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Abstract: Clusterin (CLU) protein is involved in various pathophysiological processes including
carcinogenesis and tumor progression. In recent years, the role of the secretory isoform has been
demonstrated in tumor cells, where it inhibits apoptosis and favors the acquisition of resistance
to conventional treatments used to treat cancer. To determine the possible therapeutic potential
of inhibiting this protein, numerous studies have been carried out in this field. In this article, we
present the existing knowledge to date on the inhibition of this protein in different types of cancer
and analyze the importance it could have in the development of new therapies targeted against
this disease.
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1. Introduction

Clusterin (CLU), also known by various names such as Apoliprotein J (APOJ), Com-
plement Lysis Inhibitor (CLI), Complimented associated protein SP-40, 40 (SP-40), Sulfated
Glycoprotein 2 (SGP-2), Testosterone-Repressed Prostate Message 2 (TRPM2), and Ku70-
Binding Protein 1 or KUB1, is a multifunctional protein encoded by the CLU gene [1],
widely expressed in various human tissues [2,3]. Over the years, CLU has been identified
as a key molecule in a variety of physiological processes [3], including cell differentiation,
morphogenesis [4], sperm maturation, lipid transport, complement inhibition, tissue re-
modeling, membrane recycling, cell–cell and cell–substrate interactions, the stabilization of
stressed proteins, and cell proliferation, survival, and apoptosis [5,6].

Alterations in CLU expression have been associated with serious physiological dis-
eases, such as spongiform encephalopathies, hippocampal and heart ischemic injuries,
atherosclerosis [7], schizophrenia [8], cardiovascular diseases [9], cancer, vascular damage,
diabetes, and osteoarthritis [10], and degenerative conditions such as age-related macular
degeneration, retinitis pigmentosa [11], Parkinson’s disease [12], and Alzheimer’s [13,14].
These conditions are often more prominent in advanced aging [13,14], where CLU overex-
pression has been observed in phenomena such as enhanced cell migration [15], chemother-
apy resistance [16,17], and more aggressive biological behaviors [18] in malignant cells.
CLU has been proposed as a cancer biomarker [19] and cellular senescence [20], generat-
ing interest in research to better understand its implications and explore its utility in the
diagnosis, prevention, and treatment of these pathologies.
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2. Isoforms and Regulation of CLU Expression Gene

The human CLU gene, located on chromosome 8p21-p12, is a highly conserved gene
with at least 63 orthologs in different species [21], and is structured with 11 exons. This
gene produces at least 17 splice variants, both coding and non-coding [21,22]. However,
Variant 1, Variant 2, and Variant 3 (NM-001831, NR_038335, NR_045494, respectively) are
known as three transcription products that share some parts, such as exons 2-11, but differ
in the first exon (1a, 1b, 1c) and untranslated terminal regions [23–25]. This suggests that
there are different starting points for the transcription of each variant, but it is still unclear
what biological function these different mRNAs have.

The synthesis of sCLU begins with the initiation codon located in exon 2 of the mRNA,
leading to the formation of a preprotein comprising 449 amino acids. Initially, the sequence
encodes a translocation signal that guides the preprotein to the endoplasmic reticulum (ER).
In the ER, this signal is removed, and N-glycosylation takes place at six asparagine residues.
This process converts the preprotein into an almost presecreted mature isoform of 53 kDa
(psCLU) [26]. Subsequently, psCLU moves to the Golgi apparatus, where it undergoes
further intricate glycosylation, resulting in a weight increase to between 70 and 80 kDa.
The secreted isoform (sCLU), which represents the mature form of the protein, is created
through the process of cleavage and the formation of disulfide bonds between residues
227 and 228 (Figure 1). Thus, sCLU is finally secreted as a heterodimeric glycoprotein
complex composed of two polypeptide chains, an alpha chain (34–36 kDa) and a beta chain
(36–39 kDa), connected by five disulfide bonds. It acts as an extracellular chaperone, inhibit-
ing the aggregation of partially unfolded proteins, enhancing phagocytosis and cellular
degradation, and exhibiting antiapoptotic activity in cancer cells [27–29]. Additionally,
this variant has the capability to enhance the production of the p53 protein, which plays a
role in triggering genes responsible for pausing the cell cycle, consequently inhibiting cell
proliferation [3,30].

Figure 1. Generation of sCLU. Initially, psCLU is conveyed to the endoplasmic reticulum (ER)
through the leader signaling peptide. During transit to the Golgi apparatus, it undergoes cleavage
and glycosylation processes. This results in an 80 kDa protein composed of alpha and beta subunits
joined by disulfide bonds, ultimately being secreted from the cell. Images were created using
Biorender.com (accessed on 9 March 2024).

