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Abstract: Ultraviolet (UV) radiation has profound effects on the immune system, including
the induction of tolerogenic dendritic cells (DCs), which contribute to immune suppression
and tolerance. This review explores the roles of conventional CD11c¢* DCs, as well
as cutaneous Langerhans cells and CD11b+ myeloid cells, in UV-induced immune
modulation. Two key mechanisms underlying the immunosuppressive relationship
between UV and DCs are discussed: the inactivation of DCs and the induction of tolerogenic
DCs. DCs serve as a critical link between the innate and adaptive immune systems, serving
as professional antigen-presenting cells. In this context, we explore how UV-induced
DCs influence the activity of specific T cell subsets, including regulatory T lymphocytes
and T helper cells, and shape immune outcomes. Finally, we highlight the implications
of UV-induced tolerogenic DCs in select dermatologic pathologies, including cutaneous
lupus, polymorphic light eruption, and skin cancer. Understanding the mechanisms by
which UV radiation alters DC function offers insights into the complex interplay between
environmental factors and immune regulation, providing potential avenues for preventive
and therapeutic intervention in UV-induced skin diseases.

Keywords: ultraviolet radiation; skin; tolerogenic dendritic cells; immunology; immuno-
suppression

1. Introduction

Ultraviolet (UV) radiation, a ubiquitous environmental factor, profoundly influences
the immune system, particularly within the skin, where it induces a state of immuno-
suppression. Among the cellular mediators of this immunomodulatory effect, dendritic
cells (DCs)—the sentinel antigen-presenting cells (APCs) of the immune system—play
a pivotal role. UV-induced changes in DC function can impair T cell function, promote
immune tolerance, and reshape the skin’s immune landscape.

This review focuses on the mechanisms by which UV radiation influences the
tolerogenic capacity of DCs in the skin. We explore the roles of various DC subsets,
including Langerhans cells (LCs), conventional CD11c* cells, and CD11b* myeloid cells,
highlighting their contributions to UV-induced immunosuppression. We also discuss
the molecular pathways implicated in the modulation of DC activity, including DNA
damage, cytokine signaling, and apoptotic processes. Furthermore, we examine the
clinical implications of these findings, highlighting the role of UV-induced DCs in the
development of conditions such as cutaneous lupus erythematosus, polymorphic light
eruption, and skin cancers. By synthesizing recent advances in the field, this review aims to
provide a comprehensive understanding of UV-induced tolerogenic DCs and their broader
immunological and clinical significance.
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2. Various Cutaneous Immune Cells Implicated in UV-Induced
Immune Suppression

This review discusses three broad categories of dendritic cells, reflecting the prevailing
trends in the current literature. While the techniques and markers used to define these
categories vary somewhat, a summary is provided in Table 1. It is important to note that
the classification of immune cells is continually evolving as advancements in molecular
techniques, multiparameter imaging, flow cytometry, and transcriptomics drive more
specific characterization.

Table 1. Common cellular markers and methods of identification used in the study of UV-induced
dendritic cell populations referenced in this review.

Identification Method Special Considerations

Markers for histologic and
immunohistochemical examination:

ATPase activity UV exposure attenuates ATPase staining
Ia¥ and Iad more so than CD1a and Ia expression [1]

LCs CD1a LCs are distinguished from dendritic
Langerin (CD207) melanocytes by a lack of cytoplasmic pigment
CD103~ epidermal LCs vs. CD103* dermal granules [2]
LCs UV exposure alters LC morphology
Electron microscopy of ultrastructural
appearance and presence of Birbeck granules
Markers er hlStOIO.gIC and N UV induces changes to CD11c* populations
immunohistochemical examination: . . .

DCs CD11c" CD123~ in the skin, draining lymph nodes and bone
CD11c* BDCA3* immunosuppressive subset ?arrow I d via fl tomet
CD11c" BDCA1™ immature, inflammatory ommonty assessed via How cytometry
Histologic examination or flow cytometry for
the following markers:

CD11b* CD11b*CD36"CDla™ Commonly assessed via flow cytometry

Gr-1 (Ly-6G/Ly-6C)
Human: CD11b* CDla  HLA-DR*

¢DC = conventional dendritic cell, LC = Langerhans cell, UV = ultraviolet, DC = dendritic cell.

