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Abstract: Nutritional stress disturbs the cellular redox-status, which is characterized by the increased
generation of reactive oxygen species (ROS). The NRF2-NQO1 axis represents a protective mechanism
against ROS. Its strength is cell type-specific. FaDu, Cal 27 and Detroit 562 cells differ with respect
to basal NQO1 activity. These cells were grown for 48 hours in nutritional conditions (NC): (a)
Low glucose–NC2, (b) no glucose, no glutamine–NC3, (c) no glucose with glutamine–NC4. After
determining the viability, proliferation and ROS generation, NC2 and NC3 were chosen for further
exploration. These conditions were also applied to IMR-90 fibroblasts. The transcripts/transcript
variants of NRF2 and NQO1 were quantified and transcript variants were characterized. The proteins
(NRF2, NQO1 and TP53) were analyzed by a western blot in both cellular fractions. Under NC2, the
NRF2-NQO1 axis did not appear activated in the cancer cell lines. Under NC3, the NRF2-NQO1axis
appeared slightly activated in Detroit 562. There are opposite trends with respect to TP53 nuclear
signal when comparing Cal 27 and Detroit 562 to FaDu, under NC2 and NC3. The strong activation
of the NRF2-NQO1 axis in IMR-90 resulted in an increased expression of catalytically deficient
NQO1, due to NQO1*2/*2 polymorphism (rs1800566). The presented results call for a comprehensive
exploration of the stress response in complex biological systems.

Keywords: glucose deprivation; glutamine deprivation; viability; proliferation; ROS; NRF2-NQO1
axis; IMR-90; NQO1 transcript variants; rs1800566; TP53 mutation

1. Introduction

To date, the roles of glucose and glutamine in the biology of transformed cells both in vitro
and in vivo, have been evaluated in various cellular systems, most often as separate entities. It is
well-established that cancer cells need glucose as a source of carbon. They also need glutamine.
Not only as an alternative substrate for the Krebs cycle and ATP production, but also as a source
of carbon and nitrogen, glutamine is needed for various biosynthetic reactions and glutathione
production to support antioxidant defense [1].Under normoglycemic conditions, the generation of the
fundamental metabolite nicotinamide adenine dinucleotide phosphate (NADPH) is secured via the
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glucose catabolism pathway—the pentose phosphate pathway (PPP). Glucose starvation results in
decreased ATP production and could induce oxidative stress by downregulating NADPH production
by PPP. Under these conditions, metabolic reprogramming and redox regulation are closely related
to the activation of 5′ AMP-activated protein kinase (AMPK) pathway. It is a protective mechanism
aimed at prolonging cell survival by preventing excessive NADPH consumption in fatty acid synthesis
and increasing NADPH generation in the process of fatty acid oxidation [2]. When the protective
capacity of the AMPK pathway is exceeded, the regeneration rate of glutathione decreases, and there is
an increase in ROS, an indicator of the disbalanced cellular redox status. It is well-known that ROS
are involved in the nutrient deprivation-induced Warburg effect [3]. Glutamine has also been shown
as a source of NADPH. In pancreatic cancer cells with a K-RAS-regulated metabolic pathway, the
glutamine-derived malate can be converted to pyruvate by malic enzyme. This reaction is associated
with NADPH generation [4]. It has also been shown recently that a lack of glutamine may promote
rapid and transient activation of AMPK [5].

During glucose deprivation, activated AMPK phosphorylates the wild type (WT) TP53 at serine
15, leading to G1/S cell cycle arrest and cellular senescence [6]. WT TP53 has an important role in
cellular metabolism. It inhibits the monomeric form of the enzyme glucose-6-phosphate dehydrogenase
(G6PD), which is present in the cytoplasm. This event results in one more instance of NADPH depletion.
The effect seems to be characteristic of WT TP53, but not its mutant forms. It was proposed as a main
function of cytoplasmic WT TP53 in resting cells [7].

When deprived of oxygen and glucose, the cells activate the AMPK by NAD(P)H:quinone
oxidoreductase 1 (NQO1) [8]. This enzyme was purified and characterized for the first time in 1988 [9].
It was originally considered only as a flavin adenine dinucleotide (FAD)—dependent, two-electron
reductase. There are numerous proofs of its effectiveness, associated with reducing quinones to
hydroquinones through a two-electron transfer. The catalytically active form of the enzyme is a
homodimeric protein. It has two identical active sites located at the interface between monomers
and with one FAD bound per monomer. Each of these two sites is shared by both reduced pyridine
nucleotide cofactors, NADH and NADPH [10]. The model of the NQO1 mode of action (ping-pong-bi-bi
kinetic mechanism), proposed in 1974 [11], is still considered valid. The catalytic cycle is initiated by
the binding of reduced pyridine nucleotide in the active site, followed by a hydride transfer to FAD.
It leads to a conformational change expelling the oxidized pyridine nucleotide, nicotinamide adenine
dinucleotide (NAD+), and creating an environment for quinone binding. The generation of NAD+

makes a strong, functional, yet indirect link between NQO1 and two very important cellular enzymes
relevant for metabolism and metabolic reprogramming in cancer. These are NAD+ dependent sirtuin 1
(SIRT1) and PARP-1, a major NAD+-consuming enzyme [12].

The enzymatic activity of NQO1 can be detected in the cytosol and in the nucleus [13]. It has an
important role in eliminating free radicals [14] which increase during nutritional stress. According
to the most recent data, NQO1 is a central unit of the redox-dependent switch. It depends on NQO1
conformational change, in which NADH has strong protective role against tryptic digestion and loss of
the C-terminal NQO1 domain. To a lesser extent, a protective role was also obtained with NADPH [15].