Biorender.com
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In situations of alternative splicing between exons 1 and 3, exon 2 is deleted, generating
a non-functional prenuclear isoform of 49 kDa (pnCLU). In response to stress, the isoform
undergoes a transformation into a functional nuclear variant known as nCLU, weighing
55 kDa. After translocating to the nucleus and binding with the Ku70 protein, it facilitates
cellular apoptosis [31–34] (Figure 2).

Figure 2. Generation of sCLU pnCLU does not undergo any excision or glycosylation process; it is
localized in the cytoplasm of unstressed cells. pnCLU is converted into a mature form inside the
nucleus, nCLU. Images were created using Biorender.com (accessed on 9 March 2024).

In stressful situations, the nearly mature presecreted isoform of 53 kDa (psCLU) first
interacts with the chaperone GRP78 (Bip) in the endoplasmic reticulum (ER). Subsequently,
it translocates to the mitochondria, where it associates with the activated form of the Bax
protein. This interaction influences the Bax protein’s ability to form homodimers and
impedes the formation of Bax-Bak complexes. Within the mitochondrial, it associates with
the activated form of the Bax protein, influencing its capacity to create homodimers and
hindering the formation of Bax-Bak complexes [35]. This antiapoptotic influence extends to
the cytoplasm, where psCLU can stabilize the Ku70-Bax complex. By doing so, it hinders
Bax from reaching the mitochondria and fosters the proteasomal breakdown of cytotoxic
substances [3,36].

The expression of CLU is meticulously regulated in both healthy and pathological
contexts, where various pathways exert influence on its basal expression in healthy tissues
as well as its upregulation in conditions such as apoptosis, pathologies, and aging. In this
scenario, two forms of CLU with antagonistic functions are distinguished: sCLU, playing a
cytoprotective role, and nCLU, capable of promoting cell death [37,38]. Each CLU variant is
subject to different signaling pathways, depending not only on its molecular configuration
but also on the cell type in which it manifests. The sophisticated regulation of both CLU
isoforms encompasses a broad spectrum of factors, including growth factors such as EGF,
NFGF, TGF-β, and IGF1, cytokines like IL-1, IL-6, TNF-α, and IL-2, transcription factors
such as TCF1 and Jak/STAT1, as well as the Wnt signaling pathway [39–42] and epigenetic
modifications. Furthermore, various factors like oxidate stress, chemotherapeutic agents,
ionizing and ultraviolet radiation, estrogen, and androgen deprivation can induce their
expression in hormone-sensitive tumors [43,44].

Biorender.com
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Gene expression control in vertebrates is an intricate process orchestrated by numer-
ous regulatory proteins that collaborate to influence the expression of a specific gene or
transcript within a cell. Typically, vertebrate gene expression is regulated by the basal
promoter, a DNA region spanning from -200bp to the transcription start site (TSS) (+1),
facilitating the binding of regulatory proteins, including transcription factors [45]. The vari-
ation in CLU expression across different tissues suggests its finely tuned and tissue-specific
regulation at all levels [46]. The human CLU promoter, initially identified as a unique
element, contains conserved DNA motifs, including a palindrome (-73 to -87) and a TATAA
box (-26), crucial for decoding the genetic sequence. Furthermore, a GCATT box (-93) plays
a key role in regulating transcription frequency [47]. Additional studies have uncovered
a second promoter region (P2) within the first CLU intron, potentially controlling CLU2
expression [23].

In the regulation of CLU expression during aging and cancer progression, epigenetics
emerges as a pivotal player, investigating heritable changes in gene expression without
altering the DNA sequence [48]. The intricate interplay of DNA methylation and his-
tone acetylation [11,49], influenced by aging and cancer, suggests epigenetic regulation’s
significant role in controlling CLU [11,23,48,50].

The Histone Code Hypothesis outlines the diverse histone modifications governing
chromatin structure and transcriptional status [51]. Histone modifications impact gene
silencing or activation by modulating DNA accessibility. Notably, histone 3 lysine 9
trimethylation (H3K9me3) and histone 3 lysine 27 trimethylation (H3K27me) contribute to
nCLU downregulation [48] and cell survival. Conversely, histone 3 lysine 4 trimethylation
(H3K4me3) or histone 3 lysine 9 acetylation and serine 10 phosphorylation (H3K9AcS10P)
lead to nCLU activation [48] and cell death. Epigenetic drug treatments alter histone
modifications, impacting CLU1 and CLU2 transcription [23].

