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Abstract: Mechanotransduction refers to the ability of cells to sense mechanical stimuli and convert
them into biochemical signals. In this context, the key players are focal adhesions (FAs): multiprotein
complexes that link intracellular actin bundles and the extracellular matrix (ECM). FAs are involved
in cellular adhesion, growth, differentiation, gene expression, migration, communication, force
transmission, and contractility. Focal adhesion signaling molecules, including Focal Adhesion Kinase
(FAK), integrins, vinculin, and paxillin, also play pivotal roles in cardiomyogenesis, impacting
cell proliferation and heart tube looping. In fact, cardiomyocytes sense ECM stiffness through
integrins, modulating signaling pathways like PI3K/AKT and Wnt/β-catenin. Moreover, FAK/Src
complex activation mediates cardiac hypertrophic growth and survival signaling in response to
mechanical loads. This review provides an overview of the molecular and mechanical mechanisms
underlying the crosstalk between FAs and cardiac differentiation, as well as the role of FA-mediated
mechanotransduction in guiding cardiac muscle responses to mechanical stimuli.
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1. Focal Adhesions: Dynamic Sites Involved in Cell Adhesion and Function

Focal adhesions (FAs) are protein complexes that mediate cell adhesion by connecting
the cytoskeleton to the extracellular matrix. They were first identified in the 1970s by
Abercrombie and colleagues with electron microscopy, and since then, over 50 proteins
associated with FAs have been reported [1]. FAs contribute to cell migration, translating
forces on actin fibers known as stress fibers. These stress fibers are specialized forms
of F-actin associated with myosin II filaments, crosslinked by alpha-actinin and other
associated proteins, such as integrins’ transmembrane receptors: α- and β-integrins. There
are different types of stress fibers associated with FAs: ventral stress fibers are mainly at the
extremities of FAs and cross through the whole cell; dorsal stress fibers are typically present
on one extremity of FAs, and they extend up to the nucleus and the dorsal cell surface [2–6].

During FA assembly, integrin transmembrane receptors bind to the ECM, an event
that induces the clustering of integrins and conformational changes; then, other adaptor
proteins, such as paxillin and talin, are recruited, inducing the activation of integrins and
gathering actin stress fibers [5,6]. In general, FAs are highly dynamic and hierarchical
complexes, starting from the bottom and middle layers to the top, interacting with actin-
binding proteins [5,7,8]. Paxillin is a multidomain scaffold protein that interacts directly
with integrins and facilitates the recruitment and interaction of other proteins involved
in FA development. One of the first proteins that paxillin recruits directly is Focal Adhe-
sion Kinase (FAK), a non-receptor tyrosine kinase which auto-phosphorylates in Tyr397
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and, in turn, phosphorylates Src and paxillin in a mechanosensitive way, influencing FA
size [9–11]. During the formation of FAs, zyxin and vasodilator-stimulated protein (VASP)
proteins are recruited, and they mediate the coupling of actin filaments, allowing for the
formation and extension of stress fibers containing the α-actinin binding site, specifically
required for actin binding [5,8]. The middle layer of FAs is composed of talin and vinculin
proteins. Talin is an integrin-associated protein that binds directly to β-integrins through
a globular head domain, stimulating integrin activation; the talin tail domain, instead,
directly binds to actin filaments and forms several vinculin-binding sites, also enhancing
vinculin activation [5,12,13]. Studies suggest that this dynamic assembly and disassembly
of the cytoskeleton plays a crucial role in cellular differentiation and migration during
cardiac development and may also be an important regulatory factor during new sarcomere
addition in response to hypertrophic stimuli [8].

Interestingly, cardiomyocytes have two different types of FAs: peripheral focal ad-
hesions (pFAs), laterally associated with myofibrils, and costameres, associated with sar-
comeres [14,15]. The term ‘costamere’ was first used by Craig and colleagues to describe
vinculin-containing, rib-like bands that encircle cardiomyocytes perpendicularly to their
long axis [16,17]. Costameres, as the non-muscle cells’ FAs, consist of a complex protein
network forming a physical link between the ECM and the outer Z-discs of cardiomyocytes
through the integrins and the dystrophin–glycoprotein complex, which mediates the at-
tachment to the ECM protein laminin [18,19]. Moreover, costameres transmit both external
and internal mechanical loads; they directly transmit contractile forces generated within
the cardiomyocyte to the surrounding ECM and from adjacent muscle cells’ ECM to the
internal contractile mechanism [18,20]. However, it has been demonstrated how defects or
mutations in FA proteins may lead to cardiomyopathies, thus revealing the importance of
costameres in normal cardiac function and myocardial remodeling [21].