Altered pyridine nucleotide ratios could induce a switch in protein conformation. This results
in binding of NQO1 to a different set of proteins and RNA under oxidative conditions [16]. Thus,
NQO1 action influences the activity of other proteins indirectly, through generating NAD+ (SIRT1,
PARP-1) [17] and through direct binding (hypoxia-inducible factor, alpha subunit, HIF1-α, TP53) [18,19].

NQO1 stabilizes both wild-type (WT) [18] and mutant-types (MT) TP53 protein [20] by protecting
them from the ubiquitin-independent 20S proteasomal degradation. This stabilizing effect is most
prominent under oxidative stress. However, the presence of the single nucleotide variation (SNV)
rs1800566 that occurs in NQO1 exon 6, strongly decreases the enzymatic activity of NQO1 and
abolishes TP53 stability mediated by NQO1 [21,22]. This polymorphism, also known as NQO1*2
(heterozygote)/NQO1*2/*2 (homozygote), was shown to be an important factor in a poor clinical
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response to quinone (mitomycin C, β-lapachone)-based chemotherapy. This is due to a lack of drug
bioactivation [23,24].

TP53, which is traditionally considered a tumor suppressor, is currently an emerging research
topic relating to nutritional stress [25]. Its connection to NQO1 may be a critical factor for cellular
adaptive stress response, especially during nutrient deprivation. The most recent data have shown
that the withdrawal of glutamine activates TP53 [26]. In a glutamine deprived cell, TP53 binds to the
promoter of the solute-like carrier family 7, member 3 (SLC7A3). It promotes cancer cell adaptation to
glutamine deprivation by upregulating SLC7A3to increase arginine uptake [27].

The state of oxidative stress is of utmost importance for activating NQO1 transcription, which is
mediated by NFE2L2 (Nuclear Factor, Erythroid 2 Like 2: NRF2). When there is an excess of ROS, NRF2
dissociates from its cytoplasmic partner Kelch-Like ECH-Associated Protein 1 (KEAP-1). It enters
the nucleus and binds to the cis-acting elements in an array of NRF2 target genes called antioxidant
response elements (AREs) [28]. These are present in the NQO1 promoter [29]. Consequentially, this
event leads to an increased transcriptional activity of the NQO1 gene. This phenomenon has been
shown in various models as a part of a strong antioxidative cellular response.

One very interesting molecular-genetic aspect of NQO1 mRNA is associated with the deposit of
four NQO1 transcript variants (TVs) in the GeneBank. The gene itself contains six exons (Figure 1). All
of them are part of the longest transcript (TV1; NM_000903.3, N = 2521 nt). Another three transcripts are
characterized, as follows: TV2: NM_001025433.2; exon 5 excluded (N = 2419 nt); TV3: NM_001025434.2,
exon 4 excluded (N = 2407 nt); TV4: NM_001286137.2, exons 4 and 5 excluded (N = 2305 nt).
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Figure 1. Structure of the NQO1 gene, NG_011504.2.

In 1995, Gasdaska et al. described the NQO1 transcript lacking exon 4 (TV3) in cancer cell lines SW
480 and HT-29. The existence of the corresponding protein was not confirmed [30]. Seven years later, it
was proposed that the polymorphism present at the end of exon 4, rs1131341 (Arg137Trp, also known
as NQO1*3*), has a strong influence on NQO1 splicing. As a consequence, the ratio TV1/TV3 (shown
by end-point PCR to be around 9.0 in NQO1*1/*1, NQO1*2/*1, NQO1*2/2*), significantly decreases
(TV1/TV3 = 2) [31]. The ratio of TVs may vary depending on stressful conditions [30]. This was shown
only once, in the mononuclear cells obtained from patients before and at various times following
treatment with mitomycin [32]. According to SwissProt, there is only one experimentally verified
NQO1 protein variant which is coded by NQO1 TV1. It consists of 274 amino acids (30.868 kDa).

As recently shown in a yeast model, introns negatively regulate growth in a rich medium. They
are clearly required for maintaining cellular viability during the deprivation of nutrients (dextrose and
phosphates) [33]. In 2007, Pleiss et al. showed that two different stress-inducers (ethanol exposure
and amino acids deprivation) induce unique splicing profiles. This suggests that in yeast at least two
independent pathways connect the spliceosome with the cellular environment [34].

Alternative splicing was shown to take place during nutrient depletion in an organoid model
system derived from murine intestinal epithelial cells. This included exon skipping events and events
involving full intron retention (IR-S; intron retention simple) and complex intron retention (IR-C; intron
retention complex) [35].

Based on these facts, we wanted to explore selected cellular parameters (cellular viability and
proliferation rate, ROS generation) and molecular events included in the axis NRF2-NQO1/TP53,
under two different forms of nutritional stress. The transcripts (quantitatively - NRF2, NQO1 and
qualitatively - NQO1 splice variants) and proteins (NRF2, NQO1, TP53) in cytoplasmic and nuclear
cellular fractions were validated. Three cell lines originating from the head and neck squamous cell
carcinomas (HNSSC) were used: FaDu; Cal 27; and Detroit 562. These cells significantly differ with
respect to basal NQO1 activity (FaDu > Detroit 562 > Cal 27) [36]. IMR-90 fibroblasts, which are
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considered as NQO1 non-expressing cell lines [37], were used as representative of an untransformed
cell line.

