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Abstract: Driver mutations are considered the cornerstone of cancer initiation. They are defined
as mutations that convey a competitive fitness advantage, and hence, their mutation frequency in
premalignant tissue is expected to exceed the basal mutation rate. In old terms, that translates to “the
survival of the fittest” and implies that a selective process underlies the frequency of cancer driver
mutations. In that sense, each tissue is its own niche that creates a molecular selective pressure that
may favor the propagation of a mutation or not. At the heart of this stands one of the biggest riddles
in cancer biology: the tissue-predisposition to cancer driver mutations. The frequency of cancer driver
mutations among tissues is non-uniform: for instance, mutations in APC are particularly frequent in
colorectal cancer, and 99% of chronic myeloid leukemia patients harbor the driver BCR-ABL1 fusion
mutation, which is rarely found in solid tumors. Here, we provide a mechanistic framework that
aims to explain how tissue-specific features, ranging from epigenetic underpinnings to the expression
of viral transposable elements, establish a molecular basis for selecting cancer driver mutations in a
tissue-specific manner.
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1. Introduction

While rediscovering Mendel’s genetics, the term “mutation” was coined by Hugo
de Vries, in 1901, to explain the apparent differences of progeny from its direct parent
generation. Mutationists like de Vries did not reject evolution but believed that it takes
place in large and sudden leaps which are entirely driven by genetic events. In contrast,
Charles Darwin’s gradualism assumed that small variations occur throughout a long period
of time, and the driving force is external factors leading to natural selection [1]. Natural
selection, however, positively selects beneficial traits and may explain the survival of the
fittest but not how the fittest was created. Darwin’s theory was therefore insufficient to
explain the ongoing variation within a population [2]. Nevertheless, even without the
Modern Synthesis [3]—a modern interpretation encompassing Darwin’s and Mendelian
genetics—a cancer biologist would reconcile both hypotheses and fuse them based on their
experimental experience, as many aspects of cancer follow both Darwin’s and de Vries’
assumptions. Mutations may bring along constant and instant phenotypic changes that
natural selection can act on. This evolutionary concept diverges experimentally into two
scientific questions: first, how do genetic variations occur in the first place, and second,
how are these variations selected for? While the last decades have shed light on several
mechanisms of how and when mutation(s) occur [4]—for example, defects in DNA repair
mechanisms or the overproduction of reactive oxygen species—the selective pressures
underlying clonal evolution are less well understood. Above all stands one of the biggest
riddles in cancer biology: the tissue-predisposition to cancer driver mutations.

The great advancement in research technology has been able to uncover a spectrum
of phenomena, one of which is that mutations in certain genes show a frequency bias in
certain tissues for no apparent reason. The best example is germline mutations in BRCA1,

Cells 2024, 13, 106. https://doi.org/10.3390/cells13020106 https://www.mdpi.com/journal/cells

https://doi.org/10.3390/cells13020106
https://doi.org/10.3390/cells13020106
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0001-9429-0659
https://orcid.org/0000-0003-1660-715X
https://doi.org/10.3390/cells13020106
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells13020106?type=check_update&version=1


Cells 2024, 13, 106 2 of 15

which predispose female patients to developing ovarian cancer or breast cancer [5]. While
all cells have this mutation, only a couple of tissues seem to be affected. Similarly, germline
mutations in APC lead to Familial Adenomatous Polyposis (FAP), a condition that may
develop into a malignancy mostly in the colon [6] (Figure 1A). Likewise, somatic mutations
in TP53 are the most common mutations in cancer, but they show a clear frequency bias
towards certain tissues [7], namely, the lung, pancreas, colon, ovaries, and the esophagus.
Additionally, over 90% of pancreatic cancer patients harbor mutations in KRAS [8], but
much less in other tissues. Probably the most extreme example is the fusion of the genes
ABL1 and BCR, which seems to be entirely exclusive to hematological malignancies [9]
(Figure 1B).
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Figure 1. Tissue-predisposition to cancer driver mutations. (A) Germline mutations are present
in all tissues of the body, but only specific tissues have an increased susceptibility to developing
malignancies. For instance, germline mutations in BRCA1 predispose female carriers to developing
ovarian and breast cancer, while germline mutations in APC predispose carriers to developing colon
cancer. (B) Somatic mutations in common regulators of cellular processes such as KRAS, BCR, and
TP53 are most commonly mutated in cancer, but the mutation frequency is biased towards certain
tissues. Bar plots show the mutation frequency in several cancer types. Red bars show cancer types
that have the highest frequency (>50%, red line), and the tissue symbols represent the respective
tissues (the mutation frequencies are based on relevant datasets in cBioportal).