2. Focal Adhesions and Cardiac Cell Differentiation

Studies in the literature report that cardiomyocytes initiate myofibrillar assembly at
the outer region of the cell, starting from pre-myofibrils composed of non-muscle myosin II
(NMM II) and α-actinin-2 fibers. This initial assembly guides the subsequent incorporation
of titin, α-cardiac myosins, and/or β-cardiac myosins, leading to the formation of fully
developed myofibrils [22,23]. The evidence that cardiac myofibrillar assembly originates at
the cell periphery has also supported the hypothesis implicating protocostameres, which
resemble FAs and serve as sites of cell–ECM adhesion [24]. Protocostameres share a
molecular composition similar to classical FAs and encompass proteins such as integrins,
paxillin, vinculin, and FAK. Over time, protocostameres mature into specialized cell–
ECM junctions known as costameres, which coincide with the Z-disks at the plasma
membrane [11]. Furthermore, increasing attention is being paid to the crucial role of
myosin-generated force in myofibrillar assembly in both skeletal and cardiac muscles, both
in vivo and in vitro [25–27].

During heart development, sarcomeres undergo dynamic remodeling processes crucial
for the maturation and functional adaptation of the myocardium. These processes involve
modifications in terms of the composition of sarcomeric proteins like myosin, actin, and
titin, which directly influence the contractile properties of cardiomyocytes [28,29]. A
study conducted by Kresh and Chopra demonstrated that changes in sarcomere structure
and organization directly affect cardiomyocyte force generation. The altered sarcomere
architecture in disease conditions thus leads to impaired contractile function, contributing
to the compromised cardiac performance observed in heart diseases [30].

Moreover, the presence of full-length titin is necessary for generating basal tension in
cardiomyocytes [31]. Titin spans from the Z-disc to the M-line within the sarcomere and
acts as a molecular spring, providing elasticity and contributing to the passive stiffness
of cardiomyocytes [31,32]. Chopra and colleagues argue that this basal tension is a pre-
requisite for the initiation of sarcomere assembly [31]. Furthermore, the study revealed
that β-cardiac myosin, a specific isoform of myosin found in the cardiac muscle, plays a
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critical role in generating the required basal tension for directing sarcomere assembly. The
researchers showed that the mechanical link between β-cardiac myosin and titin is essential
for generating tension and subsequently initiating sarcomere assembly. The study also
proves the significance of protocostameres in the assembly of sarcomeres [31]. The coupling
of titin to protocostameres was found to be crucial for driving the sarcomere assembly
process. This suggests that the mechanical connection between titin and protocostameres
plays a pivotal role in transmitting the tension required for initiating sarcomere assembly
at the cell periphery [31,33]. Their findings highlighted the mechanical and molecular
mechanisms underlying the generation of basal tension and its role in directing sarcomere
assembly. This knowledge contributes to understanding cardiomyocyte development and
may have implications for studying cardiac disorders associated with sarcomere assembly
defects [34].

Additionally, the interplay between FA signaling and cytoskeletal remodeling path-
ways is crucial for coordinating myofibrillar assembly and maturation during cardiomyo-
genesis. At the molecular level, during cardiomyocyte differentiation, the maturation
process of FAs plays an important role in activating different pathways and genes, such as
integrin/FAK/PI3K-P85, which is activated by the interaction between laminins and early
growth response protein 1 (ERG1), forming a complex with b1D integrin. The consecutive
phosphorylation of FAK and PI3K-P85 activates AKT, inhibiting Wnt-GSK3b, which, in
turn, upregulates β-catenin and GATA-4, necessary for cardiac differentiation [35–38].

A study by Doherty and colleagues investigated the role of FAK in cardiac loop-
ing, a critical process during heart formation [39]. By suppressing FAK expression, the
researchers observed a series of detrimental effects on cardiac development. First, they
noted a reduction in mitotic activity, indicating a diminished ability of cardiomyocytes to
undergo cell division. This finding suggests that FAK plays a crucial role in promoting
cell proliferation during the early stages of cardiogenesis [40–43]. Furthermore, the study
showed that FAK depletion resulted in a failure of heart tube looping. Cardiac looping
is a critical morphogenetic event in which the linear heart tube undergoes a bending and
twisting process to acquire its characteristic looping structure [44]. The failure of heart tube
looping observed in FAK-depleted embryos indicates that FAK is essential for this key step
in cardiac development [39].

