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Abstract: The discovery of hexanucleotide repeats expansion (RE) in Chromosome 9 Open Reading
frame 72 (C9orf72) as the major genetic cause of amyotrophic lateral sclerosis (ALS) and the association
between intermediate repeats in Ataxin-2 (ATXN2) with the disorder suggest that repetitive sequences
in the human genome play a significant role in ALS pathophysiology. Investigating the frequency of
repeat expansions in ALS in different populations and ethnic groups is therefore of great importance.
Based on these premises, this study aimed to define the frequency of REs in the NIPA1, NOP56,
and NOTCH2NLC genes and the possible associations between phenotypes and the size of REs
in the Italian population. Using repeat-primed-PCR and PCR-fragment analyses, we screened
302 El-Escorial-diagnosed ALS patients and compared the RE distribution to 167 age-, gender-, and
ethnicity-matched healthy controls. While the REs distribution was similar between the ALS and
control groups, a moderate association was observed between longer RE lengths and clinical features
such as age at onset, gender, site of onset, and family history. In conclusion, this is the first study
to screen ALS patients from southern Italy for REs in NIPA1, NOP56, and NOTCH2NLC genes,
contributing to our understanding of ALS genetics. Our results highlighted that the extremely rare
pathogenic REs in these genes do not allow an association with the disease.

Keywords: amyotrophic lateral sclerosis; NIPA1; NOP56; NOTCH2NLC; repeats expansion

1. Introduction

Amyotrophic lateral sclerosis (ALS), also known as “Lou Gehrig’s disease” or “Char-
cot’s disease” is a progressive neurodegenerative disease (ND) characterized by the degen-
eration of the motor neurons in the brain and spinal cord with consequent muscle weakness
and eventual paralysis resulting in death within 2–5 years of symptom onset [1]. The onset
can be bulbar or spinal. In the first case, the disease manifests itself with an initial weakness
in the facial muscles, tongue, and pharynx, while in the spinal onset affected muscles are
distal, in the upper or lower limbs [2].

Sporadic ALS (sALS) is the most common form of the disease, accounting for some
90% of all cases [3,4]. A family history of ALS is present in approximately 10% of cases with
a genetic cause present in ~15% of patients showing an autosomal dominant pattern [5].
Over half of the familial cases are due to pathogenic mutations in disease-associated
genes, among which SOD1 (Superoxide Dismutase 1, OMIM * 147450), FUS (Fused in
Sarcoma, OMIM * 137070, TARDBP (Tar DNA-Binding Protein, OMIM * 605078), and
C9orf72 (Chromosome 9 Open Reading Frame 72, OMIM * 614260) are the most frequently
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involved [3,6]. The hexanucleotide (GGGGCC) repeat expansion (RE) in the non-coding
region of the C9orf72 gene is the most frequent genetic cause in ALS patients [7,8].

Over the last decade, numerous studies have focused on discovering the role of repeat
expansions (REs) other than C9orf72 in ALS, such as ATXN1 (Ataxin-1, OMIM * 601556) and
ATXN2 (Ataxin-2, OMIM * 601517). Repeat expansions in these genes have been primarily
associated with other NDs, such as spinocerebellar ataxias (SCA) and hereditary spastic
paraplegia (HSP) [9,10]. Furthermore, copy number variations (CNVs) in ALS have recently
been the research focus of [11]. Excluding REs in C9orf72, 17.6% of individuals who were
clinically diagnosed with ALS or frontotemporal dementia (FTD) had at least one short
expansion tandem repeat (STR) allele [12] reported as pathogenic or intermediate for other
NDs such as ATXN1 (spinal cerebellar ataxia type, SCA1), ATXN2 (SCA2), ATXN8 (Ataxin
8, OMIM *613289, SCA8), TBP (TATA box-binding protein OMIM *600075, SCA17), HTT
(Huntingtin, OMIM * 613004, Huntington’s disease), DMPK (Dystrophia Myotonica Protein
Kinase OMIM * 160900, Myotonic Dystrophy 1, DM1), CNBP (Cchc-Type Zinc Finger
Nucleic Acid-Binding Protein OMIM * 116955, DM2), and FMR1 (Fragile X Messenger
Ribonucleoprotein 1 OMIM * 309550, fragile X disorders) [12–14].