The fact that the aforementioned mutated genes are rather regulators of cell au-
tonomous biological processes than cell type-specific biomarkers means that a tissue-
predisposition to cancer driver mutations may stem from certain shared features that other
tissues lack. These features could collectively result in the imposition of selective pressures
for certain mutations. Here, we provide a mechanistic framework that aims to explain how
tissue-specific features, ranging from epigenetic underpinnings to the expression of viral
transposable elements, form a molecular basis for selecting cancer driver mutations in a
tissue-specific manner.
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2. Lessons from Normal Tissue
2.1. Mutations Are Encoded by the Epigenetic Landscape

Cell identity is the result of a delicate interplay between cell type-specific transcription
factors and chromatin modifying enzymes that maintain an epigenetic landscape which is
permissive to the functional needs of a cell. As such, the epigenetic landscape is the finger-
print of functionally distinct cells [10,11]. DNA is tightly wrapped around nucleosomes,
the units of which are histones, which form the first layer of structural organization in our
genome. How tightly DNA is wrapped around nucleosomes can be regulated by chemical
modification of histones’ residues and stands in direct correlation with the regulation
of gene expression. Chromatin is further organized into topological associated domains
(TADs), in which patches of chromatin are spatially separated from others to allow for
the spatiotemporal regulation of genes [12,13]. As early as the late 1980s, researchers had
already discovered that mutation rates within our genome are non-uniform and can be
associated with the genetic composition of a gene [14]. It was only much later that concrete
evidence emerged, demonstrating the connection between the structural organization of
our genome and the diverse mutation rates that are present throughout it. In particular,
it was acknowledged that the three-fold methylation of the ninth residue in histone 3
(H3K9me3) could explain nearly half of the variations in mutation rates in cancer cells [15].
Promptly following this discovery, researchers began identifying additional epigenetic
characteristics, including nucleosome occupancy and various other histone modifications,
that contributed to the understanding of the variation in mutation rates [16]. The next stage
of investigations focused on understanding whether the cell type-specific epigenetic profile
of healthy cells could predict tissue-specific cancer driver mutations. Polak et al. pursued
this hypothesis and initially demonstrated that DNA hypersensitivity assays, a measure
of chromatin accessibility in melanocytes, could account for the mutation pattern that is
observed in melanoma. They also found that the histone mark H3K4me1 in melanocytes
explained the regional mutation rate in melanoma, although this relationship did not hold
true for other types of cancer [17]. Notably, mutation rates are elevated in regions of closed
chromatin, aligning with the observation that the repressive mark H3K9me3 accounted for
a significant portion of the mutation rate variability throughout the genome [15]. Accord-
ingly, Polak et al. also confirmed a negative correlation of histone marks that are related
to active or open chromatin (H3K27ac, H3K4me1) in normal cells to the mutation rate
in their cognate cancer (Figure 2). Using the most informative epigenetic features, Polak
et al. developed an algorithm that was able to predict the cancer cell of origin based on the
mutational pattern in several cancers.

Investigations into the cell of origin are of particular value when studied together
with tissue metaplasia. Metaplastic cells undergo a transient change in cell identity, ac-
companied by epigenetic changes, which usually is a consequence of environmental cues,
such as cigarette smoke [18]. Metaplasia is often the initial cellular and histological change
associated with cancer progression. Interestingly, it was shown that epigenetic features
of metaplastic cells in the esophagus are better predictors of the mutational pattern in
esophageal cancer than those of non-metaplastic cells in the same tissue [19]. These inves-
tigations marked the initial instance where the strong connection between the epigenetic
environment in both healthy and premalignant cells and the mutational pattern in cancer
was revealed. They underscored the notion that the tissue-specific mutational profile might
already be predetermined by the epigenetic characteristics of the cell’s origin.
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Figure 2. The epigenetic landscape of the cell of origin. The mutation rate is influenced by epigenetic
attributes, such as histone marks. In normal cells like hepatocytes (upper chromatin sketch) and
melanocytes (lower chromatin sketch), open chromatin indicated by H3K4me1 and H3K27ac exhibits
lower mutation rates compared to closed chromatin marked by H3K9me3. Since their epigenetic
profiles differ, the genomic loci more likely to undergo mutations that also vary in their respective
cancers, as highlighted in the depicted chromatid regions.