As mentioned before, during the formation of FAs, the phosphorylation of FAK-Tyr397
has a crucial role in myocardial development: FAK auto-phosphorylation induces a signal-
ing cascade, with a consecutive survival promotion through Erk1/2, S6K, mTORC1, and Akt
activation [45–47]. Moreover, FAK can be phosphorylated by the interaction with the het-
erodimer ErbB2/ErbB4 and Nrg1β, recruiting Src, which, in turn, phosphorylates residues
Tyr861 and Tyr925, modulating cell survival, invasion, and cell–cell interaction [45].

Another relevant protein for FA maturation and cytoskeleton protein interactions in
cardiomyocytes is CASK, which, with its HOOK domain, forms the complex Mint1/Veli/
SAP97/CASK, which interacts with dystrophin–glycoprotein and gives structural and
functional support to the sarcomeres [48]. Moreover, VEGF enhances the adhesion of
contractile cells to the ECM through the activation of p125FAK, with consequent paxillin
phosphorylation, which then interacts with LIM–nebulette, enhancing cardiomyocyte
adhesion [49]. The N-terminal domain of the adaptor protein paxillin possesses a proline-
rich region (PRR), which binds to the second SH3 domain of ponsin, another adaptor
protein belonging to the vinexin protein family. This interaction happens after the onset
of myogenic differentiation and the onset of the maturation of costameres, suggesting an
important function of paxillin in cytoskeletal remodeling and costamerogenesis [11,50,51].

Talin, vinculin, and tensin1 are FA structural proteins that provide a physical link
between the integrins and the actin cytoskeleton [52–54]. When phosphorylated and thus ac-
tivated, talin recruits vinculin, and together, these proteins bind to the integrin–actomyosin
system, leading to the maturation and stabilization of FAs and costameres [55–58]. More-
over, vinculin supports three other different recruitment and activation mechanisms [52].
The first mechanism suggests that vinculin interacts with two distinct components: through
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its head domain, vinculin binds talin, and via the tail domain, it binds phosphatidylinositol
4,5-bisphosphate (PIP2), which activates the dimerization, increasing the actin binding
to the tail and, subsequently, activating other components participating in the adhesion
complex [59,60]. Otherwise, vinculin activation is based on conformational changes. An-
other approach shows that vinculin undergoes a transition from an inactive to an active
state, allowing it to bind cytoplasmic talin and to form a cytoplasmic pre-complex, which
is then recruited to integrin-bound sites, continuing the focal contact differentiation pro-
cess [53,61]. In this last case, paxillin, when phosphorylated by FAK, transiently recruits
vinculin, and the vinculin–paxillin complex interacts with talin, leading to the formation of
a vinculin–talin bond [62,63].

During the formation of costameres, an additional fundamental element, myocyte
enhancer factor 2A (Mef2A), is involved [64]. Mef2A belongs to a family of transcription
factors that regulate muscle differentiation, and it is crucial for maintaining structural
integrity and supporting cell survival during the early stages of costamere differentia-
tion [65]. Following positive regulation through FAK-mediated phosphorylation, Mef2A
exerts transcriptional control over different genes encoding proteins localized within the
cytoskeletal structure. This regulation ensures the proper expression of individual protein
components, ultimately enabling the correct structural development of adhesions and,
consequently, the normal functioning of cardiac muscle [64,66].

The importance of the specific interaction between vinculin and talin becomes evident
as it underlies the focal contact differentiation process. Table 1 provides an overview of the
role of FAs in cardiac differentiation and maturation.

Table 1. Key concepts and main interplayers in cardiac differentiation.