2. Materials and Methods

2.1. Cell Lines and Cell Culture Conditions

The cells originating from metastatic pharyngeal cancer (pleural effusion-Detroit 562) and human
fetal lung fibroblasts (IMR-90) were purchased from Sigma-Aldrich (St. Louis, MO, USA). The human
tongue squamous carcinoma cells (Cal 27) and human hypopharyngeal squamous carcinoma cells
(FaDu) were purchased from the American Type Culture Collection (ATCC, LGC Standards GmbH,
Wesel, Germany). The cells were cultured in T75 cell culture flasks (Sarstedt AG&Co.KG, Nümbrecht,
Germany), in Dulbecco’s Modified Eagle’s Medium (DMEM, D5796; Sigma-Aldrich, St. Louis, MO,
USA), supplemented with a 10% fetal bovine serum (FBS, Sigma-Aldrich, St. Louis, MO, USA), without
antibiotics, at 37 ◦C in a humidified atmosphere and in the presence of 5% CO2. Prior to the experiments,
the cells were harvested with 0.25% (w/v) Trypsin-0.53 mM EDTA (Ethylenediaminetetraacetic acid)
solution and counted with the trypan blue exclusion assay in Bürker-Türk hemocytometer (Brand,
Wertheim, Germany). For the experiments performed, the cells were cultured in DMEM, under the
following four nutritional conditions (NCs) with respect to glucose and glutamine: NC1-high glucose
(4.5 g/L) with l-glutamine (0.584 g/L) (D5796; Sigma-Aldrich, St. Louis, MO, USA); NC2-low glucose
(1 g/L) with l-glutamine (0.584 g/L) (D6046, Sigma-Aldrich, St. Louis, MO, USA); NC3-no glucose
and no glutamine (A14430, Gibco, Life Technologies Corporation, Grand Island, NY, USA); NC4-no
glucose (A14430), but with 0.584 g/L of l-glutamine (Sigma Aldrich, St. Louis, MO, USA).

2.2. Cell Viability Assay

Cellular viability was measured using EZ4U assay (Biomedica, Vienna, Austria), which assesses
cellular viability through reducing tetrazolium salts to colored formazan derivatives in the mitochondria
of living cells. The cells were seeded in 96-well plates (TPP, Trasadingen, Switzerland) at a density of
1×104 cells per well and cultivated in 200 µL of previously described media formulations (NC1-NC4),
supplemented with 10% FBS. After a cultivation period of 48 hours, 20 µL of the dye substrate
(tetrazolium salts) was added to each well. After a 2 h incubation, formazan derivatives were quantified
by measuring the absorbance using the microplate reader Multiskan EX (Thermo Electron Corporation,
Shanghai, China) at 450 nm, with 620 nm as a reference wavelength. Cellular viability under tested
conditions was expressed as a percentage of the viability of the control cells (cells grown in a high
glucose + glutamine, NC1, medium).

2.3. Cell Proliferation Assay

The rate of cellular proliferation was estimated through incorporating pyrimidine analogue
BrdU (5-bromo-2′-deoxyuridine), in place of thymidine, into the DNA of proliferating cells,
using the Cell Proliferation ELISA, BrdU (colorimetric) Kit (Roche Applied Science, Mannheim,
Germany). The antibody conjugated anti-BrdU-peroxidase binds incorporated BrdU. The complex
BrdU/anti-BrdU-peroxidase was detected by the reaction between peroxidase conjugated to the BrdU
antibody and the substrate (3,3',5,5'-tetramethylbenzidine). After reaching a satisfactory color intensity
(after incubating between 5 and 30 min), the reaction was stopped with 1 M H2SO4 solution.

The cells were seeded in 96-well plates (TPP, Trasadingen, Switzerland) at a density of 1×104 cells
per well and were maintained in 200 µL of previously described media formulations (NC1-NC4),
supplemented by 10% FBS. After 48 h of incubation, the assay was performed according to the
manufacturer's instructions. The reaction product (3,3',5,5'-tetramethyl-benzidine diimine) was
quantified by measuring absorbance using a microplate reader Multiskan EX (Thermo Electron
Corporation, Shanghai, China) set at 450 nm (reference wavelength: 620 nm). Cell proliferation
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was expressed as a percentage of the cells grown under condition NC1 (high glucose + l-glutamine
medium).

2.4. ROS Measurement

The intracellular levels of reactive oxygen species (ROS) were detected by DCFH-DA
(2′,7′-Dichlorofluorescin Diacetate; Sigma-Aldrich, St. Louis, MO, USA). The cells were seeded
in white 96-well plates (Thermo Fisher Scientific, Nunc A/S, Roskilde, Denmark) at a density of 1×104

cells per well and maintained in 200 µL of the previously described media formulations (NC1-NC4),
supplemented by 10% FBS. After growing for 48 hours, the cells were incubated with 20 µL of 100 µM
DCFH-DA, which was added to the culture media. After 45 min of incubation, the medium containing
DCFH-DA was replaced with 200 µL of fresh medium. The fluorescence intensity was measured
immediately (zero point) and after one hour, on a plate reader Infinite 200 PRO (Tecan Group Ltd.,
Männedorf, Switzerland). The excitation/emission wavelengths for DCFH-DA were set at 500/529 nm.
The values of the emitted fluorescence were expressed as arbitrary units, which represent the difference
between the two points of measurement (one hour and zero point). Additionally, the values were
corrected with respect to the cell numbers, which varied in relation to the treatment applied.

2.5. Nucleic Acids Extraction

The cells were cultured for 48 h at a density of 1×106 in T25 flasks (Sarstedt AG&Co.KG, Nümbrecht,
Germany), in 5 mL of the previously described media formulations (NC1-NC3), supplemented by
10% FBS.