2.2. Gene Expression or Function

Much as the epigenetic landscape serves as a fingerprint of a cell’s identity, gene
expression levels could also contribute to cell identity and are the most reliable approach
to identify distinct cell types [20,21]. Consequently, it is a fair assumption that cell type-
specific gene signatures in normal cells may explain tissue-specific mutations in cancer.
However, the expression level of a gene is not a direct measure of its impact. For instance,
transcription factors usually show lower expression levels, but their impact on cell fate
decisions is substantial. Indeed, gene expression in normal cells alone is a weak predictor
for tissue-specific mutations in cancer compared to the epigenetic landscape [17], and if
it does predict these, the correlation tends to be negative [22], and this may be largely
attributed to a process called transcription-coupled DNA repair. To ensure that cell function
is maintained properly, several mechanisms to secure genome integrity have evolved
specifically around genes that are essential for the cell’s survival. Transcription-coupled
DNA repair ensures that mutations encountered during transcription will be repaired “on
the fly” and is mediated through the pathways of nucleotide and base excision repair [23].
This notion is in line with observations that mutation rates in cancer cells are higher in areas
of closed chromatin of their normal counterparts (see section above). However, a paradox
arises from the fact that the gene expression level in normal cells is not as good a predictor
of mutation rates as is closed chromatin. This discrepancy might arise because correlations
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do not consider the timing of mutations during cancer progression and the cellular state
at which the cell was while mutations took place (e.g., activated or metaplastic). It rather
seems that in normal cells, the expression level of genes acting in the mutation pathway is
a better predictor of mutation rates [24]. This finding has major implications, suggesting
that biological processes, and hence the function, in the cell of origin (which may be cell
type-specific) are guiding the occurrence of tissue-specific mutations.

2.3. Developmental Origins of Cancer

In mammals, during embryonic development, various signaling pathways, such as
the BMP/TGF-β, NOTCH, WNT/β-catenin, Hedgehog, and Hippo pathways, intricately
govern cell division, growth, and differentiation to regulate development within each
lineage [25]. Even after undergoing differentiation, these cells preserve this memory in
the form of epigenetic imprints, which are reflected in DNA methylation patterns and
histone marks [26]. This preexisting epigenetic landscape in different tissues determines
how oncogenes and tumor suppressor genes can influence a tissue response to a specific
oncogenic signal, which is contingent on the permissiveness of its epigenetic state [27].
Consequently, different cell types can react to a particular stimulus, such as an oncogenic
mutation, either similarly, entirely differently, or in non-responsive ways.

In vertebrates, the Notch pathway is crucial to post-lineage segregation, and its in-
activation leads to premature neuronal progenitor differentiation, indicating its role in
maintaining a progenitor state and inhibiting differentiation [28]. Specific Notch pathway
elements and downstream effectors are expressed in the developing pancreas, and this
mechanism is reactivated in KRAS-mutant acinar cells, initiating the EGFR/SOX9 axis [29].
Subsequently, this axis restores the progenitor traits induced by Notch signaling while
inhibiting the differentiation of metaplastic cells, forming the platform for pancreatic ductal
adenocarcinoma (PDAC) development. Interestingly, the EGFR/SOX9 axis is maintained
through the PI3K/AKT and not the MAPK pathway, as the deletion of CRAF has no further
effect on PanIN formation, but mutations in PI3K drive acinar to ductal metaplasia on
its own [30]. These findings highlight the reactivation of Notch signaling downstream
of KRAS, favoring the pathway that is able to maintain the axis, and hence determining
which mutations may effectively establish it. The high prevalence of KRAS mutations, but
not mutations in other MAPK components, in PDAC may therefore be a consequence of
its ability to perturb tissue homeostasis most effectively by affecting Notch signaling in
the pancreas.

Notch signaling is not only an integral part of pancreatic cell fate decision and its
tissue homeostasis but is also a major determinant of such in the hematopoietic system,
where active Notch signaling mediates hematopoietic cell fate determination in the embryo
and is a critical factor in the maintenance of self-renewing hematopoietic stem cell (HSC)
pools and in T-lineage cell differentiation, including T versus B cells, in adults [31]. When
NOTCH1 is conditionally deleted in hematopoietic progenitors, it leads to a halt in early T-
cell development and the buildup of abnormal immature B-cells within the thymus [32,33].
Despite the ubiquitous expression of the Notch receptor throughout the hematolymphoid
compartment, Notch activation induces transformation primarily in developing T cells.
A classic example of a Notch-related cancer is human acute T-cell acute lymphoblastic
leukemia/lymphoma (T-ALL), accounting for around 15–20% of cases in both children
and adults [34]. In addition, recent research showed that continuous Notch signaling in
malignant murine and human B cells has unveiled widespread Notch-mediated growth
inhibition and apoptosis in both immature and mature B cell malignancies [35]. The cell
type-specific effects observed in closely related cells underscore the significance of muta-
tions and the cell of origin. When Notch functions as a guardian of stem cells or a regulator
of the precursor cell fate, it fulfils an oncogenic role, whereas its tumor-suppressing activity
becomes evident in tissues where Notch signaling triggers terminal differentiation events.