Highlights Proteins Involved Process Sustained References

Cardiomyocyte Myofibrillar
Assembly

NMM II, α-actinin-2 fibers
Titin, α- and/or β-cardiac

myosins

Pre-myofibril composition.
Final myofibril composition. [22]

Sarcomere Remodeling during
Heart Development

Myosin, actin, titin
(sarcomeric proteins)

Influence the contractile properties of
cardiomyocytes and force generation. [28,30]

Titin Provide elasticity and contribute to the passive
stiffness of cardiomyocytes. [31,32]

β-cardiac myosin Direct sarcomere assembly by generating the
required basal tension. [31]

Focal Adhesion Signaling and
Cardiomyogenesis

Integrin/FAK/PI3K-P85
pathway

FA’s maturation process in cardiac
differentiation. [35–38]

FAK-Tyr397 phosphorylation Myocardial development, activate
survival-promoting pathways. [45–47]

Proteins Involved in FA
Maturation

Mint1/Veli/SAP97/CASK
complex

Structural and functional support to the
sarcomere. [48]

VEGF Enhance the adhesion of cardiomyocytes to the
ECM. [49]

3. Focal Adhesion-Mediated Mechanosensing in Cardiac Muscle

Resident cells in tissues are constantly subjected to several mechanical stimuli that
affect the homeostasis of the ECM and cell behavior through specialized cell–ECM interac-
tions (e.g., FAs). The ability of cells to sense (mechanosensing) and respond (mechanosig-
naling) to these external stimuli, transducing them into biochemical, intracellular signals,
is named mechanotransduction, which involves mechanosensing and mechanosignal-
ing [20,67].

Cardiomyocytes are exposed to different types of forces essential for their develop-
ment as well as for their physiological functions, including stretching and twisting forces
deriving from contractions, hemodynamic pressure, and ECM-related passive elasticity. In
this context, the composition of the ECM undergoes spatial and transient modifications
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during cardiomyogenesis, especially regarding the expression of laminins, collagens, ma-
trix proteases, hyaluronan, and proteoglycans [68,69]. Several in vitro studies have shown
how the ECM’s composition and elasticity (or stiffness) influences the cardiac contractile
apparatus. As an example, Jacot and colleagues studied matrices with heart-like stiffness
and demonstrated their ability to support the optimal contraction of neonatal rat ventricular
myocytes (NRVMs). Moreover, changes in substrate stiffness affected contraction force,
demonstrating the importance of ECM properties [70]. The composition and elasticity of
the ECM also impact the organization of the contractile system within cardiomyocytes.
Geisse and colleagues demonstrated that culturing neonatal rat cardiomyocytes on different
micropatterned fibronectin islands led to distinct myofibril distribution patterns, highlight-
ing the ECM’s influence on cytoskeletal architecture rearrangement [71]. Furthermore,
studies on NRVMs have shown different cardiac maturation rates based on the type of
ECM substrate [72,73]. A fibroblast-derived ECM was found to support the early cardiac
differentiation of embryonic stem cells, as evidenced by spontaneous contractions, efficient
calcium handling, changes in cell size, and mitochondrial development [74]. Notably,
ECM component affinities differed across stages of heart development, indicating a role in
developmental regulation [73,75].

Mechanotransduction processes are sensitive to changes in shear stress, cell adhesion
forces, substrate rigidity, membrane or cytoskeletal stretching, and compression [76]. The
transmission of cardiac mechanical stimuli involves a complex interplay between focal
adhesions, intercalated discs, sarcomeres, costameres, the ECM, and the cytoskeleton. These
cellular structures and mechanisms work together to sense and respond to mechanical
forces, thereby regulating cardiac function and adaptation [16,77]. Different processes and
mechanosensors are involved in cardiac mechanotransduction, but the pathways are not
fully understood [78].

The main mechanosensors of cell–ECM components interactions are integrins. Cardiac
myocytes mostly express α1β1, α5β1, and α7β1, which mainly bind collagen, fibronectin,
and laminin, respectively. Integrin conformational changes cause the activation of down-
stream integrin-mediated signaling cascades and the recruitment of multiprotein complexes
to focal adhesions [73,79] (Figure 1).
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of FAK-Src that involve the activation of ERK1/2 and PI3K-AKT, leading to cell survival and cell
growth pathways. Created with BioRender.com.
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Since integrins lack enzymatic activity, the activation of downstream signaling fac-
tors requires interactions with kinase proteins. When ECM ligands (collagen, laminins,
fibronectin) bind to integrins, adaptor proteins such as vinculin, paxillin, and talin, as
well as FAK, ILK, and Src, are recruited [80,81]. Interestingly, integrin α subunits gen-
erally facilitate adhesion and give ECM ligand specificity, which consequently induces
conformational changes and integrin clustering, finally recruiting downstream molecules,
whereas the integrin subunit β1, which directly binds to cytoplasmic adaptors and signal-
ing molecules, has been shown to have a key role in coupling mechanical stretch to the
activation of downstream effectors (e.g., MAPKs, Rho GTPases, FAK/Src) [80–82]. As a
result of integrin clustering and integrin-mediated ECM mechanosensing, intracellular
events involving FA complex formation, actin polymerization, and, finally, actin–myosin
stress fiber formation, provide the mechanosensitive link between the extracellular and
intracellular environments, as well as rigidity to the cell [82].