Based on this scientific evidence, several studies have been conducted evaluating the
role of REs in other ALS-related genes. Among them, increased interest is aimed at the
NIPA1 gene (non-imprinted gene in Prader–Willi/Angelman syndrome region protein 1,
OMIM * 608145). Mutations in this gene are known to cause HSP type 6, a progressive
ND with slow upper motor neuron signs. Blauw and collaborators found an association
between rare deletions in NIPA1 and ALS by applying a whole-genome screening [15].
The same group, in 2012, showed that long or expanded polyalanine repeats in this gene
confer greater disease susceptibility [16]. NIPA1 is increasingly recognized as a genetic risk
factor in ALS, with rare deletions and expanded polyalanine repeats linked to elevated
disease risk. These variants may worsen motor neuron degeneration and influence disease
severity. NIPA1’s involvement in cellular trafficking underscores its potential role in ALS
pathology, offering avenues for targeted therapies and personalized treatment strategies.
Further research into NIPA1-associated ALS is crucial for advancing our understanding of
the disease and developing effective interventions [15].

Another hexanucleotide repeat expansion potentially associated with ALS is the
NOP56 (Nucleolar Protein 56) gene. The long REs of this gene cause SCA36, a group of
autosomal dominant NDs in which prominent motor neuron degeneration is present [17,18].
Several studies revealed a motor neuron involvement including weak expression of NOP56,
TARDBP, and FUS in an ALS mouse model, which happens before the seeming onset of the
disease [19]. Nonetheless, few studies have been led currently on the association between
ALS and the REs size within NOP56. While NOP56 mutations are relatively rare compared
to other genetic contributors to ALS, studies have implicated NOP56 in the molecular
pathways underlying motor neuron degeneration. Although the exact mechanisms by
which NOP56 mutations contribute to ALS pathology remain to be fully elucidated, their
association with SCA suggests potential involvement in motor neuron dysfunction and
degeneration [20].

Otherwise, other studies have already analyzed the probable correlation between REs
in the NOTCH2NLC (Notch2 N-Terminal-Like C, OMIM * 618025) gene and ALS [21,22].
In particular, trinucleotide expansions of this gene have been classified as pathogenetic
for NIID (neuronal intranuclear inclusion disease), which shows clinical overlaps with
ALS [1,23,24]. The precise mechanisms by which NOTCH2NLC expansions contribute to
ALS pathophysiology remain to be fully elucidated, but their identification underscores
the genetic heterogeneity of ALS and highlights this gene as a novel candidate gene in
ALS research. Understanding the clinical relevance of NOTCH2NLC in ALS may provide
valuable insights into disease mechanisms and could ultimately lead to the development of
targeted therapies for ALS patients with expansions in this gene [25].
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In this study, we aimed to (i) define the frequency of REs in NIPA1, NOP56, and
NOTCH2NLC in a large cohort of Italian ALS cases; and (ii) discover the potential associations
between phenotypes and the size of REs within NIPA1, NOP56, and NOTCH2NLC genes.

2. Materials and Methods
2.1. Population

The study cohort included 302 patients (54% male, 46% female) with ALS from south-
ern Italy who were prospectively recruited and randomized. All patients underwent a
comprehensive neurological evaluation to establish the clinical diagnosis of ALS according
to the Gold Coast Criteria [26] which represent the evolution of the revised El-Escorial cri-
teria [27]. The demographic and clinical characteristics of the South Italian ALS cohort are
described in Table 1. All individuals provided written informed consent for participation
in genetic studies for research purposes. The control cohort (CTRL) included 167 Italian
individuals, comprising both healthy samples (n = 31) and individuals diagnosed with
other clinical conditions (n = 136) matched by gender, age, and geographic region. All
samples (ALS and CTRL) were analyzed using the same pipeline.

Table 1. Demographic and clinical characteristics of the South Italian ALS cohort.

South Italian ALS Cohort (n = 302)

Age at onset, years, mean (± SD) 61.6 (± 12.6)

Male, n (%) 163 (54%)

Sporadic ALS, n (%) 275 (91%)

Familiar ALS, n (%) 27 (9%)

C9orf72-ALS, n (%) 16 (5.3%)

FUS-ALS, n (%) 2 (0.7%)

SOD1-ALS, n (%) 1 (0.3%)

TARDBP-ALS 6 (2%)

Family history of NDs, n (%)

Yes 68 (22.5%)

No 234 (77.5%)

Region of symptom onset, n (%)

Spinal 209 (69.2%)

Bulbar 61 (20.2%)
Family history of NDs includes: Alzheimer’s disease (AD), Parkinson’s disease (PD, multiple sclerosis (MS), and
dementia.: Data not available for region of symptoms onset in n = 32 (10.6%).