The Wnt-β-catenin-signaling pathway is another evolutionarily conserved communi-
cation system that governs many stages of the development, and particularly, the fate of
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endodermal cells gives rise to the linings of two tubes within the body [36]. The first tube
extends throughout the length of the body, forming the digestive tube, and the differenti-
ated buds from this tube form the liver, gallbladder, and pancreas. Wnt ligands are released
by Wnt-producing cells, exerting their influence over nearby Wnt-responsive cells across
varying distances. This process is continued in the adult intestine, one of the most rapidly
self-renewing tissues in the body, and is essential throughout life. Within the intestine,
WNT3 and WNT9B are expressed within Paneth cells, while WNT2B and WNT5A originate
from Foxl1-positve mesenchymal cells, thereby activating Wnt signaling in both stem cells
and transit amplifying cells [37]. As Wnt activation happens only in the proximity of Wnt
ligand-secreting cells, in the intestinal stem cell niche, the dividing cells start to differen-
tiate as they move away from the base of crypts. Thus, most tissues employ a specific
regulatory mechanism to promote differentiation and limit stem cell expansion, which
could be hijacked to initiate tumorigenesis [38]. In the case of sporadic colorectal cancers,
mutational inactivation of both APC alleles leads to Wnt hyperactivation, and these cells
gain the ability to proliferate independently of the intestinal stem cell niche and form neo-
plastic lesions [39]. As mentioned earlier, a hereditary cancer syndrome known as Familial
Adenomatous Polyposis (FAP) results from a germline APC mutation. FAP patients inherit
one faulty APC allele and have normal embryonic development but develop numerous
adenoma polyps only in the colon string in early adulthood [40]. Ultimately, a subset of
these polyps transforms into malignant adenocarcinomas. These polyps and adenomas
are benign and characterized by the inactivation of the second APC allele, and this occurs
only in colonic stem cells and not in other highly proliferative cells, like hematopoietic
stem cells, highlighting the hijacking of developmental mechanisms that maintain tissue
homeostasis [41]. An alternate hypothesis, that is also rooted in developmental origins, is
that serrated polyps arise from metaplasia, as opposed to stem cell expansion, giving rise
to colon tumors. This hypothesis proposes that serrated polyps originate from mature cells
through a “top-down” model of tumorigenesis, wherein genes that are typically present
in the gastric pylorus are re-expressed [42]. This re-expression results in a reversion to
a fetal gene program and a loss of regional identity, accompanied by diminished CDX2
expression, a common feature observed in serrated tumors. This Wnt-independent tu-
morigenesis is triggered by MAPK activation through Braf-activating mutations, epithelial
damage response, or stress resulting from a deficiency in mismatch repair [43]. However,
BRAF mutations in mouse models require a “second hit” event, such as the disruption of
transforming growth factor-β (TGF-β) signaling, to induce tumorigenesis. This “second hit”
may arise from signals within the microenvironment, or by the loss of CDX2 expression.
All together, these studies highlight that understanding the relationship between the cell of
origin and its developmental trajectory and homeostasis is a valuable mechanistic insight
into the occurrence of tissue-specific driver mutations.