The total RNA was extracted from the cells cultivated and treated in 25 cm2 flasks (Sarstedt
AG&Co.KG, Nümbrecht, Germany). The medium was removed and extraction was performed by
TRIzol (Invitrogen, Carlsbad, CA, USA), according to the manufacturer’s instructions. The integrity of
isolated RNA was determined by electrophoresis, on 1% agarose gel stained with ethidium bromide
(EtdBr) (Sigma-Aldrich, St. Louis, MO, USA). As there were no issues relating to the integrity of the
extracted RNA, all samples were further purified with gDNA Removal Kit (Jena Bioscience, Jena,
Germany), according to the manufacturer’s instructions. The concentration and purity of extracted
RNA was determined spectrophotometrically (BioSpec-nano, Shimadzu Biotech, Japan) by measuring
the absorbance at the following wavelengths: 230, 260 and 280 nm. The samples were stored at −80 ◦C.

The genomic DNA was extracted by phenol-chloroform extraction, after an overnight incubation
with Proteinase K (QIagen, Holden, Germany), as previously described [38]. After successful
precipitation, the samples of extracted DNA were re-suspended in TE buffer (10 mM Tris, 1 mM EDTA,
pH 7.4). The concentration and quality of the extracted DNA was determined spectrophotometrically
and electrophoretically, in 1% gel agarose stained with EtdBr. The samples were stored at +4 ◦C.

2.6. Construction of Primers

For all primers used in this research, with the exception of GAPDH1/GAPDH2 which are commonly
used, the modeling through combining the programs Primer-BLAST and Primer3Plus were performed.
Table 1 shows the primer sequences, their exact position on the RefSeq and the expected amplicon sizes.

The composition of the nucleotides of the primers used allowed the authors to perform the
polymerase chain reaction under almost identical conditions. The primers for gDNA were selected to
anneal to the template at 58 ◦C, while the primers for cDNA annealed to the template at 59 ◦C.

The three primers for GAPDH were constructed in a way which allowed combining the primer
GAPDH2 with primers GAPDH1—for determining cDNA quality and GAPDH3—for a rigorous
check of the potential gDNA contamination. These strict precautionary measures were undertaken
because the TaqMan probe used for quantifying NRF2 may bind to the gDNA, at least according a
statement provided.
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The selection of primers which would allow for the amplification of all four NQO1 TVs in one
reaction was based on the primary structure of the NQO1 TV1 mRNA (Figure 1). The primers were
complementary to the stretch of nucleotides positioned in the 3′ region of the exon 2 (NQO1F) and 5′

region of the exon 6 (NQO1R), respectively. All primers which allowed for examining the exon/intron
boundaries sequences were used only on genomic DNA.

Table 1. The positions and composition of primers used for analyses of NQO1.

Primers Primer Sequences Ref. Seq. Primer Position Amplicon Size

GAPDH primers
GAPDH1 5′AACGGATTTGGTCGTATTGGGC3′

NM_002046.7
101–122 600 bps

GAPDH2 5′AGGGATGATGTTCTGGAGAGCC3′ 679–700
GAPDH2 5′AGGGATGATGTTCTGGAGAGCC3′

NG_007073.2
3145–3166 644 bps

GAPDH3 5′AAGCTGACTCAGCCCGCAAAGG3′ 2523–2545
NQO1 primers

cDNA
NQO1 F 5′GTCGGACCTCTATGCCATGA3′

NM_000903.3

238–257 TV1—685 bps
TV2—583 bps
TV3—571 bps

NQO1 R 5′GTCAGTTGGGATGGACTTGC3′ 905–922 TV4—469 bps
NQO1389460 F 5′CAGCTCACCGAGAGCCTAGT3′ 3756
NQO1389460 R 5′CATGGCATAGAGGTCCGACT3′ 237–257 221 bps

Genomic DNA
NQO1 g1F 5′CACACACACCCCTACAATCCCC3′ (−246)–(−225) 509 bps
NQO1 g1R 5′CCAGGTCCCTAATCTCTTCCC3′ 243263
NQO1 g2F 5′ACATTTCTGGCTACAGGAGATGGA3′ 78827905 704 bps
NQO1 g3 5′GTCAGTTGGGATGGACTTGC3′ 8573–8594

NQO1 g4F 5′CAGCTCACCGAGAGCCTAGT3′ 11299–11318 361 bps
NQO1 g4R 5′GAAATCCATGTAATACTGCACCT3′ NG_011504.2 11641–11659
NQO1 g5F 5′AGTTGGCTGACCAAGGACAA3′ 13285–13304 591 bps
NQO1 g5R 5′CCCTGCATCAGGACAGACC3′ 13855–13875
NQO1 g6F 5′TAGCTCAGGGGAGCCAAAGT3′ 15104–15124 693 bps
NQO1 g6R 5′TGAATTCCCCTGAAGGTTCGT3′ 1577715796
NQO1 g1F 5′TGGTAACGGCTAGGTAGAGGG3′ (−246)–(−225) 509 bps
NQO1 g1R 5′AGCCCAGTCGGATTTTGGTT3′ 243–263

2.7. Reverse Transcription, RT – PCR, and PCR

The reverse transcription was performed with a High-Capacity cDNA Reverse Transcription Kit
(Thermo Fisher Scientific, Waltham, MA, USA), with anchored Oligo(dT)23 primers (Sigma-Aldrich,
St. Louis, MO, USA) and 1 µg of total RNA in a 20 µL volume, according to the manufacturer’s
instructions. The reaction conditions were: 25 ◦C/10 min; 37 ◦C/120 min; 85 ◦C/5 min; 4 ◦C/indefinite.
After finalization of the reverse transcription, 80 µL of sterile, deionized water was added to the tubes
to achieve a total volume of 100 µL of cDNA, which was used for subsequent reactions.