Intriguingly, integrins can modulate ion channels, including L-type Ca2+ channels
(LTCC) [80,83–85]. In a recent study, Okada and colleagues demonstrated that the over-
expression of integrin α7β1 protected cardiac myocytes from ischemia/reperfusion (I/R)
injury by modulating intracellular mitochondrial Ca2+ overload. Moreover, they showed
that the integrin β1 subunit can interact with and stabilize ryanodine receptors 2 (RyR2) in
an ECM-dependent manner [80,86].

Other players in mechanoelectric feedback are the mechanosensitive ion channels
(MSCs) or stretch-activated channels (SACs), which are involved in the regulation of ion
voltage in a mechanoelectric loop in response to mechanical stress [87]. One important
family of SACs is the transient receptor potential vanilloid type 2 (TRPV2) channels, which
are involved in ion regulation in response to mechanical stress. Interestingly, Iwata and
colleagues demonstrated that TRPV2 was overexpressed and hyper-activated in dilated
cardiomyopathy (DCM), leading to excessive Ca2+ influx [88,89].

Furthermore, it is well known that angiotensin II type I receptor (AT1R), a transmembrane-
spanning G protein-coupled receptor (GPCR), is involved in mediating mechanical stimuli
by activating different pathways. AT1R activation by angiotensinogen II activates the
canonical Gαq protein signaling pathway, which leads to inositol trisphosphate (IP3) and
diacylglycerol (DAG) synthesis, the regulation of intracellular Ca2+, and downstream
kinases (i.e., ERK1/2) activation [82,90]. Stretch-induced AT1R activation triggers confor-
mational changes in β-arrestin, selectively stimulating receptor signaling in the absence
of G protein activation. In addition to activating direct effectors such as G protein and
β-arrestin, AT1R mechanosensing promotes downstream pathways involved in altering
the ECM, gap junction formation, and ion channel functionality [90–93].

Another important mechanosensory complex is dystroglycan, which links laminins
in the ECM to the actin cytoskeleton through dystrophin. Mutations in the dystrophin–
dystroglycan complex lead to the impaired mechanical activation of nitric oxide signaling
in cardiac muscle [79,94].

Alterations in extracellular membrane stiffness can lead to different adaptive responses,
the most dramatic of which is the disassembly of FAs [15]. A study by Shi and colleagues
evaluated the two fundamental proteins of the adhesion complex, paxillin and vinculin,
through the use of a dynamic cell culture system based on polymers capable of reproducing
a surface ranging from flat to rough [15]. This study revealed that these proteins are
capable of reacting to rapid changes by modifying their affinity to the extracellular matrix
through the initial disassembly of FAs and subsequent regeneration of the adhesion, which
is restored once the tissue returns to the initial relaxed state [15]. Interestingly, the structural
module proteins (talin, vinculin, and tensin1), but not the signaling module proteins (FAK
and paxillin), modify their turnover in response to ECM stiffness [52,53]. This suggests
that FA proteins are involved in linking integrins to the actin cytoskeleton and are directly
involved in sensing ECM mechanical characteristics [52]. Therefore, to properly work, the
process of mechanotransduction requires the cooperation of both modules: (i) the structural
proteins are involved in directly sensing mechanical stimuli (mechanosensing), whereas
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(ii) the signaling module proteins are involved in generating the intracellular signaling
events in response to these forces (mechanosignaling) [95].

In cardiomyocytes, in particular, the importance of a solid structure must also be
accompanied by flexibility to allow for efficient contraction [96]. One fundamental element
is the protein nebulette. In fact, nebulette allows FAs to withstand mechanical stress by
interacting with intermediate desmin filaments, maintaining elasticity to enable cardiomy-
ocytes to function even under dynamic conditions [97]. The ability of the ECM to withstand
mechanical stress is also enabled by the presence of laminin and fibronectin [98], which, in
addition to promoting cell adhesion, also induce the expression of normal levels of FAK. A
decrease in FAK levels would result in reduced resistance to mechanical stimulation [98].