Consistent findings across diverse cell types, including cancer cells [11,23], retinal
pigment epithelial cells [11], hepatocellular carcinoma cell lines [52], and endothelial tumor
cells [49], emphasize the role of histone hyperacetylation induced by histone deacetylase
inhibition in promoting CLU expression.

In differentiated mammalian cells, gene repression often involves DNA methylation,
co-coordinated with histone modifications. While colon cancer studies indicate the predom-
inant regulation of CLU by histone modifications [48], the presence of a G+C-rich region
and a CpG mini-island within the CLU promoter suggests epigenetic control via methy-
lation [47]. This promoter methylation is associated with decreased protein expression,
observed in breast [50], ovarian epithelial cancer [18], and hormone-refractory prostate
carcinoma samples [53]. Induced demethylation of CLU promoters significantly increases
CLU1 and CLU2 transcripts, enhancing CLU expression across various colon cell lines [48]
and tissues [54].

Furthermore, micro-RNAs (mi-RNAs) contribute to the post-transcriptional regu-
lation of CLU expression [55]. In head and neck squamous cell carcinoma, oncogenic
miRNA-21 specifically targets the CLU1 isoform, downregulating its growth-suppressive
variant [56]. Elevated levels of miRNA-378 inhibit lung adenocarcinoma cell growth and
sCLU expression [57].

While this field’s studies are recent, the emerging evidence underscores the intricate
epigenetic control mechanisms orchestrating CLU expression in diverse cellular contexts.
These insights provide a foundation for understanding the molecular intricacies of CLU
regulation, offering potential avenues for therapeutic interventions in aging and cancer-
related conditions.
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3. Clusterin and Its Involvement in Cancer

Despite initially being believed to be linked to biological processes such as scar for-
mation, membrane remodeling, or sperm maturation [47], early studies revealed a cor-
relation between the overexpression of mRNA-CLU and cell death after different toxic
signals [58–60]. However, later research presented contradictory results, establishing a
relationship between CLU overexpression and cell protection [61,62].

The identification of two sets of CLU isoforms, with opposing roles and cellular lo-
cations in terms of cell survival, has contributed to clarifying these contradictions [34,63].
It has been suggested that the ratio between the expression of sCLU and nCLU is crucial
in determining cancer aggressiveness. In tumor cells, a survival-favorable environment is
observed with a higher sCLU/nCLU ratio, indicating elevated sCLU levels with concomi-
tantly reduced levels of nCLU protein in the nucleus of neoplastic cells [64,65].

Post-translational modifications appear to regulate the distinctive roles of CLU, de-
termining the expression of specific isoforms based on the presence or absence of a leader
sequence in the CLU peptide [46]. Inhibition of exon 2 of mRNA-CLU, leading to the
silencing of the sCLU isoform, has been crucial for the design of cancer-targeted therapies
that are currently under study [66].

Early studies suggest that CLU overexpression persists after tissue degeneration,
suggesting that this gene is probably not induced as a part of apoptosis that may lead to
a degenerative disorder but as a secondary consequence of the disease phenotype [47].
nCLU-mediated apoptosis is associated with the accumulation of mature nCLU protein,
while the rapid degradation of CLU and the regulation of its nuclear export/import can
explain why highly malignant tumors avoid accumulating nCLU levels [66]. The lethality
of nCLU is linked to members of the BCL-2 protein family, with nCLU-mediated apoptosis
depending on Bax [64]. Additionally, nCLU can sequester the antiapoptotic BCL-XL,
promoting apoptosis by forming pores in mitochondrial membranes [67].

The proapoptotic role of nCLU is also related to Ku70, which binds to CLU in response
to DNA damage. The formation of a trimeric protein complex (nCLU/Ku70/Ku80) with
reduced DNA end-binding activity and interaction with other proteins like Ku70 in the
C-terminal coiled-coil domain of nCLU is essential for inducing apoptosis [68].

Although the constant expression of nCLU is related to cell maintenance and apop-
tosis induction, cells can also express cytoplasmic clusterin (cCLU) or sCLU isoforms in
response to different cellular triggers. This results in increased cell survival associated with
tumorigenesis, with CLU promoting apoptosis under low or moderate stress conditions
but favoring the overexpression of the antiapoptotic isoform [19] under extreme cellular
conditions, resulting in increased cell proliferation, viability, and invasiveness [7].