The efficacy of reverse transcription was assessed with the end-point polymerase chain reaction
(PCR) using the primer pair GAPDH 1/GAPDH 2 and 1 µL of diluted cDNA. This template volume
was used as a standard in all end-point PCR reactions. For discovering the potentially present traces of
contaminating DNA, the primer pair GAPDH2/GAPDH3 was used, as the sequence of the GAPDH3
primer is complementary to the nucleotides in intron 5. The polymerase chain reaction was carried
out in GeneAmp PCR System 2400 (Applied Biosystems, Foster City, CA, USA). The reaction mixture
(12.5 µL) contained AmpliTaq 360 Gold Master Mix and GC Enhancer (Thermo Fisher Scientific,
Waltham, MA, USA), home-made nuclease free-water and primers (final concentration: 400 nM).

The genomic DNA was amplified with the same sets of chemicals and in the same volume, with
200 ng of gDNA. The reaction conditions were: Predenaturation 95 ◦C/5 min, followed by 35 cycles:
9 ◦C/30 s; 58 ◦C and 59 ◦C for gDNA and cDNA, respectively/30 s, 72 ◦C/30 s. The final elongation was
at 72 ◦C, for 7 min.
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2.8. Densitometry, Purification of PCR Products from Agarose Gel and Sequencing

The PCR products were separated by electrophoresis in 2% agarose gel and photographed for
future densitometric analysis, which was performed with ImageJ [39]. Bands of interest were cut out
of the gel and purified using a GenElute Gel Extraction Kit (Sigma-Aldrich, St. Louis, MO, USA),
according to the manufacturer’s instructions. After being eluted from the column, 10 µL of eluate was
loaded in 2% agarose gel in order to determine the purity and amount of eluate that was going to
be used in the sequencing reaction. Only the amplicon corresponding to TV4 needed to be purified,
re-amplified one more time with NQO1F/NQO1R and purified again. A sufficient amount of the
template was obtained for the sequencing reaction only after this additional procedure.

The sequencing reaction contained 12 µL mixture of the purified PCR product (approximately
50 ng per 100 bps), nuclease-free water and 1 µL of the forward and reverse primer used in PCR,
respectively (primer concentration 3.2 pmol/µL), for a total volume of 13 µL. The samples were
sequenced at the DNA Sequencing Core Facility of the Rudjer Boskovic Institute.

2.9. Real-Time RT-PCR and Rationale for Specific TaqMan’s Probe Selection

For quantification of NQO1 and NRF2, TaqMan chemistry was used. The reactions were performed
in a 7300 Real-Time PCR System (Applied Biosystems, Foster City, CA, USA). We used always 1.5 µL
of cDNA template, 10 µL of TaqMan Fast Advanced Master Mix (Thermo Fisher Scientific, Waltham,
MA, USA), 1 µL of the probe and 7.5 µL of sterile, deionized water. The reactions were performed in
triplicate for each template and for each probe and in at least three biological replicates, which we tried
to associate with three consecutive passages. Microamp 96-well rxn plates (Thermo Fisher Scientific,
Waltham, MA, USA) were used, and amplification was performed under the following conditions:
Incubation 50 ◦C/2 min + 95 ◦C/10 min, followed by 40 cycles; 95 ◦C/15 s, 60 ◦C/60 s. The following
probes were used for house-keepers: GAPDH—Hs99999905_m1 (as GAPDH was used in the end-point
PCR reactions); TBP—Hs00920495_m1 (as the TBP was used in the WBs); HPRT1—Hs02800695_m1 (as
it was shown to be relatively stable in some published studies) [40].

For relative quantification, delta-delta Ct 2–∆∆Ct developed by Applied Biosystems was used,
which presumes identical amplification efficiencies of the target and reference gene and the Pfaffl

method [41], which served as a correctional factor in subsequent calculations.

2.10. Protein Extraction and Western Blot Analyses

The cells were cultured for 48 hours at a density of 1×106 in T25 flasks (Sarstedt AG&Co.KG,
Nümbrecht, Germany), in 5 mL of the previously described media formulations (NC1-NC3),
supplemented by 10% FBS. The proteins were extracted with NE-PER nuclear and cytoplasmic extraction
reagents (Thermo Scientific -Pierce Biotechnology, Rockford, IL, USA), supplemented by the protease
inhibitor (Complete Mini Protease Inhibitor Cocktail Tablets; Roche Applied Science, Mannheim,
Germany). The protein amount was estimated using the Bradford method [42]. The absorbance
was measured at 595 nm using the microplate reader Multiskan EX (Thermo Electron Corporation,
Shanghai, China). The protein samples were mixed with Laemmli buffer and boiled for 5 min at 95 ◦C.
The equal amounts of protein (10 µg) were loaded on the gel (9% resolving and 5% stacking), separated
electrophoretically and transferred to nitrocellulose membranes (Roti®-NC, Carl Roth, Karlsruhe,
Germany). The transfer efficacy was evaluated by staining the membranes with Ponceau S solution
(Sigma Aldrich, St. Louis, MO, USA). The stained membranes were scanned. After incubating the
membranes with 5% nonfat milk (Cell Signaling Technology, Danvers, MA, USA) in Tris-buffered
saline (TBS; 50 mM Tris-Cl, 150 mM NaCl, pH 7.6) containing 0.1% Tween-20 for 1 h, the membranes
were probed overnight with the following primary antibodies: (all rabbit monoclonal, Cell Signaling
Technology, Danvers, MA, USA): anti-NQO1 (1:1000; CST: #62262); anti-NRF2 (1:1000; CST:#12721);
anti-TP53 (1:1000; CST:#2527); anti-TBP (1:1000; CST:#44059); anti-β-actin (1:1000, CST:#8457). The last
two antibodies were used as the loading controls for nuclear and cytoplasmic fractions, respectively.
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The expected molecular weights of the detected proteins were: NQO1—29 kDa; NRF2—97–100 kDa;
p53—53 kDa; TBP 35–45 kDa; β-actin 45 kDa. After three washings of the membranes with TBST
(0.1% Tween 20 in 1× TBS), the immunoreactive bands were detected with an HRP- linked anti-rabbit
IgG secondary antibody (1:2000; CST: #7074). The immunological complexes were visualized using
SuperSignalTM West Pico PLUS Chemiluminescent Substrate (Thermo Scientific, Rockford, IL, USA)
and Alliance 4.7 (UVITEC, Cambridge, UK). The protein expression levels were quantified using
ImageJ and/or Image Studio Lite (LI-COR, Lincoln, NE, USA) analysis software. The relative change of
signals obtained was calculated after normalization according to the loading controls and Ponceau
S signals.