Vinculin, which is one of the major sensors activated through FAs, works closely
with the muscular variant, metavinculin [99]. It has been shown that these two matrix
proteins are essential for maintaining the normal adhesion structure; indeed, any ablation
of these proteins predisposes to an increased susceptibility to changes caused by external
forces [100]. Under normal conditions, cardiomyocytes cope with mechanical stresses by
remodeling matrix anchorages, but this mechanism is ineffective if alterations in the de-
scribed proteins are present. Specifically, two particular cases have been analyzed: one with
heterozygous vinculin ablation (VIN +/−), in which normal cardiac development has been
demonstrated—unless stress events such as hypertension, obesity, and diabetes occur—and
another case with homozygous ablation (VIN −/−), which is associated with a lethal condi-
tion [99]. Consequently, it can be stated that if a person with heterozygous vinculin defects
undergoes stress, there is a change in focal contacts and the onset of heart diseases [99],
thus demonstrating the importance of this protein in the mechanism of response to the
mechanical characteristics of the matrix. Vinculin, however, plays another important role in
the mechanosensing mechanism: it is capable of perceiving intracellular tension generated
by mechanical stress such as tension or torsion and regulating intracellular signals accord-
ingly [52,101,102]. Previous work by Carton and colleagues demonstrated that during the
differentiation of H9c2 cardiomyocytes, there is an increase in vinculin expression and its
recruitment to the cell membrane in differentiated cells, leading to the strengthening of
integrin-based ECM adhesion complexes. In addition, the distribution of vinculin along
FAs undergoes alterations after applying mechanical stress, leading to changes in FA length.
These findings highlight a correlation between FA formation, cardiomyocyte differentiation,
and mechanotransduction [103].

Moreover, a study by Yamashita and colleagues [104] revealed that vinculin detects
changes in ECM stiffness. In this study, cells cultured on stiffer substrates exhibited an
increased number and length of FAs compared to those on softer substrates. They also
showed that mutations in the binding site of vinexin-α, an FA protein that interacts with
vinculin through its SH3 domains [104–106], and that the depletion of vinculin or vinexin-
α result in a prevented stiffness-dependent increase in cell velocity observed in wild-
type cells [105]. These results highlight how vinculin, associated with vinexin -α, senses
ECM stiffness and subsequently transmits signals through paxillin and FAK to regulate
cell motility.

Chorev and colleagues [107] demonstrated that vinculin interacts with Arp2/3 but
not with the whole Arp complex, regulating FA maturation through a “hybrid complex”.
This complex, formed by the nucleation module and the anchoring module, is respon-
sible for actin polymerization and branching polymerization [108]. Interestingly, in the
presence of a specific mutant vinculin that is unable to bind to other ligands such as the
Arp2/3 complex, the vinculin mutant disrupts actin binding and reduces the ability of
cells to spread, adhere, and sustain traction forces [101,108]. All these molecular mecha-
nisms of mechanotransduction have been underlined and confirmed by several in vivo
studies [39,42,109–114].

A study performed on zebrafish models demonstrated that the mechanical forces
generated by cardiac contractility were able to regulate the F-actin rearrangement, thus
allowing for cardiomyocyte myofilament maturation through the vinculin VCL–SSH1-CFL
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axis. These researchers also found that vinculin localization and activation are regulated
by cardiac contractility and blood flow and that vinculin is essential for cardiomyocyte
myofilament maturation [114]. Consistently with these studies, the knock-down of vinculin
in human mesenchymal stem cells (MSCs), differentiated towards a muscle lineage, resulted
in a reduction in the expression of myoD and in the subsequent differentiation of the cells
to muscle lineage [115].

Notably, mutations in the vinculin isoform gene have been identified in cardiac hyper-
trophy (HCM) and dilated cardiomyopathies (DCMs) [116–118]. In HCM, which is charac-
terized by abnormal thickening of the left ventricle and associated contractile impairments,
vinculin mutations enhance mechanical alterations within the myocardium [116,118,119].
Conversely, in DCM, which is characterized by abnormal dilation of the heart muscle and
subsequent contractile dysfunction, vinculin mutations play a role in the pathogenesis,
together with other genetic anomalies involving nebulette, integrin-linked kinase (ILK), or
talin [116–118,120].

