caused by feeding and energy balance [4,7,22]. Properties of tanycytes include ATP release,
purinergic P2Y1 receptors, ectonucleoside triphosphate diphosphohydrolase 2 (NTPDase2)
expression [23], and reacting to the activation of these receptors by the means of intense
Ca2+ waves [24]. This is similar to the signaling mechanisms in stem cells. Expression
of doublecortin-like [25] proteins, nestin [26–28] and vimentin [29–31], linked to neural
precursor cells are observed in humans and rodent tanycytes. The expression of Sox2 [7,8], a
nuclear transcription factor and NSC marker, is found in a few of the tanycytes, especially in
the subventricular zone and dentate gyrus. In adult mice, it is mainly expressed in a group
of cells in the MBH, particularly within the hypothalamic third-ventricle wall [8]. However,
a few studies have shown rare occurrences of proliferating neurogenic progenitors in the
human dentate gyrus [32,33]. One of the studies also observed human paralaminar nuclei
of the amygdala showing persistence of immature excitatory neurons for decades [34].
Thus, the possibility of observing immature non-proliferative hypothalamic neurons can-
not be denied and future studies focusing on confirming their ability to proliferate and
differentiate could possibly reveal their normal functionality.

The MBH regulates body weight, feeding, and glucose balance via melanocortin
signals based in the arcuate nucleus (ARC), mainly via orexigenic agouti-related peptide
(AGRP) neurons and anorexigenic proopiomelanocortin (POMC) neurons [35–38]. Leptin
and insulin, which vary with different fat mass conditions and feeding patterns, affect
these two neurons and the process is crucial for body weight homeostasis [36,39–41]. The
studies also showed decrease in responsiveness to leptin and insulin by these neurons
upon chronic feeding of a high-fat diet (HFD), resulting in type-2 diabetes (T2D) and HFD-
induced obesity. A 10% loss in POMC neurons was observed in the hypothalamus upon
long term HFD feeding [8,21,42]. Neural precursors giving rise to different neurons were
observed to have POMC gene expression [43]. Considering these data and mechanisms,
there is evidence of dysregulation of neurogenesis in the hypothalamus of obese subjects.
Based on many recent studies, neurogenesis has been observed in adult rodents [7,22,44,45]
and htNSCs in adult MBH contribute to the regulation of metabolic physiology [8]. Hence,
future studies could be focused on developing htNSCs as a treatment regimen for obesity
and its related disorders, such as diabetes.
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3. HtNSCs and Inflammation

Microglia are brain-resident macrophages that contribute to reduced neurogenesis
in aging and play a predominant role in the inflammatory response [46]. Through mi-
croglia sorting studies, we observed a significant elevation of activated microglia in the
hypothalamus of four-month HFD-fed young adult male mice compared to the chow-fed
controls (unpublished). Activated microglia have the potential to release proinflammatory
cytokines that can be harmful to NSCs, neurons and other glial cells. Among the complex
neural immune reactions in adult NSCs, inflammatory cytokines are observed to majorly
affect differentiation, proliferation, migration, and survival [47]. Inhibition of neurogenesis
is achieved by pro-inflammatory cytokines whereas an increase in neurogenesis is observed
by anti-inflammatory cytokines [48]. The gene expression studies in our lab revealed a
significant increase in proinflammatory markers, such as IL1β, MCP1, and TNFα, in the
whole hypothalamus of middle-aged, eight-month HFD-fed male mice compared to con-
trols (unpublished). However, an anti-inflammatory cytokine, such as the transforming
growth factor-beta (TGFβ), can enhance endothelial cells of adult NSC during aging [49,50].
In addition to these, a chemokine, CCL11, was observed to be increased in aged mice, both
in blood and cerebrospinal fluid (CSF), which further caused a decline in neurogenesis
leading to cognitive function impairment [51]. Exercise and restriction of calories can cause
variations in systemic factors, and hence, act as adult NSC function modulators [52].