2.11. Statistical Analyses

Each experiment related to cellular biology (viability, proliferation, ROS generation) was performed
in technical triplicates or quadriplicates and repeated three times (as specified in the Figure legend).
The data obtained was analyzed with 1-way ANOVA and Tukey post-hoc test, as indicated in the
figure legends. The same principle was applied for producing and analyzing the data obtained with
molecular biology methods in biological triplicates. For both analyses and visualization, GraphPad 6.0
was used. The statistical significance of the differences obtained for all data analyzed was considered
significant at p < 0.05.

3. Results

Nutritional conditions were first profiled using the cancer cell lines originating from HNSCC:
FaDu; Cal 27; Detroit 562. In this study, highly proliferating cells were used for exploringbasic cellular
parameters before including a very slowly proliferating cell line—IMR-90 fibroblasts.

3.1. Viability, Proliferation and Generation of ROS

The choice of experimental conditions needed for nutritional stress induction, in relation to the
concentration of glucose and glutamine in the medium, was combined with measuring cellular viability
(Figure 2A), cellular proliferation (Figure 2B), and the amount of ROS generated at hour 48 (Figure 2C).
Initially, the four nutritional conditions (NC1-NC4) were established, as described in the Material and
Methods section, to which only the cancer cells were exposed. Then, based on the data obtained, this
research was extended to IMR-90, through applying nutritional conditions NC2 and NC3. NC1 should
be considered the control condition.

As presented in Figure 2A, the viability of the cancer cell lines, regardless of their genetic
background, was similar under the given conditions. Predictably, the most intensive decrease in
cellular viability (up to 70%) was recorded for all three cancer cell lines in the medium without glucose
and glutamine (NC3), when compared to both NC1 and NC2 (p < 0.0001).

The presence of glutamine in a medium without glucose (NC4) was beneficial for the viability of
all cancer cell lines (Figure 2A). It was also beneficial for the cellular proliferative capacity (Figure 2B)
of Detroit 562 (p = 0.0007) and Cal 27 (p < 0.0001), but not FaDu. The strongest ROS generation was
associated with condition NC3. The presence of glutamine in a medium without glucose (NC4) led
to a decreased ROS generation in all three cancer cell lines (Figure 2C). Under NC2, the generation
of ROS in Cal 27 and FaDu was stronger (p = 0.0055 and p < 0.0001, respectively) than in Detroit 562
(Figure 2C).
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Figure 2. The viability, proliferation and generation of ROS in cancer cell lines (A–C) and IMR-90 (D–F)
after exposure to NC1-NC4 and NC1-NC3, respectively, for 48 hours. One-way ANOVA with Tukey
post-hoc test was used to test the differences with regard to nutrient conditions. The values are shown
as the mean ± 95% CI. N = 3. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.

When reviewed, these data indicated that the cancer cell lines showed some interesting and
unique features. Under NC2, the generation of ROS was not significantly increased only in Detroit
562. Under NC4, when there is a lack of glucose, FaDu was far less sensitive to the rescuing effect of
glutamine on proliferative capacity.

These data are also very indicative regarding the degree of cellular sensitivity to glutamine
deprivation, showing that Cal 27 and Detroit 562 were more dependent on glutamine than was FaDu.
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Knowing that non-transformed cells are highly dependent on glucose, and relying on the data
obtained with the cancer cell lines (Figure 2A–C), we chose to continue the experiments using the
mildest (NC2) and the most robust condition (NC3), now including the IMR-90 fibroblasts.

They were considered a good control system, to compare with the cancer cell lines. The Figure 2D–F
represent IMR-90 response to NC2 and NC3. The viability of IMR-90 was unique in the extreme
sensitivity of this cell line to the mild glucose deprivation, during 48 hours (NC2; p < 0.0001) (Figure 2D).
The viability and proliferative capacity after 48 hours in NC2 (Figure 2D,E) seems to be a maximal effect
of a critical nutrient deprivation (glucose) because 48 h of cultivation in the medium without glucose
and glutamine (NC3) did not influence these cellular parameters further. However, the generation of
ROS did differ between NC2 and NC3 (p = 0.0019) (Figure 2F), although not as strong as in the cancer
cell lines (p < 0.0001) (Figure 2C). The lack of a significant change of IMR-90 viability after 48 hours of
exposure to mild and extreme starvation, is in clear contrast with the cancer cell lines and needs to be
further explored.