3. The Molecular Context of Mutations in Cancerous Tissue
3.1. The Paralogue Paradox

Tissue-specific characteristics of cancers are a rule, not an anomaly. The robustness
in cell-specific signaling is attained through controlled buffering mechanisms, through
genetic redundancy and compensatory pathways [44]. Genetic redundancy denotes the
phenomenon where two or more genes exhibit either complete or partial functional com-
pensation for each other in the same pathway. Paralogues are a good explanation for
such compensatory effects, but their mutation rate is not uniform among cancers, which
is paradoxical, as one would expect that functionally similar paralogues can also com-
pensate for each other regarding their cancer-driving properties. A study investigating
cell type-specific mutations in various RAS family proteins in mice explains why human
tumors exhibit varying frequencies of KRAS, HRAS, and NRAS mutations across different
types [45]. KRAS stands out as the predominant mutation in non-small cell lung cancer
(NSCLC), while HRAS mutations are prevalent in skin cancer. To test if the cancer-specific
mutation rate of either paralogue depends on their genomic locus, one might try to replace
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KRAS by HRAS. By utilizing an advanced knock-in technique to express wild-type HRAS
from the native KRAS locus in mice, it was shown that HRAS codon 61 mutations specifi-
cally occurred in NSCLC only when expressed from the KRAS locus and never occurred
in the original HRAS locus [45]. Hence, the low mutation rates of HRAS in NSCLC could
be explained by its genomic locus. These results emphasize that the unique mechanisms
behind KRAS mutations in NSCLC and HRAS mutations in skin cancer are based on tissue-
specific gene-regulatory elements rather than inherent differences in the functionality of
the encoded proteins.

3.2. Synthetic Lethality

Cancer cells have a “conditional dependence” on their paralog partners or compen-
satory partners, and if we therapeutically or genetically inactivate the partner, it will
selectively affect cancer cells with the inactivated gene, sparing normal cells and leading to
synthetic lethality [46]. In addition, compensatory mechanisms involve components from
multiple signaling pathways and represent nodes that control oncogenic pathways via neg-
ative feedback loops. This provides a substantial explanation for the occurrence of mutual
exclusivity, which refers to the absence of two or more commonly observed mutations in
individual tumors within specific cancer types. Striking examples are KRAS and EGFR
proto-oncogenes in human lung adenocarcinomas, NRAS and BRAF in melanoma, and
PTEN and PIK3CA in sarcoma [47]. However, synthetic lethality is not restricted to targets
within the same pathway, but cancer driver mutations show a remarkable dependence
on components of other pathways in a tissue-specific manner. In a comprehensive study
utilizing RNA-interference screens across various cell lines to investigate which genes,
when silenced, kill cells bearing only mutant RAS, TBK1 emerged as the most effective
choice upon therapeutic KRAS inhibition [48]. TBK1 acts as an upstream regulator of the
NF-κB pathway by phosphorylating and inactivating IκB, which inhibits NF-κB, indicating
that NF-κB activation is necessary to promote Ras-tumorigenesis. In another instance, mice
with mutant KRAS and deletion of TP53 in lung tissue developed highly aggressive lung
cancer, but the concurrent expression of the same NF-κB pathway inhibitor, IκB “super
repressor”, significantly reduced both tumor count and size [49]. This effect appears to be
tissue-specific, as in a mouse model of RAS-driven human skin cancer, NF-κB inhibition led
to tumor progression, possibly due to the role of NF-κB in a tumor’s immunogenicity [50].
These studies demonstrate that exploring synthetic lethality is an effective approach to
identifying tissue-specific co-dependencies of cancer drivers. Tissue-specific patterns of
tumor suppressor genes can also be rationalized by considering the expression levels of
genes whose disruption would trigger a synthetic lethal effect. For example, the incidence
of BRCA1 mutations is significantly elevated in breast and ovarian cancers, which coincide
with an elevated expression of GSTM5 in these normal tissues when compared to organs
like the liver and kidney [51]. Thus, reduced expression of GSTM5 could result in an ad-
verse selective pressure for BRCA1 mutations (Figure 3A). Together, the concept of synthetic
lethality serves not only in the identification of therapeutic vulnerabilities, but astonishingly
as an explanation for the tissue-specific occurrence of cancer driver mutations.

3.3. To Deal or Not to Deal with Senescence

Cellular senescence is mediated by several stimuli such as oncogenic stress, genomic
instability, and telomer shorting, wherein cells exit the cell cycle terminally even when
being exposed to mitogenic stimuli. In sharp contrast, the term “quiescence” was long
reserved for cells residing in G0, yet still being capable of re-entering the cell cycle after
sensing mitogens [52,53]. While the p53/p21 and the p16/Rb pathways have been iden-
tified as the major routes for cellular senescence, there are a plethora of non-canonical
intermediate signals that depend not only on the genetic lesion but seem to be cell type-
specific [54]. Senescence-associated phenotypes are therefore expected to differ among
tissues. More than a decade ago, we have shown that the deletion of CK1α in the intestine
induces senescence accompanied by a senescence-associated inflammatory response (SIR)