2.1. Langerhans Cells

LCs, first described by Paul Langerhans in 1868, were the earliest cells to be identified
as DCs, named for their characteristic “tree-like” morphology [3]. LCs are classically
considered the tissue-resident macrophages of the skin [4,5]. In healthy skin, these MHC
class Il-expressing APCs [6,7] reside primarily in the suprabasal epidermis, a depth to
which UV penetrates easily. UV radiation has been shown to influence several aspects of
LC networks and function. Much of our understanding of the immunosuppressive effects
of UV radiation has been elucidated through murine models of contact hypersensitivity
(CHS), which is a delayed type of cell-mediated immune response.

Epidermal LCs are essential mediators in the development of CHS responses [8]. The
extent of CHS produced in response to a contact allergen correlates with the density of local
LCs in the epidermis at the site of initial sensitization. This was first shown in an experiment
by Toews et al., in which initial sensitization to the contact allergen 2,4-dinitrofluorobenzene
(DNEFB) on the abdominal skin, which naturally has a higher density of LCs, triggered
a stronger hypersensitivity reaction upon rechallenge compared to sensitization on tail
skin, where LCs are relatively scant [8]. Irradiation of the skin with a short course of
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290-320 nm UV radiation (UVB) prior to sensitization significantly attenuated the capacity
to subsequently develop a CHS response to DNFB. Furthermore, UV-irradiated mice were
unable to mount an immune response to re-sensitization to DNFB applied to a distant site
at later time points as would be expected in UV-naive mice, indicating the induction of
specific immune tolerance [8]. Later studies by Cruz et al. found that injection of isolated
Ia* LCs that had been irradiated and conjugated to hapten ex vivo into normal, wildtype
mice resulted in a diminished ability to mount a CHS response, and the development of
long-lasting immune tolerance compared to mice injected with non-UV-irradiated LCs [9].

The specific cellular and molecular effects on LCs attributed to UV radiation can be
highly variable, based on the dose and range of UV employed and the timing of sampling
post-irradiation. Toews et al. found that LCs, as identified by ATPase-positive staining, are
transiently depleted at the site of local UVB irradiation. The few ATPase* cells remaining
following irradiation exhibit altered morphology [8]. Exposure to high doses of UVB
ranging from 400 to 4000 J/m? causes LCs at the site of irradiation to become rounded and
swollen, with a reduction in dendritic processes [1,8,10]. Other studies have shown that
irradiation with lower doses of UVB 120-2000 J/m? results in LCs with elongated dendritic
processes [2,11]. Experiments in murine and human skin by Aberer et al. suggest that the
apparent loss of LCs may be reflective of a loss of surface markers (e.g., Ia antigens), rather
than a true depletion of LCs [12]. Further immunohistochemistry and electron microscopy
has suggested that DCs experience both a change in surface marker expression and cell
damage or death in response to UV irradiation [2].

As molecular techniques improve and the classification of DC populations becomes
increasingly nuanced, it has become clear that not only are the effects of UV radiation
context-dependent, but various cell subpopulations also are impacted in unique
ways [13]. Nakagawa et al. have shown that UVB radiation has distinct effects on
different LC subpopulations, defined by relative HLA-DR expression [14]. In response to
UVB exposure, the relative number of viable HLA-DRH! 1.Cs decreases over time, but this
subpopulation exhibits evidence of maturation (downregulation of CD1a; upregulation
of CD80, CD86, CD54, CD40, CD83) compared to unexposed controls. UVB potentiates
the activity of viable HLA-DRH! LCs through augmented expression of costimulatory
molecules, such as TNF-a and proinflammatory cytokines. HLA-DRW LCs, on the other
hand, fail to mature in response to UVB, and exhibit robust annexin V binding, indicating
apoptosis [14].