2.2. Genetic Analysis

Genomic DNA was extracted from peripheral blood using a standard extraction
method. Each patient underwent pathogenic mutations in genetic screening for the most
common pathogenic ALS-related genes, i.e., SOD1, TARDBP, FUS, and C9orf72 [28].

The REs in NIPA1, NOP56, and NOTCH2NLC were screened by both repeat-primed
PCR (polymerase chain reaction) and PCR-fragment analyses using primer pairs flanking
the repeat. Considering that sample quality is critical in several genomic experiments,
295 DNA samples underwent genetic RE analysis of which 269 were from sporadic ALS
cases and 26 with family history. In particular, genotyping of the GCG repeat in the first
exon of NIPA1 was performed by fragment-length analysis with fluorescent primers, as
already described [16] (Figure 1, Supplementary Figure S1).
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the fluorescence amplicon length analysis (green), the fluorescent-labelled primers flank the region 
comprising the NIPA1 repeat (GCG). (B) Schematic representation of the NOP56 gene. In the fluo-
rescence amplicon length analysis (green), the reverse primer binds at multiple sites within 
GGCCTG repeat alleles, giving rise to a mixture of products. In the repeat-primed PCR (blue), the 
universal primer preferentially binds to the end of products from previous amplification rounds 
owing to the stabilizing effect of the 5′ tail sequence. (C) Schematic representation of the 
NOTCH2NLC gene. The disease associated RE (orange box) was identified in exon 1 of the 
NM_001364012 isoform. Green and blue arrows show the primers using fluorescence amplicon 
length analysis and repeat-primed PCR, respectively. (Created with BioRender). 
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Figure 1. Oligonucleotides design in NIPA1, NOP56, and NOTCH2NLC genes to REs study. (A) In
the fluorescence amplicon length analysis (green), the fluorescent-labelled primers flank the region
comprising the NIPA1 repeat (GCG). (B) Schematic representation of the NOP56 gene. In the fluores-
cence amplicon length analysis (green), the reverse primer binds at multiple sites within GGCCTG
repeat alleles, giving rise to a mixture of products. In the repeat-primed PCR (blue), the universal
primer preferentially binds to the end of products from previous amplification rounds owing to the
stabilizing effect of the 5′ tail sequence. (C) Schematic representation of the NOTCH2NLC gene. The
disease associated RE (orange box) was identified in exon 1 of the NM_001364012 isoform. Green
and blue arrows show the primers using fluorescence amplicon length analysis and repeat-primed
PCR, respectively. (Created with BioRender).

To detect the hexanucleotide repeat (GGCCTG) in the first intron of the pre-mRNA pro-
cessing gene NOP56, a conventional PCR method was applied with a pair of fluorescently
labelled primers. Homozygous samples with normal repeats discovered by conventional
PCR were examined with repeat-primed PCR (sequence of primers used according to [29]
(Figure 1, Supplementary Figure S1)).

For the genotyping of the GGC repeat in the first NOTCH2NLC exon, we conducted a
fluorescent amplicon length analysis and, subsequently, a repeat-primed PCR to determine
the right number of REs, as described [23] (Figure 1, Supplementary Figure S1). The product
fragments were sized by capillary electrophoresis on a SeqStudio Genetic Analyzer (Thermo
Fisher Scientific, Waltham, MA, USA) with GeneScan 500 ROX dye Size Standard (Thermo
Fisher Scientific, Waltham, MA, USA). The data analysis was performed by the GeneMapper
6 program and the length of the highest signal peak of the expanded allele was used to
estimate the RE. The sizes of the alleles were used to calculate the repeat number according
to the reference human genome hg19. The repeat size has been confirmed by Sanger
sequence analysis. All the primer sequences are displayed in Supplementary Table S1.
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2.3. Statistical Analysis

To measure the binding between polynucleotide REs and several clinical features
of ALS patients, we employed the chi-square test (χ2), Fisher’s exact test (for categorical
variables), Student’s t-test (for continuous variables), and the odds ratio (OR) method. In
particular, we performed these analyses on all subgroups of ALS and control samples,
correlating the REs length in NIPA1, NOP56, and NOTCH2NLC with age at onset, gender,
site of onset, family history, Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised
(ALSFRS-R) score, and disease progression rate (∆FS). ∆FS is calculated as in [30].