Furthermore, CLU has garnered significant attention from the scientific society because
of its crucial involvement in a multitude of biological processes, including resistance to
chemotherapy, cell proliferation, or apoptosis (Table 1) [69].

Table 1. Biological processes involving CLU isoforms.

Biological Processes nCLU sCLU

Tumorigenesis

The proapoptotic isoform nCLU of CLU
induces apoptosis in breast and prostate
cancer, through specific interactions with

proteins like Ku70 and Bcl-XL [70,71].

sCLU also plays a crucial role by interacting with
protein complexes like Ku70-bax, acting as a Bax

retention factor in the cytosol, inhibiting its
proapoptotic function. Under normal conditions,

inhibition of CLU weakens this complex, allowing
Bax to translocate to the mitochondria, triggering

cytochrome c release, and activating caspase 9,
initiating apoptosis [72].



Cells 2024, 13, 665 6 of 18

Table 1. Cont.

Biological Processes nCLU sCLU

Cell Proliferation

c-Myc, a transcription factor encoded by
the oncogene MYC involved in

tumorigenesis, inhibits the expression of
nCLU by upregulating the microRNA
cluster miRNA-17 ~ 92 and attenuating

the TGF-β axis, thus promoting
angiogenesis and tumor growth in colon

cancer [69].

Blocking sCLU using apocynin, a substance that
inhibits NADPH oxidase, halts the MEK-ERK1/2

pathway, resulting in reduced cell
proliferation [73].

Melittin inhibits sCLU, inactivating both the
cholesterol/NF-κB/Bcl-2 axis and the

cholesterol/p-ERK axis to suppress tumor growth
in pancreatic cancer [74].

sCLU exhibits an antiproliferative property by
inactivating the TAK1/NF-κB axis, preventing the

transforming growth factor beta receptor 1
(TGFBR1) from recruiting the TNF

receptor-activating factor 6
(TRAF6)/TAK1-binding protein 2

(TAB2)/TGF-β-activated kinase 1 (TAK1) complex
to inhibit tumor proliferation and growth in

human non-small cell lung cancer (NSCLC) [75].

Metformin, a conventional medication for type II
diabetes, exhibits antitumor effects. Metformin

suppresses sCLU, thereby hindering tumor growth
through the inactivation of the SREBP-1c/fatty

acid synthase (FASN) axis [76].

sCLU promotes cell growth and proliferation by
upregulating the expression of the calcium-binding

protein S100A4 in renal cancer [77].

Chemoresistance and
Chemosensitivity

The stress response induced by treatments such as
radiotherapy and chemotherapy lead to the

overexpression of sCLU, a cytoprotective
chaperone, which, by binding to activated Bax, it

impedes the discharge of cytochrome c and
prevents apoptosis [78].

Epithelial–Mesenchymal
Transition and Metastasis

In nasopharyngeal carcinoma, CLU undergoes
positive regulation by N, N′-dinitrosopiperazine
(DNP), triggering MMP-9 and VEGF expression,

thus facilitating to metastasis [79].

In breast cancer, CLU collaborates with eHsp90α
to activate key signaling pathways, promoting

EMT, migration, and tumor metastasis [80].

In colon cancer, CLU interaction with platelets
activates the p38MAPK pathway and positively

regulates MMP-9, facilitating invasion [81].

Studies on prostate cancer it has been
demonstrated that miRNA-217-5p exerts control
over the processes of invasion and migration by

specifically targeting CLU [82].

3.1. Tumorigenesis

Tumorigenesis, or tumor formation, is a complex process where normal cells transform
into cancerous cells, proliferating uncontrollably. In this context, the protein CLU plays
a significant role. Under normal conditions, CLU expression is low, but it significantly
increases in response to stress, especially during tumorigenesis (Table 1) [72,83].

The sCLU isoform of CLU acts as an extracellular chaperone during stressful situa-
tions. This protects cells by preventing apoptosis (programmed cell death) and conferring
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resistance to cytotoxic agents. sCLU also plays a crucial role by interacting with protein
complexes like Ku70-bax, acting as a Bax retention factor in the cytosol, inhibiting its
proapoptotic function. Under normal conditions, inhibition of CLU weakens this complex,
allowing Bax to translocate to the mitochondria, triggering cytochrome c release, and
activating caspase 9, initiating apoptosis [70].

On the other hand, the proapoptotic isoform nCLU of CLU induces apoptosis in certain
types of cancer, such as breast and prostate, through specific interactions with proteins like
Ku70 and Bcl-XL [37,71].