While epidermal LCs have been studied extensively, a handful of studies have
examined the importance of dermal DCs in UV-induced immunosuppression. Dermal
langerin*CD103* cells, which constitute two-thirds of langerin™ cells in the skin-draining
lymph nodes, are derived from the bone marrow, and are constitutively expressed in
the dermis [15-17]. Conditional deletion of this population of DCs via radiation reduces
the UV-induced suppression of CHS and the suppression of CD8* T cell responses
to epicutaneous immunization to OVA [18], suggesting that epidermal langerin® cells
are dispensable in the induction of UVB-induced immunosuppression [18]. However,
experiments utilizing transgenic mice expressing diphtheria toxin receptors on langerin®*
cells have suggested that epidermal langerin* cells are required for UVB-induced
immune suppression. In these studies, when administered 10 days following diphtheria
toxin-mediated depletion of langerin®* cells, at which point dermal langerin* cells, but
not epidermal langerin® cells, had repopulated, UVB was unable to effectively suppress
CHS [19].
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2.2. Conventional Dendritic Cells (¢cDCs)

cDCs that express CD11c and MHC class II antigens have been characterized in mice
and humans [20]. Based on their phenotype, they are generally classified into cDC1 and
¢DC2. In addition to CD11c and MHC class II antigens, murine cDC1 cells express XCR1,
IRF8, and CD103, whereas cDC2 cells express CD11b and IRF4. In addition to CD11c and
MHC class II antigens, human cDC1 cells express CD304 (BDCA3), CD141 (BDCA4), and
XCR1, whereas ¢cDC2 cells express CD1c (BDCA1) and CD11b. ¢cDCs can be detected in
the skin, blood, and lymphoid tissues. Many studies investigate the roles of CD11c* DC in
UV-induced immune suppression in mice and humans. However, less is known about the
specific roles of cDC1 and cDC2 cells in the process.

CD11c* DCs have been implicated in the systemic immunomodulatory effects of UV
exposure. In addition to influencing LCs locally at the site of irradiation, UV radiation of
the skin leads to functional alterations in distal bone marrow-derived DCs. Cultured
bone marrow cells from UV-irradiated BALB/c mice have been shown to produce
greater levels of IL-10 and prostaglandin E2 (PGE2), relative to bone marrow cells
isolated from non-irradiated controls [21]. When ex vivo bone marrow cell cultures are
stimulated with IL-4 and granulocyte macrophage colony stimulating factor (GM-CSF) ex
vivo, CD11c* cells are generated. In an adoptive transfer experiment, Ng et al. found
that the transfer of bone-marrow-derived CD11c* cells from UV-irradiated mice into
naive recipient mice mitigates CHS responses and confers long-lasting suppression of
memory responses to a contact allergen [21]. This mechanism of UV-induced systemic
immune suppression was found to be mediated by PGE2, as the effects were blocked by
pretreatment with indomethacin [21]. Additional studies have similarly suggested that
long-lasting immunosuppressive effects may be epigenetically imprinted in hematopoietic
stem cells [22-24].

CD11c* DCs in skin-draining lymph nodes play an important role in UV-mediated
suppression of CHS responses. This is thought to be due to their role in IL-12 production.
IL-12 has been shown to protect against UV-induced CHS suppression [25-27]. Augmenting
IL-12 secretion by CD11c* cells by draining lymph nodes with the Toll-like receptor 7
(TLR7)-agonist Imiquimod prevents UV-induced suppression of hapten sensitization and
CHS [28].

Locally, exposure to 2MED of 312 nm narrow-band UVB leads to a significant
increase in the number of CD11c* DCs in the dermis of individuals with Fitzpatrick
II-III skin [29]. More specifically, the CD11c" DCs seen 24 h following irradiation
include immunosuppressive CD11c"BDCA3* subsets that have been shown to exert
immunosuppressive effects through IL-10 and induction of regulatory T cells [30],
as well as immature, inflammatory CD11c*BDCA1~ BDCA3~ subsets that poorly
co-localize with dendritic cell lysosomal-associated membrane glycoprotein (DC-LAMP) on
immunofluorescence imaging, and express tumor necrosis factor (TNF)-« and TNF-related
apoptosis-inducing ligands (TRAILs) [29].