3.2. Quantification of NQO1 and NRF2 in a Real-Time

According to the majority of literature data, the NRF2-NQO1 axis should be highly active under
conditions which induce the generation of ROS. As a first step forward, the transcriptional activation
of NRF2 and NQO1 in real-time was explored. Three different house-keeping genes were used, as
we were aware that under the experimental conditions we chose to explore, we might not be able
to make an accurate quantification of our targets. Under the given conditions, none of the three
housekeepers (GAPDH, TBP, HPRT1) used in this research were universally stable in all four cell lines.
The changes in their transcription rates were clearly both condition specific and cell-type specific, as
already presented [40]. Finally, under the given conditions, a quantification was made by combining
these three housekeepers in a particular cell line.

The general picture shows that in all cell lines, the transcriptional activity of NRF2 increases under
NC2 and NC3 (Figure 3A,C,E,G). The quantification for FaDu, under NC3, was estimated based on
the Ct values for NRF2 and NQO1 under NC1 and NC2, in respect to NC3 (Figure 3E,F). However,
under NC2, the increasing trends of NQO1 were not present in Cal 27 and FaDu. The statistically
significant differences in transcription rates were reached only in Cal 27, for both genes: NRF2: NC1
versus NC2; p = 0.0008; NC2 versus NC3; p = 0.0102: NQO1: NC1 versus NC3; p = 0.0153; NC2 vs.
NC3; p = 0.0072 and IMR-90, but for NQO1 only: NC1 versus NC3; p = 0.0276. Notwithstanding the
mathematical calculation, it is visible that only in Cal 27 and already at NC2 does the Fold Change
of NRF2 reach a value above 2 (Figure 3A). Thus, it is quite obvious that the transcriptional level of
NRF2, with the exception of Cal 27, does not exhibit as strong changes as expected, especially not
with respect to the increased generation of ROS (all cancer cell lines: NC2 versus NC3 p < 0.0001;
Figure 2C). An increase of NQO1 mRNA was recorded under NC3 in Cal 27, Detroit 562 and IMR-90.
Due to significant variations in the transcriptional level of house-keepers in FaDu under NC3, the
target transcripts were not accurately quantified, under that condition and only in that cell line.
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Figure 3. The quantification of target transcripts, NRF2 and NQO1, in real time (RT-qPCR). One-way
ANOVA with Tukey post hoc test was used to test the differences with respect to the quantity of NRF2
and NQO1 mRNA, under different nutritional conditions. The values are shown as the mean ± SD.
N = 3. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001. * The Fold Change for NRF2 and NQO1 in
FaDu under NC3 was estimated according to the Ct values.
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3.3. Three Splice Variants of NQO1 are Present in All Four Cell Lines, Notwithstanding the Experimental
Conditions Applied

In all four cell lines, three reproducible bands occurred in the end-point PCR (35 cycles), regardless
of the cellular background and/or the type of nutritional stress (Figure 4A–C). Based on their size, we
were certain of the existence of TV1 and TV4. The nature of the amplicon which was in the middle
position (as the length of TV2 and TV3 differ for only 13 nucleotides, Figure 1) was revealed only after
analyzing the sequencing data (Figure 5). Under all experimental conditions and in all cell lines, TV1
gave the most prominent signal and TV3 was visible. However, in Detroit 562, TV4 varied and was
almost undetectable. There was an additional 400 bps long amplicon present in all cell lines under all
conditions, which was not characterized further. After a densitometric analysis of the signals after 28
cycles (when the signal was less saturated) using the ImageJ, the changes in the ratio TV1/TV3 were
recorded (Figure 6).
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Figure 5. The sequence analyses of amplicons obtained from the Cal 27 NQO1-cDNA amplified with
the primer pair NQO1F/NQO1R (Table 1), presented in Figure 4, confirm the presence of transcript
variants TV1 (A), TV3 (B), and TV4 (C). Eight nucleotides in the terminal part of the 3’ exon 3 are
common to all three amplicons and are shown in blue. The sequences of TVs were identical in all
cell lines.
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The signal obtained from TV4 was permanently low in all cell lines, under all NCs applied, and
was excluded from the analyses. The intensity of the densitometric signal originating from TV1 and
TV3 was expressed as their ratio (TV1/TV3) obtained after 28 PCR cycles (Supplementary Figure S1).
The opposite trends in Cal 27 versus three other cell lines were observed. In Cal 27, the TV1/TV3 ratio
increased from 4.47 (NC1) to 5.7 (NC2) and 6.36 (NC3) (Figure 6). The differences were statistically
significant: NC1 versus NC2: p = 0.0020; NC1 versus NC3: p = 0.0006; NC2 versus NC3: p = 0.0123.
In IMR-90, Detroit 562 and FaDu, the TV1/TV3 ratio was significantly decreased under NC3 (NC1
versus NC3; IMR-90: p = 0.0014; Detroit 562: 0.0213; FaDu: p = 0.0069). There were also significant
differences between the ratio of TVs which was observed between NC2 and NC3 (IMR-90: p = 0.0017;
Detroit 562: p = 0.0261; FaDu: 0.0031).