∆FS =
[48 − (Total ALSFRS − R score at initial assessment)]

Time f rom onset o f symptoms to initial assessment (months)
(1)

Specifically, we dichotomize the ∆FS values into <0.7 and ≥0.7, with 0.7 being a
median ∆FS value in large populations [31] Previous studies have shown that ALS patients
with a ∆FS ≥ 0.7 tend to have shorter survival times and more aggressive disease courses
than those with slower progression rates [32]

Kaplan–Meier univariate analysis was used to determine the effect of polynucleotide
REs on survival time. All statistical analyses were performed using GraphPad Prism v.7.
Differences with p-value < 0.05 were considered statistically significant.

To investigate the association between REs length and survival, we conducted a
Kaplan–Meier analysis using the statistical software R (R 4.3.). A Winsorized test was
applied to manage the potential influence of extreme survival values or outliers in the data
set [33]. The survival curves were generated to visualize survival probabilities over time for
the normal and long REs subgroups. The log-rank test was used to assess the significance
of differences in survival distributions between these subgroups, and the resulting log-rank
p-value was used to measure statistical significance.

3. Results
3.1. NIPA1

Exon 1 of NIPA1 encodes a GCG repeat which most often results in an allele length
of 7 or 8 in healthy controls. The NIPA1-REs ranged from 7 to 10 repeats (GCG7–GCG10
alleles) in ALS patients and from 7 to 8 repeats (GCG7–GCG8 alleles) in control samples.
The RE distribution between ALS and control cases was similar (p = 0.39) with the most
frequent alleles being GCG7 (17.1%) and GCG8 (80.7%) (Figure 2A).

In order to evaluate the effect of the different REs lengths, we split the NIPA1 alleles
into “short” (GCG7), “normal” (GCG8), and “long” (≥GCG9 repeats). The distribution of
NIPA1 GCG repeat length in ALS and control samples is shown in Table 2. We found that
101 out of 590 NIPA1 alleles in the ALS cohort harbored a 7 GCG repeat length (17.11%),
as compared to 48 (14.4%) out of 334 control alleles (Figure 2A). A normal repeat length
was found in 476 (80.7%) of the 590 ALS alleles and in 279 (85.5%) of the 334 control alleles
(Figure 2A). Finally, a long RE was found in 13 (2.2%) of the 590 ALS alleles and in 5 (1.5%)
of the 334 control samples (Table 2, Figure 2A). Therefore, NIPA1 long alleles do not appear
to be more frequent in ALS patients compared with controls (p = 0.392), although we can
underline a statistically significant association (OR = 0.1) between REs’ borderline and the
clinical phenotype of the disease. To verify the probable role of NIPA1 long alleles as a
modifier of disease phenotype, we investigated the associations of REs’ length and several
clinical characters. Fisher’s test and χ2 did not show a difference between normal and short
repeats with the age of onset, gender, and site of onset (Table 3). The correlation between
gender and OR revealed a weak relationship between normal and short expansions (OR
values fluctuate between 0.8 and 1.2) while a moderate association was shown with the
long allele (OR = 3.375). Additionally, to evaluate the impact of RE length on the disease
progression rate, we performed a Fisher’s exact test dichotomizing the ∆FS values in <0.7
and ≥0.7. The analysis results showed a statistically significant association between the
long allele and ∆FS compared to the normal and short length (p = 0.02).
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Table 2. Frequencies of NIPA1, NOP56, and NOTCH2NLC repeat alleles in ALS and control samples.

Repeat Alleles ALS Controls p-Value Odd Ratio

NIPA1 n (%) n (%)

Short (7 repeats) 101 (17.1%) 48 (14.4%) 0.39 0.1

Normal (8 repeats) 476 (80.7%) 279 (85.5%)

Long (≥9 repeats) 13 (2.2%) 5 (1.5%)

NOP56

8 repeats 66 (11.1%) 20 (5.98%) 0.40 0.93

≥9 repeats 10 (1.7%) 3 (0.9%)

NOTCH2NLC

9 repeats 335 (56.8%) 158 (47.3%) 0.42 0.8

≥15 repeats 7 (1.2%) 2 (0.6%)

Table 3. Association analysis between NIPA1, NOP56, and NOTCH2NLC allele lengths and age at
onset and gender in ALS and control samples.