Upon over-nutrition, the IκB kinase-β/nuclear transcription factor NF-κB (IKKb/NF-
κB) pathway, that plays a crucial role in many physiological processes, gets activated;
this can cause SOCS3, a suppressor of cytokine signaling-3 gene upregulation in the
hypothalamus, to inhibit insulin and leptin signaling, leading to resistance [53]. Studies
have confirmed that, in the neurons of the hypothalamus in mice, SOCS3 knockout leads
to an improvement in central leptin signaling and reduced obesity [54–56]. Similar effects
were observed in central IKKb knockout mice and, in the MBH, SOCS3 overexpression
decreased the neural IKKb inhibition effect on obesity reduction [53]. Like SOCS3, protein
tyrosine phosphatase 1B (PTP1B) causes inhibition of leptin and insulin signaling and was
observed to have a role in the IKKb/NF-kB inflammatory pathway. PTP1B expression
in the hypothalamus can be increased by TNF-a by activating the IKKb/NF-kB pathway,
mainly by being a transcriptional target [57]. Inhibition of PTP1B in neurons resolved
leptin resistance, glucose disorders, and obesity induced by over-nutrition [58–60]. It
is assumed that neural PTP1B may form a link with metabolic disease pathways and
neurodegenerative diseases as it had an effect on genetic mouse models of Alzheimer’s
disease [61]. In the forebrain, degeneration of GABAergic interneurons was mediated by an
overproduction of the cytokine interleukin-6 in diabetes and obesity, which leads to NF-kB
activation and release of neurotoxic inflammatory products [62]. Therefore, alleviating
chronic diet-induced neuroinflammation by exploring the pathways associated with the
metabolic control function of htNSC and identifying their therapeutic potential is essential.

4. Nrf2, an Important Transcription Factor Affecting NSC Populations in Obesity

Various factors affect NSC populations in obesity, including hormonal factors, tran-
scription factors, inflammatory factors such as cytokines and chemokines, epigenetic
changes and chromatin stability, oxidative stress, DNA damage, hyperlipidemia/hyp-
erglycemia, etc. Nuclear factor E2-related factor 2 (Nrf2) is a major transcription factor that
regulates basal and induced expression of antioxidant response element genes in response
to oxidative stress. Functions of Nrf2 also include stem cell survival, apoptosis, autophagy,
mitochondrial biogenesis, and many more, in addition to aging processes [63–67]. Studies
in our lab observed an elevated expression of Nrf2 in the hypothalamus of adult obese
male mice, along with a significant increase in htNSCs (unpublished). In a previous study,
increased oxidation, or reactive oxygen species in adult mouse NSCs, promoted their ability
to generate neurons and proliferate [68]. Self-renewal of stem cells was observed to be
regulated by Nrf2, along with differentiation initiation with the support of epigenetic fac-
tors and transcription regulators [69]. Nrf2 expression and transcriptional activity steadily
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increased during the induced oluripotent stem cells (iPSC) differentiation process that
peaked in later stages [70]. Restoration of age-related loss of hippocampal function was
evidenced by transplanting Nrf2-overexpressing young NSCs [71], indicating the critical
role of Nrf2 in mediating NSC/neural progenitor cell (NPC)- dependent neurogenesis in
aging. Redox homeostasis by Nrf2 critically mediates the differentiation ability of different
stem cell types to survive oxidative stress, which could gradually reduce during aging [69].
Thus, obtaining insight into one of the main transcription factors, Nrf2, that can resist
oxidative stress, could provide fundamental knowledge about changes in htNSCs during
neuroinflammation and lead to development of an associated therapeutic strategy.

5. HtNSCs and Aging

A continuous decline in physiological integrity is observed during aging. Characteris-
tic intertwining factors that contribute to the complex aging process include deregulated
nutrient sensing, cellular senescence, epigenetic alterations, genomic instability, loss of
proteostasis, mitochondrial dysfunction, telomere attrition, change in intercellular commu-
nication, and exhaustion of stem cells [72,73].