Additionally, CLU is involved in various signaling pathways, such as B-MYB, Akt,
and the PI3K/Akt pathway, regulating both apoptotic and antiapoptotic functions [84,85].
The ratio between CLU isoforms is critical for the regulation of these functions. CLU
overexpression has been associated with the promotion of tumorigenesis and resistance to
chemotherapy in various types of cancer, including breast and prostate [86].

3.2. Cell Proliferation

Cell proliferation, a cornerstone of biology, involves the proliferation of cells through
repeated divisions, ensuring a dynamic equilibrium between cell death and metabolic pro-
motion. Conversely, cell growth pertains to the physical enlargement of cell volume or size
as the cell matures [87]. These processes are intricately regulated by various growth factors
and cytokines in normal cells [88]. However, in cancer cells, cell proliferation becomes
uncontrolled and exhibits a sustained proliferation property due to the hyperactivation of
proliferative signaling pathways and evasion of growth suppressors [88].

Recent evidence highlights the involvement of the CLU protein in promoting cell
proliferation and growth across different cancer types [69]. This is characterized by the ac-
quisition of sustained proliferative signaling pathways by cancer cells (Table 1). Specifically,
research indicates that the transcription factor c-Myc, encoded by the oncogene MYC and
implicated in tumorigenesis, suppresses the expression of nCLU. It does so by elevating
the levels of the microRNA cluster miRNA-17 ~ 92 and reducing the activity of the TGF-β
axis, thus facilitating angiogenesis and tumor progression in colon cancer [73].

Both sCLU and nCLU exert notable influence on the canonical NF-κB, ERK, and AKT
pathways, thereby impacting cell proliferation and growth in diverse cancer types. In
prostate cancer, inhibition of sCLU with apocynin, an inhibitor of NADPH oxidase, arrests
the MEK-ERK1/2 pathway, leading to suppressed cell proliferation [89]. Conversely, in
osteosarcoma, induction of sCLU by DDP triggers phosphorylation of ERK1/2, stimulating
cell growth and bolstering resistance to DDP [74].

The activation of the NF-κB pathway is pivotal for cell proliferation, as it prompts the
expression of Bcl-2 [75]. In pancreatic cancer, melittin disrupts sCLU, thereby impeding
both the cholesterol/NF-κB/Bcl-2 axis and the cholesterol/p-ERK axis, resulting in the
suppression of tumor growth [75]. Interestingly, sCLU exhibits antiproliferative effects
by deactivating the TAK1/NF-κB axis, preventing the recruitment of the TNF receptor-
activating factor 6 (TRAF6)/TAK1-binding protein 2 (TAB2)/TGF-β-activated kinase 1
(TAK1) complex by the transforming growth factor beta receptor 1 (TGFBR1). This inhi-
bition effectively hampers tumor proliferation and growth in human non-small cell lung
cancer (NSCLC) [90].

In addition to the ERK and NF-κB pathways, the PI3K/AKT axis is also involved in
regulating cell proliferation and growth. Notably, sCLU activates AKT by downregulating
the expression of the protein phosphatase 2A catalytic subunit C (PP2AC) to promote
the proliferation of PC-3 prostate cancer cells [91]. This aligns with the finding that si-
lencing CLU gene transcription decreases the phosphorylation level of AKT and GSK-3β,
subsequently inhibiting the proliferation of HCCLM3 cells in hepatocellular carcinoma
(HCC) [92].

CLU expression and cell proliferation are influenced by various external factors.
Insulin-like growth factor 1 (IGF-1), an essential component of insulin receptor signaling
known for sustaining cell proliferation [81], has been found to upregulate sCLU expression.
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For instance, IGF-1 increases sCLU expression, activating the PI3K/AKT axis and promot-
ing A549 cell proliferation in non-small cell lung cancer [85]. Moreover, in prostate cancer,
IGF-1 enhances the transcriptional activity of the CLU gene by activating the STAT-3/Twist-
1 axis. Furthermore, pituitary tumor-transforming gene (PTTG) and forkhead box protein
L2 (FOXL2) influence sCLU expression and CLU gene transcription [93]. PTTG activates the
ATM/IGF-1/p38MAPK/CLU axis, while FOXL2 directly binds to the CLU promoter. Inter-
estingly, sCLU exhibits antiproliferative effects by suppressing PTTG expression, thereby
restraining cell proliferation in pituitary carcinoma [76].