2.3. CD11b* Myeloid Cells

Amongst the inflammatory milieu seen in the skin following UV irradiation are
CD11b* myeloid cells [31]. CD11b*" myeloid cells can be distinguished from LCs of the
skin by the absence of surface CDla*. UV-induced CD36*CD11b*CD1la™ cells are robust
producers of IL-10 mRNA and protein [32]. Conversely, UV-exposed keratinocytes and
CD1la* LCs express little to no IL-10 mRNA [32]. Further studies show that a ligand of
CD11b, iC3b (a complement component C3), is deposited in UV-exposed skin, and is
localized in apposition to infiltrating CD11b* myeloid cells. Stimulating CD11b* cells
with iC3b significantly induces IL-10 mRNA and protein. In contrast, it suppresses IL-12



Cells 2025, 14, 308

50f13

mRNA and protein [33]. Mouse studies demonstrate that the depletion of CD11b* cells
prevents UV-induced immune suppression [34]. In contrast, the activation of CD11b*
cells by complement component C3 is required for UVB-induced CD11b"* cell migration
into the skin and immune suppression [35]. It is to be noted that cDC2 cells express
CD11b" [20]. However, it remains to be determined whether cDC2 cells play a role in
UV-induced immune suppression.

3. Mechanisms for UV-Induced Regulation of DC Activity

UV radiation suppresses the immune system by modulating DC function in two main
ways: it impairs their antigen-presenting ability, and it promotes tolerance by inducing
regulatory, immunosuppressive T cell populations. Together, these effects block immune
activation and enhance suppression, resulting in a net immunosuppressive outcome
(Figure 1).

Induction of Ag-specific
Suppressor T cells in
ﬁ Draining Lymph Node

IL-12

X

Apoptosis

<FasL/Fas>
Impaired Immune Activation
\ Tolerance

Immunosuppression

UV-Induced
Epidermal DC

IL-10
Preferential Antigen
Presentation to Th2
Thi

Th1 Anergy

Figure 1. Graphical summary of immunosuppressive actions of UV-induced dendritic cells and T
cell populations. Ag = antigen, CPDs = cyclobutene pyrimidine dimers, DC = dendritic cell, Th =T
helper cell, Tsup = suppressor T cell.

3.1. Inactivation of DCs

UV-induced DNA damage, particularly the generation of cyclobutane pyrimidine
dimers (CPDs), is partially responsible for the impairment of APC function in DCs. Studies
have demonstrated that treating UV-irradiated skin with liposomes containing DNA
excision repair enzymes, such as T4 endonuclease V, reduces the number of CPD-containing
DCs in the draining lymph nodes and restores APC function [36]. In vitro, repairing CPDs
using liposomes containing photolyase (a light-activated DNA repair enzyme) also restores
the APC function of DCs from UV-irradiated murine skin [37].

UV radiation also disrupts antigen presentation through the induction of DC
apoptosis. While controlled apoptosis is essential under normal conditions for maintaining
immune homeostasis and self-tolerance [38], UV radiation interferes with this balance. UV
radiation prevents the maturation of, and induces apoptotic cell death in, a specific
subpopulation of LCs characterized by low HLA-DR expression [14]. Gene knockout mice
deficient in pro-apoptotic BH3-interacting death domain protein (Bid) exhibited significant
resistance to UV-induced LC depletion, suppression of local CHS responses, and tolerance
to haptens. Notably, these mice also displayed reduced CPD accumulation in lymph nodes
following UV exposure, compared to wildtype control mice [39]. Additionally, co-culture
experiments have demonstrated that hapten-pulsed DCs underwent Fas/FasL-mediated
apoptosis when exposed to T cells from UV-irradiated mice. DCs from Lpr and gld
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mice, which lacked functional Fas and FasL genes, were resistant to apoptosis induced
by UV-induced T suppressor cells. Notably, interleukin-12 (IL-12) can rescue DCs from
Fas/FasL-mediated apoptosis, offering a potential therapeutic pathway [27]. Moreover,
apoptotic DCs express CD200 (OX-2), a target of p53, which attenuates proinflammatory
cytokine production in response to self-antigens in vitro. In vivo, CD200 is essential for
UVB-mediated tolerance to self-antigens, as its absence disrupts this immunosuppressive
pathway [40]. CD200R is expressed on myeloid-derived APCs and some T cells, facilitating
the immunoregulatory effects mediated by CD200/CD200R signaling [41,42].