Cells 2024, 13, 106 8 of 15

that is protumorigenic but remarkably distinct from the commonly appreciated senescence-
associated secretory phenotype (SASP) [55]. Different phenotypic outcomes observed
in senescent states may originate from distinctive cell type responses to specific genetic
lesions. These could determine whether and how the cell undergoes senescence. For
example, germline BRCA1 haploinsufficiency poses a major risk of developing breast and
ovarian cancer. While all cells in the breast tissue carry this mutation, specifically mammary
epithelial cells undergo premature senescence in response to increased genomic instability
and telomer erosion, but not mammary fibroblasts of the same genotype. Unexpectedly,
BRCA1 haploinsufficiency-induced premature senescence of mammary epithelial cells is
independent of p53 and p16, but associated with increased levels of Rb acetylation, which
are mediated through decreased expression levels of SIRT1, a negative regulator of Rb
acetylation [56]. This was in stark contrast to the fibroblasts tested, which underwent senes-
cence later than mammary epithelial cells and with activation of p53 and p16. Moreover, it
has been shown that only BRCA1 mutant basal and stromal cells, but not mature luminal
or luminal progenitors, showed distinguished epigenetic profiles (among them H3K27ac
and H3K4me3) compared to non-carriers [57]. Although these findings were observed ex
vivo, they impressively demonstrate that different primary cell types carrying the same
genetic lesion can present diverse responses rather than a uniform and predictable response,
explaining why different cell fates may be variably determined by similar mutations. To
support this view, Falcomatà et al. generated mouse models in which Cre is expressed
under the PDX1 promoter, a transcription factor that is expressed in progenitor cells of the
ventral foregut endoderm and involved in the specification of both the extrahepatic bile
duct and the pancreas [58]. Introducing the knock-in mutations KRASG12D, a driver of >90%
of PDAC, and PI3KH1047R, a driver of extrahepatic cholangiocarcinoma (ECC), in the com-
mon progenitor of both tissues allows for the exploration of tissue-specific effects of these
mutations. Interestingly, PI3KH1047R is able to induce pancreatic intraepithelial neoplasia
(PanIN) and biliary intraepithelial neoplasia (BiIIN), while KRASG12D only induces PanIN.
This directly shows in vivo that different cell types have diverse responses to oncogenic
signaling, if at all. In fact, KRASG12D was not able to induce BiIIN or ECC even within
800 days. Remarkably, PI3KH1047R induced p53-independent senescence in the extrahepatic
bile duct but not in the pancreas, and upon deletion of P27KIP1, progression toward ECC
was eased. Strikingly, the deletion of P27KIP1 favored the development of ECC on the
background of KRASG12D, emphasizing that P27KIP1 is a gate-specific tumor suppressive in
the extrahepatic bile duct. In contrast, the ablation of TP53 on both oncogenic backgrounds
leads to tumor progression and PDAC, confirming that TP53 is a major tumor-suppressive
checkpoint specifically to overcome OIS in the pancreas [59]. The latter finding is crucial to
the understanding that early oncogenic driver mutations can drive cancer in both tissues,
but their ability to do so depends on a cell type-specific inactivation of the tumor suppressor
response (Figure 3B).
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p16. Moreover, it has been shown that only BRCA1 mutant basal and stromal cells, but 
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(among them H3K27ac and H3K4me3) compared to non-carriers [57]. Although these 
findings were observed ex vivo, they impressively demonstrate that different primary cell 
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which Cre is expressed under the PDX1 promoter, a transcription factor that is expressed 

Figure 3. Biological processes affecting tissue bias of mutations. (A) GSTM5 and BRCA1 are synthetic
lethality partners. A mutation in BRCA1 therefore requires GSTM5 expression. In ovarian tissue, the
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expression of GSTM5 is high compared to liver tissue, which explains why BRCA1 mutations have a
higher tendency to propagate in the ovarian tissue. (B) Tumor suppressor gates are tissue-specific.
Under KRASG12D, the deletion of CDKN1B (p27Kip1) is required for the progression of ECC, and the
deletion of TP53 is required for the progression of PDAC.