NIPA1

GCG repeat
allele Cohort Age of onset

(mean *)
p-value (Paired

t-test) Gender p-value (Fisher’s
exact test)

OR
(Batista Pike)

Short (7)
ALS 61.74 (13.9)

0.2544

43 M
47 F

0.7137 0.835

CTRLs 63.07 (16.8) 23 M
21 F

Normal (8)
ALS 61.45 (12.1) 149 M

128 F
0.4251 1.192

CTRLs 63.07 (16.8) 78 M
79 F

Long (≥9)
ALS 58.8

(11.7)
9 M
4 F

0.2545 3.375

CTRLs 57.9
(15.1)

2 M
3 F

NOP56

GGCCTG repeat
allele Cohort Age of onset

(mean *)
p-value (Paired

t-test) Gender p-value (Fisher’s
exact test)

OR
(Batista Pike)

8 REs
ALS 65.08

(10.1)

0.6837

32 M
30 F

0.2118 1.981

CTRLs 63.13
(16.7)

7 M
13 F

≥9 REs
ALS 61.27

(13.4)
4 M
6 F

0.5594 0.3333

CTRLs 62.86
(16.3)

2 M
1 F
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Table 3. Cont.

NOTCH2NLC

GGC repeat allele Cohort Age of onset
(mean *)

p-value (Paired
t-test) Gender p-value (Fisher’s

exact test)
OR

(Batista Pike)

9 REs
ALS 61.66

(12.7)

0.3634

95 M
101 F

0.4084 0.8

CTRLs 62.9 (16.6) 61 M
52 F

≥15 REs
ALS 61.05 (13.9) 4 M

3 F
0.5 0

CTRLs 72.8 (12.5) 2 M
0 F

* Mean (±standard deviation) values are displayed. OR= odd ratio. CTRLs = control cases.

The estimated survival effect of patients’ GCG length and survival time was examined
using Kaplan–Meier survival analysis. The Kaplan–Meier curve was generated to visualize
the probability of survival over time based on the length of the repeat expansion. However,
the log-rank test revealed that the observed differences in survival between groups did
not reach statistical significance (p > 0.122). Consequently, we did not keep any significant
association between the length of REs in NIPA1 and survival time in our study cohort
(Figure 3A).
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In our cohort, 11 of 16 patients carrying the C9orf72 pathological expansion showed the
NIPA1 normal allele (CCC8), while the other five showed a heterozygous pattern (GGC7-
GGC8). Analysis using the Fisher test showed no evidence of an association between
C9orf72 carriers and the expansions in NIPA1 (p = 0.105).

3.2. NOP56

An abnormal number of gene REs (>650) are correlated with the pathogenesis of
SCA36, although this disease is considered a rare repeat expansion disorder. More than
60% of cases show phenotypic features of motoneuronal degeneration compatible with
ALS [29]. For this reason, we wished to investigate the association between long repeats
(GGCCTG8 and GGCCTG9) and ALS.

In our cohort, the sizes of REs in NOP56 ranged from 3 to 9 repeats (GGCCTG3-
GGCCTG9) in ALS patients and from 3 to 8 repeats (GGCCTG3-GGCCTG8) in controls
subjects. We used the Cochran–Armitage test for trends to test whether the RE size of the
alleles is associated with ALS. However, the RE distribution between ALS and control cases
was similar (p = 0.40) with the most frequent alleles being GGCCTG3 (38.96%), GGCCTG4
(33.76%), and GGCCTG6 (67.96%) (Figure 2B).

The distribution of the NOP56 GGCCTG repeat length in ALS and control samples
is shown in Table 2. We found that 66 out of 590 NOP56 alleles in the ALS cohort had a
GGCCTG repeat length of 8 (11.1%), compared to 20 (5.98%) out of 334 control alleles. A
repeat length of at least 9 (≥9) was found in 10 (1.7%) of the 590 ALS alleles and 3 (0.9%) of
334 control alleles (Table 2, Figure 2B).

Therefore, alleles with REs greater than 8 in the NOP56 gene do not appear to be
correlated with the disease (p > 0.99), so much so that the probability of finding this number
of repeats is equal between cases and controls (OR = 0.93). In addition, we discovered
no significant associations in the age of onset, gender, site of onset, family history, and
ALSFRS-R scores between these two groups (p > 0.05) (Table 3).