Furthermore, alterations in the gene encoding for titin, another FA protein, have been
reported in HCM, DCM, and restrictive cardiomyopathy (RCM), which is characterized
by ventricular wall stiffness [118,121–123]. Alongside gene modifications, alterations in
integrin expression have also been observed in cardiomyopathies and ventricular car-
diac hypertrophy, where structural remodeling of the heart muscle occurs in response to
imbalanced mechanical stresses [124,125].

Collectively, these findings underscore the crucial significance of FAs and their in-
volvement in mechanosensing and mechanosignaling pathways during pathophysiological
processes. However, a comprehensive understanding of how these mutations modu-
late mechanosensing and mechanosignaling pathways remains to be deeply investigated.
Further investigations are essential to unravel the complex interplay between genetic aber-
rations, mechanical cues, and signaling cascades, with the ultimate goal of understanding
the complexities of cardiac pathologies and identifying novel therapeutic targets.

4. Focal Adhesion-Mediated Mechanosignaling in Cardiac Muscle

From a signaling pathway perspective, cardiomyocytes respond to matrix stiffness
by modifying the expression of cardiac development agonists such as components of the
PI3K/AKT or p38/JNK pathways; furthermore, they alter the interactions among various
proteins involved in the adhesion complex, which, in response to these modifications, adjust
their affinity to the matrix [14]. As a matter of fact, structural proteins modify their activated
state and turnover rate, allowing for the signaling of substrate stiffness changes [95]. During
cardiomyogenesis, the Wnt/β-catenin signaling cascade drives cytoskeletal organization
and contractility, and this pathway may be modulated by mechanical forces. In addition,
integrins and integrin-associated proteins sense mechanical forces (both active and passive)
generated during cardiac development and enhance tissue stiffening, alter gene expression,
activate soluble downstream pathways, and assist in structural reorganization. Intrigu-
ingly, integrin expression is upregulated in response to mechanical stimuli, improving cell
adhesion and FA assembly in order to modify and extend cardiomyogenesis, indicating an
interesting role of FAs during cardiac differentiation [18,103,126,127].

Studies in the literature suggest that the FAK/Src complex mediates physiological
cardiac hypertrophic growth and survival signaling after a mechanical load, leading to
the activation of some pathways, such as the Ras cascade, NF-kβ activity, MAPK/ERK
signaling, and hippo pathways (Figure 2) [78,128–130]. It is known that FAK autophos-
phorylation recruits Src, which, in turn, enhances FAK phosphorylation and, thus, FAK
activity, activating different downstream pathways [131,132]. Interestingly, Torsoni and
colleagues [133] demonstrated that stretch-induced FAK translocation and clustering from
the perinuclear area to myofilaments is dependent on the autophosphorylation of Tyr-397,
which recruits and activates Src family kinases [131,133,134]. Moreover, they demonstrated
that by disrupting the stretch-induced activation of FAK/Src signaling, the stretch-induced
Fak aggregation at NRVM myofilaments was withdrawn [133]. Hence, the inhibition of Tyr-



Cells 2024, 13, 664 9 of 16

397 autophosphorylation would prevent Fak/Src clustering at costameres within cardiac
myocytes [131,133,134].
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Figure 2. Schematic representation of mechanical stress-mediated pathways, leading to cell survival,
cell growth, cytoskeletal organization, and cardiac myocyte contraction. Created with BioRender.com.

The YAP/TAZ complex, related to non-canonical hippo pathways, has an interesting
role in cellular mechanics. YAP/TAZ are the terminal effectors of the hippo signaling
pathway and act as transcriptional cofactors with other DNA-binding proteins to regulate
cell survival, cell proliferation, and, finally, organ development and growth. The YAP/TAZ
complex is regulated by actin, in this case, actin filaments and, more specifically, their
conformation and tension, which influence the nuclear translocation. The hippo pathway is
also involved in heart development, cardiomyocyte apoptosis after myocardial infarction,
and hypertrophic and dilated cardiomyopathies [18,135]. Moreover, the dissociation of FAK
from Shp2 in response to substrate rigidity activates the AKT/TSC2/mTOR and ERK1/2
pathways, which promote the protection of cardiomyocytes from apoptosis, mediating
the activation of the anti-apoptotic element NF-kβ [98,136]. Specifically, NF-kβ in car-
diomyocytes is recruited following the activation of Tumor Necrosis Factor-alpha (TNFα),
interleukin 1 (IL-1), and interleukin 6 (IL-6), as well as antagonists of G protein-coupled
receptors such as angiotensin 2, phenylephrine, or endothelin. The presence of stress events
leads to an increase in NF-kβ in the nucleus and its DNA binding activity, allowing for the
processing of a stress response that ensures cardiomyocyte survival by maintaining the
correct structure of focal contacts [136].