3.4. LINE-1 Transposable Elements

Most of the human genome consists of repetitive sequences that are known as transpos-
able elements (TEs), among which long interspersed element-1 (LINE-1) accounts for most
of the transposition events in humans. A bidirectional RNA polymerase II promoter can
transcribe LINE-1, producing a transcript that includes two open reading frames (ORFs),
ORF1 and ORF2, which encode for proteins (ORF1p, ORF2p) that are capable of mediating
retrotransposition [60]. Although the expression of LINE-1 was believed to be silenced in
adult somatic cells by DNA methylation [61], there is evidence that suggests the expression
of LINE-1 in both developing and adult tissue [62,63]. The expression pattern of TEs in gen-
eral is cell type-specific, and the chromatin accessibility information of TE loci was shown to
be fully able to predict the cell type [64]. Less controversial is the aberrant re-expression of
LINE-1 during tumorigenesis, which is a common feature that varies dramatically between
different cancer types [65], suggesting that cancers with deregulated LINE-1 expression may
be subject to an additional selective pressure that is very often overlooked. This may be
because only a minority of LINE-1 elements are retrotransposition-competent [66]; however,
their ability to self-propagate may indicate that LINE-1 retrotransposons are endogenous
mutagens [63]. The best example is the LINE-1 insertions into the APC locus leading to low
expression levels of its gene product, ultimately driving colorectal cancer [67]. However,
these events are rare, and their contribution to the occurrence of tissue-specific mutations is
more likely a result of the disruption of gene-regulatory elements or biological processes.

The fact that LINE-1 can autonomously propagate poses a significant genotoxic stress
in cells that aberrantly re-express the retrotransposition-competent LINE-1 as, for instance,
its expression alone can induce DNA double-strand breaks, leading to apoptosis [68] and
suggesting that tumor suppressive pathways are active in LINE-1-expressing cells. Support-
ive of that is that the expression of LINE-1 in normal human fibroblasts triggers a senescence
phenotype [63]. As pointed out above, the tumor-suppressive response may actively shape
the occurrence of tissue-specific driver mutations, and therefore, the expression of LINE-1 in
only a subset of tissues is one determinant of that response. Accordingly, it was shown that
the expression of ORF1p is higher in cancers with TP53 mutations (Figure 4A), suggesting
that TP53 is a critical tumor suppressor gate to prevent LINE-1-induced genotoxic stress.
Furthermore, the expression of LINE-1 correlated with the activity of DDR components [69].
Tissues that show expression of LINE-1 presumably have to deal with an ongoing DDR
mediated through p53. That, in turn, might favor the occurrence of mutations in tumor
suppressors. For example, in the early stages of esophageal cancer, the expression of ORF1p
was detected in Barret’s esophagus [70], which poses a selective pressure that may favor
the inactivation of TP53, the most common event in esophageal cancer (~65% of patients).
Following that line of thought, other cancer types with a high frequency of TP53 mutations
(such as small cell lung cancer, pancreatic cancer, colorectal cancer, and ovarian cancer)
may be those that most commonly show re-expression of LINE-1, which is indeed the
case [60]. Regarding ovarian cancer, this mechanism may also serve as an additional expla-
nation for the positive selection of BRCA1/2 mutations. Conclusively, we must recognize
LINE-1 as an endogenous mutagen or as a yet another modulator of a cell type-specific
tumor-suppressive response.
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they are based on MMR defects.

3.5. Replication Timing Dynamics

Replication timing is the spatiotemporal sequence of replication events. It implies that
replication is a spatially discontinuous process on a continuous time scale. Hence, genomic
regions may be replicated early or late during the process of the genome replication and are
highly influenced by the structural organization of the genome [71]. Generally, euchromatin
is replicated during the early S-phase and heterochromatin during the late S-phase [72].
The replication timing highly correlates with mutation rates, as increased mutation rates are
associated with later replication events [17,22,73]. It has been shown that reduced diversity
of nucleotides or the accumulation of single-stranded DNA (which is more susceptible
to DNA damage) in later replicating regions are responsible for the higher mutations
rates during late replication [73]. Additionally, DNA mismatch repair was shown to be
more effective during early euchromatic replication events [74]. While mismatch repair
provides another mechanistic explanation for the higher mutation rates in closed chromatin
(in addition to transcription-coupled DNA repair), one needs to keep in mind that the
epigenetic landscape dictating open and closed chromatin is a fingerprint that is unique to
a cell. We may therefore assume that replication carries a cell type-specific spatiotemporal
signature that can impact the tissue-specific occurrence of mutations. Indeed, replication
timing is a conserved process, but at the same time, there is considerable timing variation
in cell types of the same species. Ryba et al. showed that the replication time alignment
rate of human embryonic stem cells to mouse epiblast-derived stem cells (mEpiSCs) is
high, but the alignment of mEpiSCs to mouse embryonic stem cells was significantly
lower [75]. Impressively, Caballero et al. showed that mutations rates correlate with the
replication timing in a cell type-specific manner. Moreover, unique mutational signatures,
such as G:T mismatches, stem from mutational processes (such as MMR defects) associated
with late replication timing and show a clear cell type bias. For example, in chronic
lymphocytic leukemia (CLL) cell lines, the mutation rate increases during late replication
events, and the major mutational signature can be traced back to Polymerase eta (Pol
η) defects. However, in a colorectal cancer (CRC) cell line, these mutational signatures
associated with late replication are predominantly related to MMR defects [76]. These
studies indicate that replication-timing-associated mutations may arise in a cell type-specific
fashion, and additionally, that there is a cell type-specific bias of mutational processes
during replication (Figure 4B). Intriguingly, the bias of mutational processes is conserved
between normal cells and their respective cancerous counterparts [77]. Although this
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finding is counterintuitive, as transformation is accompanied by changes in the epigenetic
landscape, it establishes the notion that a bias in mutational processes in cancer cells is
linked to their respective normal cells of origin, suggesting that even early tissue-specific
driver mutations can arise as a consequence of replication time dynamics.