Metformin, a well-known medication used to treat type II diabetes, demonstrates
anticancer properties. In bladder cancer, metformin works by reducing the activity of sCLU,
thus inhibiting tumor growth through the deactivation of the SREBP-1c/fatty acid synthase
(FASN) axis [77]. Furthermore, in renal cancer, sCLU enhances cell growth and proliferation
by increasing the expression of the calcium-binding protein S100A4 [94]. In addition to
metformin and melittin, compounds like epigallocatechin-3-gallate (EGCG) and green tea
extract (GTE) also boost sCLU expression. They accomplish this by suppressing the activity
of β-catenin, thereby promoting the proliferation of COLO 205 cells in colon cancer [95].

3.3. Epithelial–Mesenchymal Transition and Metastasis

Epithelial–mesenchymal transition (EMT) is a biological process involving significant
changes in cell structure and function, such as loss of polarity, cytoskeletal remodeling,
and acquisition of invasive properties. EMT facilitates invasion, metastasis, and tumor
progression. CLU has emerged as a key regulator in these events, influencing matrix
metalloproteinase (MMP) activity and the ERK1/2 and PI3K/Akt signaling pathways [96].
NF-κB activation by CLU also plays a crucial role in increasing MMP-9 and MMP-2 expres-
sion, thus promoting metastasis [79].

In different cancer types, CLU overexpression has been associated with metastasis (Table 1).
In nasopharyngeal carcinoma, CLU is positively regulated by N, N′-dinitrosopiperazine (DNP),
inducing MMP-9 and VEGF expression, contributing to metastasis [80]. In breast cancer, CLU
collaborates with eHsp90α to activate key signaling pathways, promoting EMT, migration, and
tumor metastasis [82]. In colon cancer, CLU interaction with platelets activates the p38MAPK
pathway and positively regulates MMP-9, facilitating invasion [85]. Additionally, studies on
prostate cancer have demonstrated that miRNA-217-5p exerts control over the processes of
invasion and migration by specifically targeting CLU [97].

In patients with pancreatic ductal adenocarcinoma (PDAC), hepatocyte nuclear factor
1 b (HNF1B) has been shown to positively regulate CLU, and lower expression of both
was associated with poor patient survival. Studies with pancreatic cancer cell lines have
revealed that CLU inhibits cell proliferation, invasiveness, or EMT. These findings sug-
gest that the HNF1B/CLU pathway is crucial in slowing the progression of pancreatic
cancer [98].

3.4. Chemoresistance and Chemosensitivity with Clusterin

Chemoresistance, which involves cancer cells’ ability to withstand chemotherapy,
poses a significant obstacle in cancer treatment. This phenomenon can occur through
different mechanisms, including genetic alterations, changes in drug metabolism, and
the suppression of apoptosis [99]. Chaperone proteins like CLU are pivotal in conferring
resistance to cancer therapy, promoting the growth of malignant tumors and shielding
drug-resistant cells (Table 1) [78].

The stress response triggered by treatments like radiotherapy and chemotherapy leads
to increased expression of sCLU, a protective chaperone. sCLU interacts with activated Bax,
inhibiting the release of cytochrome c and thus preventing apoptosis [100]. Conversely,
reducing CLU levels, as observed in certain cancers like testicular seminoma, enhances
sensitivity to radiotherapy and chemotherapy [101].

In hepatocellular carcinoma (HCC), sCLU is markedly overexpressed, contributing to
resistance against oxaliplatin by downregulating Gadd45a expression and activating the
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PI3K/Akt pathway. Inhibiting CLU in HepG2/ADM HCC cells replenishes sensitivity to
various drugs [102].

4. Clusterin as a Biomarker and Therapeutic Target in Cancer

In the field of medicine, biomarkers have become essential tools to provide valuable
information about patient health and the progression of various diseases. From measuring
simple protein levels to identifying genetic mutations, these markers play a crucial role in
the diagnosis, prognosis, monitoring, and treatment of diseases. In this context, CLU has
been studied as a potential biomarker in various types of cancer due to its tendency to be
overexpressed in stressful situations (Table 2).

Table 2. Clusterin as a potential biomarker in various types of cancer.

Types of Cancer Expression of CLU In Vitro Expression of CLU In Vivo

Non-small cell lung

Non-small cell lung cancer cell lines show
overexpression upon treatment with
chemotherapy or radiotherapy. ASO

therapy sensitizes cells to these
treatments and decreases their metastatic

potential [103]

Patients exhibiting positive CLU expression tend
to experience improved overall disease-free

survival compared to those with negative CLU
expression [104].

More than 80% of the tumors are immunoreactive
for CLU [104].

Gastric

Overexpression of sCLU correlates significantly
with metastasis, tumor invasion, and TNM stage.