As previously, we evaluated the impact of RE length by performing a Fisher’s exact
test dichotomizing the ∆FS values into <0.7 and ≥0.7. Our findings revealed no significant
association (p = 0.49) between long repeats (GGCCTG8 and GGCCTG9) and the prediction
survival value.

The potential impact of patients’ GGCCTG repeat expansion length on survival time
was assessed using Kaplan–Meier survival analysis. As before, upon conducting the log-
rank test, we found that the differences in survival between the groups were not statistically
significant (p > 0.122). Consequently, our analysis did not reveal any significant association
between the length of GGCCTG REs in the NOP56 gene and survival time within our study
cohort (Figure 3B)
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3.3. NOTCH2NLC

In this study, we used cut-off values for both pathogenic and normal sizes of NOTCH2NLC
REs in accordance with previous work [21]: ≥60 repeats as pathogenic expansion, ≤43 as
normal repeat size, and 44 to 59 as intermediate. The NOTCH2NLC GGC repeat size of the
295 ALS patients ranged from 7 to 15 (GGC9-GGC15), with 9 REs being the most prevalent
size making up 66.8% of the total alleles.

The distribution of the NOTCH2NLC GGC repeat length in ALS and control samples
is shown in Table 2. We found that 335 out of 590 NOTCH2NLC alleles in the ALS cohort
had a GGC repeat length of 9 (56.8%), compared to 158 (47.3%) out of 334 control alleles. A
repeat length greater than or equal to 15 was found in 7 (1.2%) of the 590 ALS alleles and in
2 (0.6%) of the 334 control alleles (Table 2, Figure 2C).

To obtain a statistical certainty of the data, we evaluated the association of the most
common repeats (GGC9) and of the longest repeats (GGC ≥ 15) with several clinical
characters. The statistical analysis showed no significant difference in the REs size of the
longest repeats between ALS and control samples (p = 0.42). Furthermore, we discovered
no significant associations in the age of onset, gender, site of onset, family history, and
ALSFRS-R scores between the two groups analyzed (p = 0.33).

Examining the influence of patients’ GGC REs length on survival time involved
employing the Kaplan–Meier survival analysis. After conducting the log-rank test, we
established that the variations in survival between the groups did not achieve statistical
significance (p > 0.694). Consequently, our investigation did not unveil any noteworthy
correlation between the length of GGC repeat expansions in the NOTCH2NLC gene and
survival time within the subjects under study (Figure 3C).

4. Discussion

ALS is a multifactorial heterogeneous disease in which long and/or intermediate
repeats in several genes have been implicated. To the best of our knowledge, this is the first
study conducted on ALS patients from southern Italy to investigate REs in three emerging
disease-related genes. Despite previous studies suggesting a correlation between long allele
expansions and ALS, our research in a cohort of ALS patients from southern Italy found
no significant association between REs in NIPA1, NOP56, and NOTCH2NLC compared to
the healthy controls. Furthermore, we did not observe any association between expanded
motifs in these genes and different parameters such as gender, age at onset, site of onset,
and ALSFRS-R scores.

NIPA1 appears to be the third known enlarged genomic repeat motif linked to a
higher risk for ALS, following ATXN1 and ATXN2. It was first identified by Blauw and
collaborators [15,16], and subsequently confirmed by Tazelaar et al. in 2019, that there is an
association between long repeats in NIPA1 and ALS risk. Furthermore, long REs have been
shown to be positively associated with early disease onset and short survival [34,35]. In
addition, several studies have been performed to find the possible role of NIPA1 REs as
modifiers of disease risk in C9orf72 hexanucleotide repeat expansion carriers. However,
the results do not boast a common conclusion: the study performed by Dekker et al. (2016)
claimed to have found a high frequency of NIPA1 REs in C9orf72-sALS cases, hypothesizing
their role in modifying the C9orf72 phenotype [36]. The study by Corrado et al. [37],
consistent with the other two papers [34,38], concluded that the length of the NIPA1 allele
does not appear to affect the clinical features of C9orf72 carriers.

Our study revealed that the frequency of NIPA1 long alleles (≥GCG9 repeats) in
ALS patients was not higher than that in healthy controls (4.4% vs. 3%). In addition,
the results also confirmed no evidence of a relationship between C9orf72 and NIPA1 in
disease modulation (p = 0.105), consistent with the data reported by Corrado et al. in
2019. Interestingly, our study revealed an association between long repeats and disability
progression and severity (∆FS) (p < 0.02; Table 2). Despite the impossibility of drawing
conclusions, it might be interesting to consider the potential implications of this result.