It has been observed in various research that the hypothalamus is particularly impor-
tant in aging [74–77] but the underlying cellular mechanism is not known in depth. The IκB
kinase-β (IKKβ) pro-inflammatory axis in the hypothalamus and its downstream nuclear
transcription factor, NF-κB, (IKKβ/NF-κB signaling) is over-stimulated in over-nutrition or
aging [77–79]. Systemic aging is directed by the hypothalamic IKKβ/NF-κB pathway via in-
flammatory crosstalk between neurons and microglia by inhibiting gonadotropin-releasing
hormone (GnRH) production, and so counteracting inflammation or GnRH therapy could
partly regress degenerative signs of aging [77]. Maternal inflammation has been observed to
cause reduced ventricular cell proliferation in developing fetal mouse brain [80]. In young
mice, a high number of cells co-expressing Sox2 and the polycomb complex protein, Bmi-1,
a nuclear protein [81] that is vital for self-renewal of NSCs and hematopoietic stem cells [82],
were observed in the third-ventricle wall, whereas the ones in the MBH were found to be
sparse. However, a gradual decrease in these cells was observed as age increased, which
was initiated in the ventral region of 3rd ventricle wall within the MBH in 11–16-month-old
mice and was totally lost in 22-months-and-older ones. Thus, various studies that aim to
evaluate the exact time required to intervene in an inflammatory condition/pathway in
the brain will provide more understanding upon which to formulate therapeutic clinical
strategies for different neural stem cell niches.

Senescent glial cell accumulation is observed in proximity to the lateral ventricles
along with excessive fat deposition within them. Upon removal of senescent cells from
HFD or obese mice deficient in leptin receptors, neurogenesis being restored and a de-
cline in anxiety-related behavior was observed [16]. Hence from subsequent studies, they
concluded that the topmost contributors to obesity-induced anxiety are senescent cells.
Therefore, senolytic drugs have opened a novel therapeutic pathway to treat neuropsychi-
atric disorders.

Alterations in mitochondrial structure and function may cause deleterious effects
in adult NSC, which could drive the aging process [83]. Abnormal toxic by-product
accumulation, including of reactive oxygen species (ROS), accompanies this event [84].
SOD2, an antioxidant enzyme that is regulated by FoxO3, a transcription factor associated
with longevity [85], protects adult NSCs in mice [86]. An increased level of ROS and a
decrease in the potential for self-renewal of adult NSCs was observed in mice that were
deficient in FoxO1, 3, and 4 [87]. Other dysfunctions of mitochondria that contribute to
the aging of NSCs include mitochondrial protein oxidation, variations in mitochondrial
membrane composition, and abnormal mitophagy [83,88,89].

During mammalian NSC division, protein segregation is affected by age, mainly by
means of diffusion barrier alteration. The stem cells are kept free of damage by the diffu-
sion barrier that facilitates asymmetric segregation of damaged proteins among daughter
cells [90]. Like yeast, efficient compartmentalization of cellular damage is achieved in
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young rodent NSCs and that can protect these proliferative cells. As age advances, this
efficiency is reduced, causing aged NSCs to be exposed to excessive cell damage [90].

A mitochondrial function regulator, hypoxia-inducible factor-1α (HIF-1α), is essential
for the maintenance of adult NSCs in their hypoxic niches. HIF-1α plays a major part in
cell adaptation under hypoxia by inducing transcriptional responses. Thus, for proper
adult NSC proliferation and subsequent differentiation, oxygen availability is critically
important [91]. An abnormal oxygen-sensing pathway may be responsible for the neuro-
genic decline in aging [92]. Thus, the use of anti-inflammatory agents along with senolytic
and associated htNSC therapy have the potential to strategically counteract diet-induced
chronic neuroinflammation and aging. This could possibly pave way to new therapeutic
regimens in obesity-induced cardiovascular conditions.