3.2. Tolerogenic DCs

Tolerogenic DCs are specialized immunosuppressive APCs that promote immune
tolerance, or non-reactivity, to specific antigens. These effects are primarily mediated
through interactions with T lymphocytes and the release of anti-inflammatory cytokines. By
modulating T cell activity, tolerogenic DCs can induce T cell anergy, promote T cell
apoptosis, and facilitate the differentiation of T regulatory (Treg) cells [43].

The activity and function of tolerogenic DCs are not lineage-specific, but are
highly influenced by their surrounding microenvironment [43,44]. Notably, UV radiation,
particularly UVB, can convert LCs from immunologically active APCs into tolerogenic
ones [19]. UV-induced Treg cells are antigen-specific [45]. Treg cells in UV-irradiated skin
have been shown to release immunosuppressive IL-10 [46] and express lymph node-homing
receptors such as CD62L, while simultaneously lacking skin-homing molecules such as
E-selectin or P-selectin [47]. Similarly to naturally occurring, thymic Tregs, UV-induced
Tregs express CD25 following hapten sensitization [47]. UV-induced Treg cells also express
cytotoxic T-lymphocyte antigen-4 (CTLA-4), which is known to negatively regulate T
lymphocyte function [48]. Depleting CLTA-4" cells or blocking CTLA-4 signaling with a
monoclonal antibody blocks the transfer of UV-induced immune suppression in adoptive
transfer experiments [48,49].

3.3. DCs and the Development of T Lymphocyte Populations in the Context of UV-Induced
Immune Suppression

3.3.1. CD4" Treg Cells

The generation of Tregs following UV exposure involves the migration of LCs
exhibiting DNA damage into draining lymph nodes [50]. In experiments in which
UV-mediated DNA damage was mitigated by IL-12, the generation of UV-induced Tregs
was prevented [25,26,51,52]. In vitro experiments examining DC-Treg interactions in
isolation from the influence of surrounding cell types have confirmed that the repair
of CPDs in UV-irradiated DCs prevents the induction of suppressor T cells [37]. Unlike the
UV-induced suppression of T cells, the induction of Tregs specifically requires the presence
of damaged, yet viable, UV-irradiated LCs in the lymph nodes. This distinction is further
supported by experiments demonstrating that killing LCs (as opposed to damaging them)
with the steroid mometasone inhibits sensitization to contact allergens, but does not lead to
Treg production [19].

3.3.2. CD4" T Helper Cells

Under standard biologic conditions, DCs interact with naive CD4* T cells to promote
their differentiation into either type 1 (Thl), type 2 (Th2), or type 17 (Th17) helper
cells [53,54]. Th1 cells are generally considered to be inflammatory, as they secrete IFN-y and
aid B lymphocytes in the production of complement-fixing antibodies. The primary effector
cytokine of Th2 cells is IL-4, and these cells are associated with allergic, IgE-mediated
reactions. Anti-inflammatory IL-10 is also a Th2-type cytokine [55]. UV exposure stimulates
the production of Th2 cytokines in the skin-draining lymph nodes more so than Thl
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cytokines [56,57]. LCs develop a skewed propensity for presenting to Th2 cells over
Th1 cells following UV irradiation [58]. In the setting of Borrelia burgdorferi infection,
UV irradiation results in diminished levels IgG2a and IgG2b, which typically require
functional Th1 activity, and in increased levels of IgG1 antibody, which is supported by
Th2 function [59]. Additionally, antigen presentation by UV-irradiated DCs leads to Th1
anergy and tolerance to restimulation with normal antigen-bearing DCs [60]. Th17 cells
primarily produce IL-17, which has a wide spectrum of effects on innate and acquired
immunity [61,62]. IL-17 is an important inflammatory cytokine for CHS [63]. A deficiency
in IL-17-mediated immune responses will suppress CHS [64,65]. UV radiation increases
IL-17 production in the skin [66]. Evidence indicates that the knockout of the IL-17 receptor
A gene diminishes UVB-induced immune suppression [67]. The mechanisms for such
processes are attributed to reduced UVB-induced CD11b* myeloid cells and Treg cells in
the draining lymph nodes. Further studies are required to elucidate these mechanisms.