4. Conclusions and Perspectives

Tissue-predisposition to cancer driver mutations represents one of the most enigmatic
puzzles in the field of cancer biology. Despite significant advancements in research technol-
ogy over the past decade, encompassing advanced sequencing techniques and sophisticated
mouse models, the question of why cancer driver mutations exhibit tissue-specific pat-
terns remains elusive. This phenomenon, revealed as part of our expanding knowledge
of tumorigenesis, bears potential insights into the origins of cancer. In this review, our
primary objective was to present a mechanistic framework that may uncover the molecular
underpinnings behind tissue-predisposition to cancer driver mutations, aiming to push the
scientific community to directly address this enigma.

A good example of tissue-predisposition to mutations are mutations in TP53. While
germline mutations in TP53 may predominantly cause cancers like sarcoma and lym-
phoma [78], somatic mutations predominantly affect tissues like the ovaries, pancreas,
colon, and lungs (Figure 1). This observation highlights the fact that the timing, context,
and kind of mutation is of the utmost importance to the understanding of tissue-specific
driver mutations. The question is and remains what mechanisms determine this context.
The choice of mutations is influenced by various biological processes that extend across
entire realms of research. These processes, although individually studied to uncover novel
therapeutic possibilities, are likely interconnected, forming a network of selective pressures
that are specific to cell types. We have discussed how the epigenetic state is not only a
major determinant of the tissue-specific occurrence of mutations [17], but also how it is
directly linked to biological processes such as replication timing and tissue-specific gene
expression [76]. Tumor-suppressive responses, such as OIS, are in turn linked to LINE-1
expression [69]. Moreover, reactivation of developmental pathways is a hallmark of cancer,
where the acquisition of immature features drives malignant transformation, and a unique
set of mutations may be able to drive processes, such as EMT, in a tissue-specific manner.
While unfolding possible intrinsic mechanisms behind the tissue bias of cancer driver
mutations, there are also many other external factors that can shape this bias. An example
is the skin, which is permanently exposed to UV light, an environmental stress sparing
most other organs [79]. Addressing the effects of external factors where possible, while
perturbing synthetically lethal targets, would be the most valuable strategy for elucidating
the tissue bias.

Improvements in single-cell RNA sequencing and analysis may profoundly fill the
gap in knowledge. Simultaneous measurement of the chromatin accessibility state and
expression profiles in a cell type-specific manner [80], assisted by bioinformatic tools,
can enable the exploration of clonal architectures based on single-cell RNA sequencing
data [81]. This may reveal how and when mutations occur, while considering the relevant
epigenetic states and driver genes’ expression levels. The explosive research on cancer
driver mutations in normal tissue [82] will likely shed more light on tissue-specific cancer
mutations. These “normal” mutant tissues are perfect biological systems for applying the
technologies that are needed to understand the impact of confounding variables such as
chromatin states and mutation rates in comparison to their non-mutant counterparts of the
same normal cell type.

To conclude, tissue-predisposition to cancer driver mutations is subject to the molecu-
lar context that they occur in. This context, including intrinsic, genetic, and epigenetic, as
well as extrinsic/environmental factors, could be revealed by screens aimed at perturbing
synthetically lethal targets. Understanding the selective pressures that allow mutations
to spread will also allow for the identification of therapeutic vulnerabilities. As respon-
siveness to a molecular alteration via mutation-targeted therapy frequently hinges on the
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tissue of origin [83,84], identifying the tissue-specific context of oncogenic mutations may
have an important therapeutic value. Based on these considerations, the advancement of
genomic analyses and perturbation tools may turn tissue-predisposition to cancer driver
mutations into a non-random, predictable process.
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