6. Molecular Pathways Associated with NSC Inflammation and Aging

Certain nutrient-sensing mechanisms that can be associated with aging have been
considered modifiers of adult NSCs. Adult NSC proliferation and differentiation can be
stimulated by insulin-like growth factor 1 (IGF-1) [93], and a reduced IGF-1 level has been
associated with cognitive aging [94]. However, lifelong IGF-1 exposure may be the reason
for an age-related reduction in adult neurogenesis [95].

An important metabolic regulation coordinator is the mammalian target of rapamycin
(mTOR), which has two types, viz., mTORC1 and mTORC2 [96,97]. Regulation of body
weight and feeding behavior is primarily controlled by mTOR1 using ghrelin and leptin
signaling, in addition to control of gluconeogenesis and adipogenesis peripherally in many
tissues [97]. Size, morphology, and neuronal cell numbers are controlled by mTORC2,
along with energy balance regulation in the hypothalamus. In POMC neurons in aged
mice, an elevation in mTOR activity was observed [98], which can indirectly lead to POMC
neuronal soma enlargement and a decline in the projection of neurites to the paraventricular
nucleus (PVN), which causes age-dependent obesity [99]. It has been observed that, upon
intracerebral injection, rapamycin causes mTOR inhibition which further leads to neurite
projection and neuronal excitability in POMC, establishing a decline in body weight and
food consumption; hence, age acceleration is achieved by the mTOR pathway. Therefore,
to delay aging and improve the lifespan, this pathway can be considered a potential target
for therapeutic intervention.

As previously discussed, during aging, a decrease in htNSCs was observed [81].
In addition, mice models with gene silencing mediating Bmi1+ depletion in stem cells
showed a significant reduction in cognition, sociality, muscle endurance, coordination,
and spatial memory. In other mice models, a decline in lifespan was observed in Sox2+
stem cell-depleted animals. Hence, replenishing new htNSC from a newborn mouse into
the MBH of a middle-aged mouse could enhance the lifespan and delay age-associated
physiological decline [81]. Exogenous implantation of stem cells into the hypothalamus
caused secretion of microRNA-containing exosomes, which delayed physiological deficits
in aging. Suppression of NF-kB activation was achieved in neurons due to these microRNAs,
and GnRH secretion was also restored [81]. As a result, during aging, htNSC loss might
cause systemic physiological changes due to underlying inflammation.

Through Wingless-related integration site (Wnt)-mediated signaling by astrocytes,
adult NSC expansion is induced in a paracrine manner [100]. As age increases, Wnt3
expression reduces in astrocytes, which causes further neurogenic decline [101]. Expression
of survivin is decreased in adult NSCs due to an age-associated decline in Wnt-mediated
signaling in the astrocytes that leads to a quiescent phase in adult NSCs [102]. Release of
the Wnt inhibitor, DKK1, from astrocytes is increased in NSC niches during aging, which
decreases neurogenesis [103]. Extracellular matrix composition, mechanical properties,
and arrangement have a role in adult NSC function, which varies with injury, disease, and
aging [104,105].
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A high fat mass expression and obesity associated gene (FTO) was observed in adult
NSCs [106]. A smaller number of BrdU+ and Ki67+ cells was also observed during FTO loss,
showing a decline in adult NSC and reduced proliferating capacity, along with a decline in
glial and neuronal differentiation, making adult NSC less multipotent. In addition, in adult
mice, FTO loss was observed to decrease adult NSC proliferation and caused inhibition of
neuronal differentiation in both SGZ and SVZ regions. Thus, adult NSC activity modulation
is achieved by FTO through m6A modification regulation of selective transcripts that can
indirectly affect the gene expression [107–109].