4, The Role of DCs in UV-Induced Skin Diseases

The dysregulation of immune responses due to UV radiation has profound implications
for various skin diseases, three of which will be highlighted here.

4.1. Cutaneous Lupus Erythematous (CLE)

CLE is a subset of lupus erythematous that is characterized by its effects on the
skin. CLE is classified into three subtypes: acute, subacute, and chronic. However,
clinically, considerable overlap exists amongst these subtypes, often making differentiation
challenging [68,69]. CLE may develop as a standalone condition or as a skin-related
manifestation of systemic lupus erythematosus [70,71]. UV radiation plays a multifaceted
and pleiotropic role in CLE pathogenesis, involving induction of keratinocyte damage,
apoptosis, and necrosis. These processes are mechanistically driven by the generation of
reactive oxygen species, DNA modifications, and autoantigen expression, which ultimately
activate immune pathways—particularly the type I interferon (IFN) system, via cyclic
GMP-AMP synthase-stimulator of IFN genes (cGAS-STING) and IFNk—leading to immune
cell recruitment, autoreactivity, and disease flares (reviewed by Patel et al.) [71].

With specific regard to UV-induced DCs, UV exposure induces the accumulation of
plasmacytoid DCs (pDCs) via TLR signaling [72,73]. These pDCs are major producers
of type I IFNs, which are key mediators in lupus erythematous [72,73]. The number of
pDCs in CLE lesions correlates with the degree of immune cell infiltration, highlighting
their contribution to disease progression [74]. pDCs in CLE are commonly seen in close
association with mature dermal CD208* DCs or with cytotoxic CD8* T cells along areas of
damage in the dermal—epithelial junction [74]. Mechanistically, pDCs endocytose immune
complexes, and the activation of TLR7 and TLR9 leads to type I IFN production [75-77].
In vitro experiments suggest that this process is mediated by the Fc receptor CD32 [78,79].
The humanized IgG1 monoclonal antibody BIIB059 targets blood DC antigen 2 (BDCA2) on
the surface of pDCs, effectively downregulating IFN production [80]. In a phase 2 clinical
trial, BIIB059 demonstrated significant improvements in clinical endpoints for CLE [81-83].
Other mechanisms, such as the activation of macrophages and cDCs by keratinocyte debris
or cell death, have also been proposed as contributors to IFN production [84], further
underscoring the complexity of CLE pathophysiology and the interplay between UV
exposure and immune activation.

4.2. Polymorphic Light Eruption (PLE)

PLE is a common photodermatitis, characterized by pruritic skin lesions, most often
papulovesicular in nature, that develop hours to days after sunlight exposure [85]. The
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prevalence of PLE has been shown to correlate with geographic latitude, with higher rates
observed in regions farther from the equator [86]. The condition typically manifests within
the first three decades of life, and is more commonly reported in females [87,88]. While the
lesions typically arise early in the sunny season, repeated UV exposure often leads to a
photohardening effect, reducing the likelihood of recurrence as summer progresses. This
phenomenon can also be induced through preventive phototherapy [89].

The pathophysiology of PLE remains incompletely understood, but it is believed that
patients exhibit resistance to UV-induced immunosuppression, fostering a microenvironment
that is conducive to aberrant immune responses to photoinduced stimuli. Specifically, LCs
in patients with PLE demonstrate impaired UV-induced mobilization, a defect associated
with diminished neutrophil infiltration and reduced expression of key cytokines, such as
TNF-«, IL-4, and IL-10, following UV exposure [90-92]. This resistance to tolerogenic
signaling likely disrupts immune homeostasis, contributing to the pathological skin
responses that are characteristic of PLE.

4.3. Skin Cancer

The role of UV-induced DCs, particularly LCs, in skin cancer pathogenesis is both
complex and critical [13]. LCs, under normal circumstances, serve as APCs. UV radiation
alters this dynamic by inactivating or modifying LCs, impairing their ability to mount an
effective immune response, as discussed above. As posited by Toews et al., if LCs primarily
function to present antigens and prevent immunologic tolerance to antigens, their chronic
inactivation by UV radiation permits neoantigens from malignantly transformed cells to be
perceived as tolerogens [8]. This shift from immune surveillance to tolerance facilitates the
unchecked growth of malignant cells, setting the stage for skin cancer development.