In addition, it correlates with unfavorable survival
for advanced-stage gastric cancers [105].

Ovarian

Elevated sCLU levels show an inverse relationship
with the tumor apoptotic index and are detected

more frequently in metastatic lesions than in
primary tumors [106].

Increased sCLU expression is associated with
increased biological aggressiveness and decreased

survival [107].

Endometrial

When CLU is expressed in endometrial tumors, it
is associated with a lower stage, supporting its role
in the diagnosis of endometrial carcinoma [108].

There has been detected higher mRNA expression
in both neoplastic and hyperplastic tissues

compared to a normal endometrium. In this
regard, an increase in mRNA expression of the

specific sCLU isoform has been observed in
neoplastic and hyperplastic endometrial diseases,

but an increase in CLU protein has not been
detected. Furthermore, specific CLU

immunoreactivity has been observed in all
glandular cells of the endometrium compared to

other cellular compartments where CLU
immunoreactivity was lower or absent [109].

Increased CLU expression enhances paclitaxel
resistance in endometrial cancer [110,111].
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Table 2. Cont.

Types of Cancer Expression of CLU In Vitro Expression of CLU In Vivo

Breast

Studies with the MDA-MB-231 cell line
show how sCLU silencing significantly
inhibits cell proliferation and drastically

reduces cell invasion, cell progression
and metastatic potential [112,113].

Unlike benign lesions, atypical hyperplasias,
intraductal carcinomas, and invasive carcinomas
are characterized by CLU overexpression [114].

Overexpression of sCLU is observed in a higher
percentage of triple-negative breast cancer [115]
and is associated with a negative estrogen and

progesterone receptor status [114].

Likewise, overexpression in the stroma tends to
directly correlate with resistance to preoperative
neoadjuvant chemotherapy in the primary tumor
and inversely with the apoptosis rate, indicating

that gene expression may not be necessary for
apoptotic cell death [114,116,117].

Colon

sCLU is overexpressed, while nCLU is
downregulated [118]. Likewise, increased sCLU
expression was predominantly observed in the

cytoplasm of highly invasive tumors and
metastatic lymph nodes [31], indicating that CLU

expression might serve as a marker to identify
patients with more aggressive tumors who could
potentially benefit from targeted treatments [119].

Bladder

Treatment with the antisense
oligonucleotide (ASO) targeting negative
regulation of Bcl-2 and CLU increases the
sensitivity of partially resistant bladder

carcinoma cells to the tumor necrosis
factor-related apoptosis-inducing ligand

(TRAIL) [120].

The recurrence-free survival time of patients with
overexpression of CLU was shorter than that of
patients with normal CLU expression [121,122].

Hepatocellular

High levels of sCLU are associated with migration,
invasion, and metastasis [15] due to increased
MMP-2 expression and decreased E-cadherin

expression [123].

Furthermore, sCLU overexpression contributes to
oxaliplatin resistance [15].

In peripheral blood mononuclear cells (PBMC)
from hepatocellular carcinoma patients, CLU has

been proposed as a prospective detection
biomarker along with other genes for its sensitivity
and specificity [124]. The combination of CLU and

AFP further improves diagnostic
performance [125].

The initial levels of CLU are higher for patients
with progressive disease than for those with partial

or complete response, respectively [126,127].

Pancreatic

The inducer of ferroptosis, a type of cell
death characterized by the accumulation

of reactive oxygen species (ROS),
interferes with apoptotic cell death by

regulating CLU [128].

CLU expression in stages I and II is not
significantly associated with apoptosis. Moreover,

patients with positive CLU expression present
better survival rates [129].

Melanomas
Increased expression is linked to heightened drug resistance and extended survival of tumor

cells, whereas suppression diminishes resistance and lowers the survival rate of melanoma cells,
both in laboratory settings and within living organisms [130].
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Table 2. Cont.

Types of Cancer Expression of CLU In Vitro Expression of CLU In Vivo

Esophageal squamous cells

Elevated CLU expression is associated with
unfavorable outcomes in locoregional, overall, and

distant progression-free survival. Additionally,
individuals exhibiting CLU overexpression in both

epithelium and stroma tend to have shorter
survival times [131,132].

Head and neck
Overexpression of CLU has been

observed, but its implications have not
yet been determined [133].

Although CLU is detected in a low proportion of
laryngeal carcinomas, it seems to exert a significant

role in local invasiveness [133].

Anaplastic large cell lymphomas

The role of CLU is unknown, but its expression
within this lymphoma type provides an additional

marker for diagnosis [134].