Alteration of important signaling for neurodevelopment is observed when a change in
nutrient or neurotrophic environment is observed. Brain abnormalities and decreased brain
weight, along with altered glial and neuronal protein expression is observed in mice that
have a paucity of leptin signaling and varied expression of neuronal and glial proteins [110].
Elevated proliferation and decline in neural stem/progenitor cells (NPC) are observed
in adult rats with type II diabetes [111] and in rats showing hyperglycemia. NPCs do
not respond to growth factors and form neurospheres (NS) that are smaller in size. In
addition, a decline in neurogenesis is observed in type I diabetic mice or rats treated with
streptozotocin [112]. Along with anorexigenic response signaling, during fetal life, insulin
and leptin help in neuronal development and their neurotrophic effects are mediated
by the MAPK (ERK/MAPK) pathway that resulted in phosphorylation of ERK1/2 [113].
Significant neuronal differentiation was induced by leptin in differentiation conditions
along with elevated early and late neuronal marker expression [114]; whereas the late
neuronal marker neuronal nuclei (NeuN) showed no significant increase and a normal
elevation in early neuronal markers, such as doublecortin (DCX) and neuron-specific class
III β tubulin (Tuj1), were observed upon insulin exposure [114]. According to these studies,
it was concluded that maternal diabetes and differential exposure of the fetus to insulin and
leptin could result in reduced growth or macrosomia that could have a significant effect on
the development of a fetal brain.

7. The Hypothalamus and the Sympathoexcitatory Effect

In various studies of the effects of leptin on the hypothalamus, it has been observed
that α-melanocyte-stimulating hormone (α-MSH) or melanotan II (agonist of MC3/4R
(MTII)), upon intracerebroventricular (ICV) administration, enhanced sympathetic nerve
activity (SNA), however agouti-related protein or MC3/4R broad brain inhibition with
ICV SHU9119 blocked leptin’s sympathoexcitatory effect [115,116]. This is based on the
understanding that α-MSH and glutamate are two major excitatory signals to the PVN, a
cardiogenic center in the hypothalamus (see Figure 1), that can mediate leptin’s sympa-
thoexcitatory effects. POMC neurons synthesize and release α-MSH. These neurons are in
arcuate nucleus (ArcN), which projects to various sites in the hypothalamus, including the
PVN [117–119], and regulates autonomic activity; however, the role of PVN MC3/4 is am-
biguous. Glutamatergic signals are received by the PVN from various regions that include
the dorsal medial hypothalamus, ventral medial hypothalamus, lateral hypothalamus, and
ArcN, wherein elevated SNA is observed due to the action of leptin [120]. A small group of
POMC neurons in the ArcN also expresses the glutamate vesicular transporter (VGLUT-
2) [121]. PVN glutamate receptors blockade decreases the ArcN’s non-specific chemical
stimulation-mediated sympathoexcitatory effects [122,123]. Along with this excitatory
signaling, inhibitory neurons, such as neuropeptide Y (NPY) neurons of the ArcN, are pro-
jected into the PVN [122–124]. NPY neurons are inhibited by leptin in the ArcN [125,126]
and PVN neuron firing is inhibited by NPY, which gets stimulated by α-MSH or plasma
leptin elevation.



Cells 2023, 12, 769 7 of 18
Cells 2023, 12, x FOR PEER REVIEW 7 of 17 
 

 

 
Figure 1. A simplified pathway showing excitatory circulatory signaling from SFO and OVLT, 
which are circumventricular organs lacking blood brain barrier, passing to the adjacent PVN in the 
hypothalamus and RVLM in the brainstem, causing an efferent sympathetic nerve response from 
the intermediolateral column of the spinal cord to the heart and blood vessels, resulting in increased 
heart rate and increased blood pressure associated with vasoconstriction. 