Cells 2024, 13, 677 11 of 14

Consistent with findings in the Chinese [17], Japanese [39], and African [40] cohorts,
our investigation within the South Italian cohort did not reveal any statistically significant
association between NOP56 allele frequencies and ALS cases. To the best of our knowledge,
the frequency of REs in NOP56 has never been described in European populations, and
this is the first study on that. Despite the absence of a positive correlation, these shared
outcomes contribute to the global comprehension of NOP56’s role in ALS, emphasizing
the importance of cross-cultural studies in unraveling the genetic complexities of this
neurodegenerative disease. NOP56 is a causative gene of a specific SCA subtype, SCA36. It
is also known that some patients with SCA36 clinically exhibit an ALS phenotype. Both
diseases cause progressive late-onset motor neuron degeneration potentially caused by the
expansion of hexanucleotide portions: NOP56 in the case of SCA36 [39] and C9orf72 in the
case of ALS [7]. The motor neuron portion involved in these two diseases is different, but
some patients are carriers of pathogenic repeats of GGCCTG in NOP56 [18], suggesting an
overlap of genetic and phenotypic events between ALS and SCA36 [29,41]. To date, there
have been few studies on the association of repeat expansion and NOP56 with ALS, and
further research into the typical role of this gene will be needed to shed light on how it
contributes to the disease.

In the present study, none of the ALS patients examined exhibited the GGC repeat
expansion in the NOTCH2NLC gene. While investigations into the association between
these REs and ALS remain limited, noteworthy insights have been gleaned from related
studies. Notably, a Japanese study by Yuan et al. (2020) reported the identification of
four ALS patients (the studied population included 545 ALS patients and 1305 healthy
controls) with anomalous GGC repeat expansions, suggesting a potential modifying factor
for ALS in the context of NOTCH2NLC [21]. Furthermore, ALS patients with abnormal
GGC-repeat expansion tended to exhibit a severe phenotype and rapidly progressing
disease, with a relatively small number of GGC repeats (mean: 84, Range: 44–143) [24].
Beyond the extremes of repeat lengths, the study also sheds light on the significance of
intermediate repeats (42 to 47), as identified in patients with leukoencephalopathy and
controls with corticobasal syndrome and progressive supranuclear palsy. While the details
and frequencies of these intermediate repeats remain undisclosed, their absence in healthy
controls hints at a potential association with neurodegenerative diseases, including ALS
and dementia [24,42,43]. More recently, Manini and collaborators investigated an Italian
cohort of ALS patients reporting the absence of pathological expansion [22]. In line with
this, our study confirms this finding in our samples. It also shows that there is no association
between different repeat lengths in both ALS and control populations.

There are some limitations to our study that need to be considered: (i) the control
group included both healthy samples (n = 31) and individuals diagnosed with various
neurological disorders (n = 136). Although this group is clinically and genetically well-
differentiated compared to the ALS population, the use of a cohort of healthy controls could
eliminate potential confounding factors that may influence the interpretation of the results;
(ii) the relatively small sample size in some of the subgroups may limit the statistical power
to detect significant associations (e.g., the small number of C9orf72 ALS patients in the three
repeat expansion groups).

Despite these limitations, on the basis that the replication of genetic associations in
populations can provide support for the disease causation scenario and, if not replicated,
can also raise new questions about undelight pathogenetic processes, our present study
provides valuable insights on the frequency of REs in NIPA1, NOP56, and NOTCH2NLC in
a cohort of South Italian ALS cases and highlights the need for larger and more comprehen-
sive studies to validate and extend our findings.

5. Conclusions

This is the first study to screen ALS patients from southern Italy for REs in NIPA1,
NOP56, and NOTCH2NLC genes Our results did not conclusively support the hypothesized
role of repeat lengths in NIPA1, NOP56, and NOTCH2NLC as determinants of ALS risk.
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Furthermore, the multiple statistical analyses scrutinizing potential associations between
clinical parameters and repeat length did not yield discernible correlations.

Efforts to discover novel ALS disease-modifying factors are a critical goal to promote
the development of personalized strategies for diagnosis, prognosis, and therapy. In
particular, studies on the association of intermediate repeat expansions with the clinical
features of ALS or disease progression could pave the way for refining individual prognostic
predictions and improving ALS clinical trial design, as is already happening with ATXN2.
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