CLU expression does not correlate with the
expression of anaplastic lymphoma kinase-1
(ALK-1). In reactive lymphoid tissues, only

fibroblastic reticular cells and follicular dendritic
cells exhibit positive expression [134].

Osteosarcoma sCLU overexpression is associated with metastasis
and chemotherapy resistance [135].

Prostate

The expression of CLU increases in
advanced stages of cancer, and its

suppression sensitizes cells to
chemotherapeutic drugs [136].

It has been observed that CLU expression
decreases considerably compared to benign

tissues [137].

Renal

The introduction of the CLU gene
enhances the metastatic potential of renal
cell cancer [138], while the removal of the

CLU gene inhibits growth and
migration [139].

However, further research is needed in this field to determine the exact value of CLU
levels and their association with each type of cancer. Currently, it can only be used as a tool
to assess risks [140].

As a therapeutic target, the inhibition of CLU has demonstrated excellent therapeutic
effects in various cancers both in vitro and in vivo, prolonging the survival of patients.
Custirsen (OGX-011), a second-generation antisense oligonucleotide, has proven effective
by interacting with the ATG sequence in exon 2 of the secretory isoform of CLU (sCLU),
inhibiting its translation and suppressing cancer progression such as prostate cancer [15],
renal cell carcinoma [141], bladder [142], liver [143], lung [144], prostate [145], breast [146],
lung adenocarcinoma [104], melanoma [131], osteosarcoma [135], and ovary [147].

When combined with other cancer therapies in clinical trials, OGX 011 enhances anti-
tumor activity. In the case of renal cell carcinoma, CLU inhibition by custirsen improves
sorafenib cytotoxicity [148]. In ovarian cancer, it has been shown to improve the survival
of patients treated with paclitaxel by enhancing its response [149], similar to what hap-
pens in castration-resistant prostate cancer with mitoxantrone and docetaxel by reducing
sCLU expression [150,151]. Clinical studies have also explored the efficacy of custirsen in
metastatic castration-resistant prostate cancer, showing promising results in early-phase
trials, although the standard treatment remains prednisone and cabazitaxel [152].

In metastatic breast cancer, similar effects have been shown with combinations of OGX
011 and docetaxel [153], while in lung cancer, combinations with gemcitabine or cisplatin
have extended survival [154].

Therapeutic approaches beyond OGX-011, such as RNA interference strategies in-
cluding microRNA (miRNA), short hairpin RNA (shRNA), and small interfering RNA
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(siRNA), have demonstrated efficacy in suppressing CLU expression across various cancers.
For instance, miRNA-217-5p and miRNA-195 have been found to downregulate CLU
expression, impeding cell migration and invasion while fostering apoptosis in prostate
cancer cell cultures [155,156]. Furthermore, several other therapeutic agents, including
melittin, green tea extract (GTE), apocynin, vitamin D, metformin, and verteporfin, have
exhibited antitumor properties by inhibiting CLU protein expression. Consequently, these
interventions have shown promise in impeding cancer progression [75,77,89,157–159].

In the realm of emerging therapies, the drug AB-16B5, a monoclonal antibody targeting
sCLU, is being evaluated in a phase II clinical trial in combination with docetaxel in patients
with metastatic non-small cell lung cancer [160].

5. Conclusions

CLU plays a pivotal role in cancer progression by modulating key processes such as
programmed cell death, epithelial–mesenchymal transition (EMT), metastasis, and cell
proliferation and growth through intricate signaling pathways. The complexity of its
biological function stems from the existence of two alternatively spliced isoforms and the
variable localization of their protein products both intra- and extracellularly. Despite the
intricate nature of these isoforms, the coexistence of nCLU and sCLU within cells, coupled
with the precise regulation of their balance, confers either pro- or antiapoptotic properties.

Various potent inhibitors of CLU, including OGX-011 and RNA interference (RNAi)
agents, have been developed for use in cancer therapies, yielding encouraging therapeutic
outcomes in patients. Given the diverse regulatory pathways governed by CLU in cancer
progression and the demonstrated survival benefits associated with its inhibition across
different cancer types, CLU emerges as a promising therapeutic target for the development
of more efficacious agents and targeted therapies. Moreover, considering its oncogenic
properties, the sCLU isoform holds potential as a blood biomarker for cancer diagnosis.

However, despite extensive research on the functions of CLU isoforms, it remains
unclear which isoform contributes to specific biological effects. Therefore, it is imperative
to delve deeper into the distinct functional role of each CLU isoform, particularly sCLU, to
refine CLU targeting as a therapeutic strategy more effectively.
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