By various studies it has been identified that elevated SNA is observed in obesity, 
especially in the kidney and hindlimb, for which a leptin increase and hypothalamic mel-
anocortin activity elevation are predominant activities [127]. In mice and rats, expression 
of NPY in the ArcN/PVN is reduced by diet-induced obesity or, in the ArcN, by NPY 
mRNA levels [128–130]. In the PVN region, obesity-prone rats that were inbred showed a 
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Figure 1. A simplified pathway showing excitatory circulatory signaling from SFO and OVLT,
which are circumventricular organs lacking blood brain barrier, passing to the adjacent PVN in the
hypothalamus and RVLM in the brainstem, causing an efferent sympathetic nerve response from
the intermediolateral column of the spinal cord to the heart and blood vessels, resulting in increased
heart rate and increased blood pressure associated with vasoconstriction.

By various studies it has been identified that elevated SNA is observed in obesity,
especially in the kidney and hindlimb, for which a leptin increase and hypothalamic
melanocortin activity elevation are predominant activities [127]. In mice and rats, expres-
sion of NPY in the ArcN/PVN is reduced by diet-induced obesity or, in the ArcN, by NPY
mRNA levels [128–130]. In the PVN region, obesity-prone rats that were inbred showed a
reduction in agouti-related protein/NPY processes [131]. Tonic NPY inhibition decline is
essential for leptin-induced sympathetic outflow driven via PVN MC3/4R. It is inferred
from this that obesity plays a role in SNA inhibition and it is due to tonic activity of NPY,
which further reveals an elevated α-MSH excitation [132]. htNSCs are predominantly
found adjacent to the PVN of the hypothalamus (See Figure 2) lining the 3rd ventricle [133].
Based on these studies, there is a need for detailed investigation into the link between the
variation in NSC levels associated with different conditions, such as age, diet etc., and
sympathoexcitatory activity.
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Figure 2. A schematic illustration of the response to feeding chow (left) and high fat diet (HFD)
(right) on hypothalamic paraventricular nucleus (PVN) and hypothalamic neural stem cells (htNSCs)
lining the 3rd ventricle in mice. HFD could potentially cause an increase in senescent glial cells
within the PVN that can release senescence-associated secretory phenotype (SASP) factors causing
a proinflammatory response, further leading to htNSC dysregulation. This could, again, cause a
reduction in functional glia and neurons in the PVN. The circulatory inflammatory mediators could
also potentially cross the blood brain barrier and cause a direct effect on the htNSCs. Chow-fed
control showed normal cell populations.

8. Time-Restricted Feeding and Its Effect on NSCs

Reduced energy consumption without any effect on nutritional value is characteristic
of dietary restriction (DR). It can be alternatively described as caloric restriction (CR) and,
in a broader way, termed as periodic fasting, short-term starvation, intermittent fasting (IF),
and fasting-mimetic diets [134]. In maintaining proper health and physiology, a crucial role
is played by the type and amount of diet [135]. Adult stem cells are important for tissue
regeneration and homeostasis and these stem cells can differentiate and self-renew into
specialized cell types. Dietary changes, environment, and nutrient variation influence the
stem cells via function alteration. In various studies, a positive effect was observed in stem
cells when calories were restricted, especially an increase in the function of intestine and
skeletal muscle stem cells, in addition to an elevated quiescence of hematopoietic stem
cells (HSCs). In addition, time-restricted feeding has been shown to protect neuronal stem
cells, intestinal stem cells, and HSCs from injury, especially stroke and neurodegenerative
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diseases in the brain [136–138]. HFD impairs neurogenesis and hematopoiesis, and it can
create opportunities for tumorigenesis.