Experimental evidence supports this pivotal role of UV-induced changes in LCs
in skin cancer pathogenesis. Studies by Kripke and colleagues have demonstrated that
UV-irradiated mice fail to reject highly antigenic UV-induced tumors, which would
otherwise be eliminated by normal syngeneic recipients [93,94]. This inability to reject
tumors correlates with a UV-induced decrease in epidermal LCs, which in turn diminishes
antigen-presenting activity in skin-draining lymph nodes. The reduction in DCs within
the skin disrupts the immune response, and highlights the importance of LCs in initiating
tumor-specific immunity [95].

Moreover, the interaction between LCs and UV-induced carcinogenesis is nuanced.
Despite their protective role under normal conditions, LCs may paradoxically augment
UV-induced cutaneous carcinogenesis. Studies indicate that epidermal tissues with intact
LC networks develop UV-induced tumors more readily than epidermal tissues with
scant LCs, independently of CPD formation following UV exposure [96]. This paradox
may arise from LCs promoting immune tolerance or fostering an environment that is
conducive to tumor growth. Mutant p53 islands, often associated with proliferating mutant
keratinocytes, are frequently found in close proximity to LCs, further implicating these
cells in tumor progression. Therefore, while LCs play a critical role in immune surveillance,
their UV-induced alterations highlight their dual role in the pathogenesis of skin cancer.

5. Conclusions

To conclude, UV radiation profoundly impacts DC function, inducing a tolerogenic
state that suppresses immune activation and promotes immune tolerance. This immuno-
modulatory effect is mediated by complex cellular and molecular pathways, including
alterations in LCs, cDCs, and CD11b* myeloid cells. UV exposure impairs antigen
presentation, induces apoptosis, and drives the generation of regulatory T cells, culminating
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in the promotion of suppressive immune microenvironments and reactions at both a
cutaneous and systemic level.

Insights from studying UV-induced tolerogenic DCs deepen our understanding of
the mechanisms underlying immunosuppression, and highlight their clinical relevance in
the pathogenesis of autoimmune skin disorders and skin cancers. Significant progress has
been made in identifying these tolerogenic DCs and exploring their potential therapeutic
implications.

6. Perspective

Our knowledge of the underlying mechanisms of UV-induced immunosuppression
remains incomplete. Future research leveraging advanced molecular techniques and
single-cell analyses will be crucial for refining our understanding of UV-induced immuno-
suppression. These approaches will enable the detailed characterization of specific
tolerogenic DC subsets, and elucidate the precise pathways by which UV radiation
influences DC function and by which UV-induced tolerogenic DCs induce Treg cells and
immune tolerance. Furthermore, such advancements will enable innovative strategies
in mitigating the adverse effects of UV radiation and harnessing tolerogenic DCs for
immunomodulation in therapeutic contexts.

Author Contributions: Conceptualization, H.X., N.Y. and G.G.-R.; investigation, H.X., N.Y. and
G.G.-R,; writing—original draft preparation, G.G.-R.; writing—review and editing, H.X., N.Y. and
G.G.-R. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by R01 AI157398-01 (H.X. and N.Y.) from the National Institute
of Allergy and Infectious Diseases, United States.

Data Availability Statement: No new data were created or analyzed in this study.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:
APC Antigen-presenting cell

BDCA Blood DC antigen

Bid BH3-interacting death domain protein
cDC Conventional dendritic cell

CPD Cyclobutene pyrimidine dimer
CHS Contact hypersensitivity

CLE Cutaneous lupus erythematous
DC Dendritic cell

DNFB  2,4-dinitrofluorobenzene

IFN Interferon

IL Interleukin

LC Langerhans cell

MHC  Major histocompatibility complex
pDC Plasmacytoid dendritic cell

Thi T helper 1

Th2 T helper 2

Th17 T helper 17

Treg Regulatory T cell

uv Ultraviolet

UVB Ultraviolet B
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