It is known that the phosphorylation of FAK has multiple crucial roles: in response to
stress conditions, FAK accumulates in the nucleus, where it interacts with the transcription
factor MEF2 through the MADS-box domain and Focal Adhesion Target (FAT) domain of
FAK [137,138]. This interaction positively regulates c-jun expression in cardiomyocytes,
leading to the adaptation of FAs during a sustained mechanical stretch [138]. The presence
of external forces, therefore, activates various cardiac responses, including the activation
of Mitogen-Activated Protein Kinases (MAPKs) and ROCKs by FAK [139]. FAK kinase
activation leads to the recruitment of the adapter Grb2, which activates the MAPK cascade
through interaction with a member of the Ras family, resulting in an adaptive response by
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cardiomyocytes, which, in response to external forces, tend to increase their elasticity at
adhesion points [140].

In conclusion, given the different mechanisms by which cardiomyocytes respond to
substrate rigidity or mechanical stress characteristics, it is clear how the remodeling of
a distinctive structural element is essential to maintain the mechanical properties of the
cardiac phenotype (Table 2). As demonstrated, focal contacts, undergoing modifications
in their protein structure through the activation of different pathways and thanks to their
adaptability to various events, allow cardiomyocytes to maintain their role as contractile
cells of the myocardial tissue even under defined unfavorable conditions.

Table 2. This summary table captures the key points discussed in the text, providing an overview of the
mechanisms and responses related to cellular mechanics and mechanotransduction in cardiomyocytes.

Highlights Main Players Process References

Forces Affecting
Cardiomyocytes

Contractions, hemodynamic
pressure, ECM-related passive

elasticity

Changes in laminin, collagen, matrix protease,
and proteoglycan expression. [68,69]

Focal Adhesion proteins
involved in

mechanotransduction

FAK/Src complex Cardiac hypertrophic growth and survival
signaling. [15,78]

FAK Adaptive responses via MAPK and
AKT/TSC2/mTOR pathways. [78,137]

Vinculin Regulation in FA maturation. [101,107]
Talin, vinculin, tensin1 Structural module. [52,53]

FAK, paxillin Signaling module. [52,53]

Signaling Pathways in
Response to Matrix Rigidity

PI3K/AKT, p38/JNK
pathways

Regulation of interactions between adhesion
complex and structural proteins. [14]

Wnt/beta-catenin signaling Cytoskeletal organization, regulation of
contractility during cardiomyogenesis. [14,95]

Non-canonical Hippo
pathway through YAP/TAZ Heart development, cellular mechanics. [18,135]

AKT/TSC2/mTOR and
ERK1/2 pathways Prevent cardiomyocytes’ apoptosis. [98,136]

NF-kβ Cell survival, correct assembling of FAs. [136]

5. Conclusions

Due to myocardial contraction, cardiomyocytes are subjected to constant mechani-
cal deformation. The maintenance of physiological cardiac stiffness emerges as a critical
environmental cue, influencing both overall ventricular diastolic function and myocar-
dial mechanical properties. This review emphasizes the complex regulation of FAs in
cardiac commitment and mechanotransduction. In fact, inside-out and outside-in signaling
pathways, activated in response to changes in matrix stiffness, contribute to downstream
mechanosensitive signaling cascades in cardiomyocytes. While the general mechanisms
of mechanotransduction have been identified, understanding their implications in patho-
logical contexts and their potential translation into therapeutic targets remains an ongoing
challenge. Hence, a deeper understanding of the roles played by intra- and extracellular
molecular modifiers in influencing tissue compliance is crucial, such as gaining knowledge
on how various cardiac cell types modulate ECM stiffness, especially in the context of
collagen deposition within diseased or injured cardiac tissue. These studies will enhance
the understanding of how alterations in ECM stiffness and FA-related pathways impact the
affected myocardium during the initiation and progression of cardiac disease, as well as
functional repair after damage. Such insights hold the potential to improve cardiomyocyte
performance and induce regenerative processes without compromising the physiological
stiffness of the ventricular wall. The primary aim will be to unravel novel therapeutic
strategies for cardiac injuries, addressing the complex interplay between mechanical cues
and myocardial health and regeneration.
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