Characteristic changes in metabolic pathways in the brain are achieved by IF, mainly by
ketogenic amino acid and fatty acid breakdown and an elevation in stress resistance [139,140].
A neuroprotective effect can be achieved via IF by activation of many signaling path-
ways [141]. IF in rodents has shown an increase in long-term potentiation (LTP) at synapses
in the hippocampus and an increase in hippocampal neurogenesis [138] in comparison
with animals with a sedentary lifestyle that are fed ad libitum (AL) diet. BrdU-labeled cell
number in the dentate gyrus was elevated in the mice that were intermittently fasted [138].
They also used Ki67 as a marker to evaluate cell proliferation by identifying an increase in
dentate gyrus Ki67-labeled cells in mice that were fed with an IF diet. Mice subjected to
IF for three months showed an elevated level of hippocampal nestin and NeuN (protein
markers for precursor/neuronal stem cells), and also PSD95 (a scaffolding protein that is a
potent regulator of synaptic strength) compared to AL mice [141], which demonstrated an
increase in hippocampal neurogenesis and a strengthening of synaptic connections after IF.
The researchers also showed that a pathway essential for neural stem cell maintenance in
the mammalian brain [142], the Notch 1 signaling pathway, was shown to become activated
mainly by upregulation of full-length Notch 1, Notch intracellular domain (NICD1), and
transcription factor HES5 (involved in the formation of neurospheres) after IF.

The stress resistance ability of brain cells is activated by IF by causing various changes
in brain metabolic pathways [140]. The changes in metabolic pathways during IF can
be injurious to the brain and through activation of the brain-derived neurotrophic factor
(BDNF) signaling pathway, a neuroprotective state is achieved. Downstream transcription
factor activation that helps in energy balance and neurogenesis is made possible by BDNF,
and one such transcription factor is cAMP response element-binding protein (CREB). To
differentiate stem cells into matured neurons, collaboration between the Notch signaling
pathway and the CREB and BDNF signaling pathways is essential [143–145]. An increase
in BDNF and p-CREB expression has been seen in IF compared to AL animals [141].

Without leading to malnutrition, CR is a 20–40% reduction in intake of calories. It is
known to cause life-span increase, prolonged onset of diseases that are age related, and
decrease in the incidence of cancer in different tissues and organisms [146–149]. The link
between CR and longevity is under the influence of the downregulation of major nutrient
sensing pathways, including those of insulin or IGF-1, and signaling by mTOR [84,147,150].
Very few studies have been documented on the positive and negative effects of CR on
NSCs.

Two-days-a-week fasting or alternate-days fasting (IF) in animals have been shown to
decrease clinical symptoms caused by age-related neuronal diseases such as Alzheimer’s
disease, and the animals that were fasted also perform better after stroke, which is an acute
injury [151]. After three weeks of a three-month period of IF, an elevated NSC proliferation
in the rats and mice dentate gyrus was observed [152,153]. An elevated BDNF was associ-
ated with these positive effects. However, various studies showed that neuronal survival
ability was altered by fasting rather than induction of NSC proliferation. In the dentate
gyrus of mice, an increase in neuron and glia numbers was observed within 72 h of feeding
a fasting-mimicking diet (FMD), along with a reduced IGF-1/PKA signaling [152,154]. In
addition, an increase in mesenchymal stem and progenitor cell number and proliferation
were observed on FMD repeated feeding in aged animals, and in aged mice; rebalanced
output from HSCs and progenitors were also observed [154,155]. Therefore, time restricting
feeding can be a neuroprotective strategy for replenishing lost NSCs in chronic neuroin-
flammatory conditions.

9. Exosomes from the HtNSCs

HtNSCs have a distinct endocrine function, to release excessive amounts of microR-
NAs (miRNAs)-containing exosomes [81]. In addtion, they have certain long non-coding
RNAs (lncRNAs) that possess the ability to maintain pluripotency and embryonic stem
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cell neurogenesis [156], self-renewal of cancer stem cells [157], and reprogramming of
pluripotent stem cells [158]. LncRNAs may play a unique role in determining the fate
of these stem cells in cellular senescence regulation [159]. An abundant lncRNA, Hnscr
in the htNSCs of young mice, drastically reduces as the mice age [159]. Hnscr regulates
htNSC senescence and mouse aging by binding to YB-1, a multi-functional protein [160]
that controls protein translation [161], and also regulates DNA repair [162], protecting it
from protein degradation and ubiquitination. YB-1 acts as a repressor of transcription, in-
hibiting p16INK4A expression in htNSCs [159,163], and hence could be targeted to modulate
senescence in htNSC. According to [159], TF2A treatment, isomeric theaflavin monomer,
and a black tea derivative [164], improved YB-1 stability, diminished htNSC senescence,
and decreased the level of aging related physiological downturn in mice.

By various studies it has been observed that htNSC loss causes systemic aging within
a short time and the exosomal miRNAs secreted by these cells (See Figure 3) mediate anti-
aging properties [81]. Aging can be correlated with modulation of some gene expressions by
certain non-coding RNAs. In aged adult NSC, heterochronic micro-RNA let-7b upregulation
is observed. Repression of Hmga2, a high mobility group transcriptional regulator, is
observed upon let-7b overexpression, which indirectly potentiates p16lnk4a (an inhibitor
of cyclin-dependent kinase and activator of Rb) and p19Arf expression, improving the
stability of p53 protein [165]. Therefore, it slows down the progression of cell cycle and
induces senescence [166], leading to reduced adult NSC functioning and neurogenesis.
However, deficiency of p16INK4a in aged mice diminished this effect [167]. Let-7b initiates
differentiation and inhibits proliferation of neural stem cells by targeting Tlx and cyclin
D1 in adult NSC and embryonic brains [168]. A higher-to –lower/quiescent shift in NSC
proliferative state from fetus to adult is contributed to by Imp1, a different let-7b target,
even though it is not expressed in adult NSC [169]. As a result, changes in let-7b may
initiate aging in adult NSC. The gene regulation mediated by micro RNAs impacts healthy
aging as well as aging associated with neurodegenerative diseases [170]. Administering
exosomes derived from NSCs (exo-NSCs) could restore BDNF signaling and memory
in HFD mice [171], providing suggestive evidence of the potential therapeutic effect of
exo-NSCs on HFD-induced NSC dysregulation in obesity. Hence, further studies on
differential expression of certain exosomal non-coding RNAs must be performed to form
an understandable association with pathological and healthy aging.
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10. Challenges Associated with NSCs for Regenerative Medicine and
Future Perspectives

Immunological rejection is one of the major difficulties in stem cell therapy. This
could be addressed by isolating NSCs from the same subjects that require the therapy
to prevent immunological reaction to the newly transplanted stem cells. Administering
immunosuppressive drugs could be an additional or alternative option even though it
has a lot of side effects. Another challenge is to make certain that the transplanted cells
grow enough without causing tumor development and karyotypic instability. According
to [172], there is a critical challenge in isolating multipotent NSCs from cell culture for
transplantation as the majority of neurospheres in vitro are heterogenic with varying devel-
opmental stages and gene expression mainly due to ex vivo culture conditions. Overcoming
these challenges and establishing NSC-based therapy for obesity-induced comorbidities,
especially cardiovascular conditions, to improve functional outcomes through associated
multimodal mechanisms is tremendously foresighted. Based on the difficulty in accessing
the brain to collect tissues for processing from live animals, using induced pluripotent
stem cell (iPSC) technology is a solution that could produce in vitro NSCs or neurons for
transplantation. As iPSCs can be non-invasively obtained from live subjects, and to reduce
the risk of immune rejection, reprogramming these cells to NSCs or neurons could provide
autologous engraftments [173].

11. Conclusions

HtNSCs could be a potential therapy in obesity-induced cardiovascular diseases.
Exosomes derived from htNSCs could be an alternative to or a conjunction with NSC
therapy, being a minimally invasive technique to reverse aging and degenerative changes
in the CNS. The relationship between htNSC dysregulation and sympathetic nerve response
in obesity has never been studied. As brain microglia activation is a predominant indicator
of neuroinflammation in hypertension, restoring a normal population of glia and neurons
within the cardiogenic centers of the brain cannot be ruled out. Thus, identifying associated
htNSC mechanisms and pathways could bring novel insight to therapeutic strategies in
obesity-associated hypertension or sympathetic nerve overactivity.
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