3.4. Detection of SNVs in Intron/Exon Boundaries

3.4.1. rs 689460, G+C, Is Present in IMR-90 and Does Not Influence the NQO1 Splicing

Based on the one paper showing that the polymorphism present at the very end of NQO1
exon 4 (rs1131341) favors occurrence of the transcript lacking exon 4 [31], and based on the cDNA
end-point PCR and sequencing data, the status of the cells with respect to rs1131341 was determined.
All exon/intron boundaries with primers shown in Table 1 were analyzed, using the gDNA as a
template. All primers, except primer NQO1 g6R (complementary to nucleotides in the 5’ part of the
exon 6), were complementary to intronic/non-coding NQO1 DNA sequence. With these sets of analyses,
we discovered a polymorphism in intron 1 (nt #248, according to NG_011504.2), present only in IMR-90
genomic DNA (Figure 7A), but not in the cancer cell lines (Figure 7B). To date, there is no data on
the potential influence of this SNV on NQO1 splicing. In order to explore the potential influence
of this polymorphism on splicing, novel primers, NQO1389460F and NQO1389460R, (Table 1) were
constructed and analyses were performed as previously described. The existence of any alternative
new splice variants which could be associated with this polymorphism, under the applied conditions
could not be confirmed (Figure 7C).
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Figure 7. A. Single nucleotide variation C+G wass present in IMR-90, in NQO1 intron 1. The terminal
part of the 3' exon 1 is shown in blue. The distance between the polymorphic locus, revealed to be rs
689,460 according to NCBI, and 3' of exon 1, is only 50 nts. B. All three cancer cell lines were homozygos,
rs 689,460 G+G, as shown here, for Cal 27. C. Single nucleotide variant C+G in IMR-90 did not influence
the NQO1 splicing. The amplicons obtained in IMR-90 under given conditions did not differ from
those obtained in homozygos (G+G) cancer cell lines (only Cal 27 is shown). L: 100 bp DNA ladder.
Lines 1–3 and lines 4–6: IMR-90 and Cal 27 under NC1, NC2 and NC3, respectively.

3.4.2. rs 689452, C+G, Is Present in Detroit 562 and Cal 27

The presence of one more SNV in intron 1 (nt# 8070, according to NG_011504.2) was further
discovered, in Detroit 562 and Cal 27 (Figure 8). The sequence variant (C+G) corresponds to rs 689452.
In IMR-90 and FaDu, this position was homozygous, C+C, as shown on Figure 8. Based on the splice
variants analyses, rs 689,452 does not influence the splicing of NQO1.
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Figure 8. A. Single nucleotide variant, rs 689452, C+G in Cal 27 (also present in Detroit 562) is in intron
1, separated from the 5' part of exon 2 (labeled blue) by only 27 nts. B. In FaDu (shown by an arrow)
and IMR-90 (not shown), the sequence was homozygous, C + C.

3.4.3. Presence of rs1800566 in IMR-90 but Not in Cancer Cell Lines

The rs1800566 was detected only in IMR-90. This well-known polymorphism was present as
a homozygous SNV–NQO1*2/*2 (nt #15389, according to NG_011504.2), leading to a change of the
triplet CCT into TCT (Figure 9A). This is highly consequential, because this SNV missense variant,
as described earlier, leads to replacing proline with serine at position 187. This polymorphism was
shown as the one which influenced the structure of the NQO1 protein, making it highly unstable and
catalytically compromised [43]. While it is known that IMR-90 expresses only traces of NQO1 protein,
the data related to IMR-90 genotype, with respect to rs1800566, could not be found.
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Figure 9. The presence of SNV rs1800566, in IMR-90 (NQO1*2/*2; (A)) and WI-38 (NQO1*1/*2; (C)).
The homozygous triplet TCT, coding for Serine, replaces the CCT triplet coding for Proline, which was
present in all cancer cell lines, as shown for Cal 27 (B).

As human fibroblasts WI-38 express NQO1 but are not able to develop the NQO1-mediated redox
cycle that could lead to HSP90 (Heat Shock Protein) inhibition upon β-Lapachone induction [44], it was
presumed that these cells may have a genotype NQO1*1/*2. When we worked with WI-38 [45], the
DNA was preserved from an early passage and kept frozen at −20 ◦C. Indeed, WI-38 are heterozygotes,
NQO1*1/*2 (Figure 9C). This means that both commonly used cell lines are, regarding NQO1 activity,
severely compromised and represent two totally different biological systems. All cancer cell lines were
homozygous, P187P (Figure 9B – Cal 27) and the enzymatic activity of their NQO1 should be intact,
at least with respect to rs1800566.

Finally, under the given conditions, we explored the NRF2/NQO1 axis on the protein level.
In these analyses, TP53 was included. For the reasons explained earlier, western blots on nuclear and
cytoplasmic fractions were performed.

3.5. Western Blot Analyses

3.5.1. Analyses of NQO1

Under NC1, the NQO1 signal was least visible in IMR-90. Although all three cancer cell lines had
a considerably high level of NQO1 in both cellular fractions, a lower basal amount of NQO1 in Cal 27
nuclear fraction, as compared with FaDu and Detroit 562, was obvious on all our blots (Figure 10A,B).
The level of NQO1 in the cellular fractions did not significantly change under the NC2 condition.
However, some trends can be observed. There was a slight decrease of NQO1 in both cellular fractions
of Cal 27 and Detroit 562 and an increase in both cellular IMR-90 fractions. The signal in FaDu was
slightly increased in the cytoplasm, and, at the same time, there was a mild decrease in the nucleus
(Figure 10C,D). Although under NC2 densitometry registers an obvious increase of NQO1 in both
IMR-90 fractions, the intensity of the NQO1 signal remained very weak and far below the signal
obtained in all cancer cell lines and under all tested conditions.
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Figure 10. The expression of NQO1, NRF2 and TP53 in cancer cell lines and IMR-90. The 
representative western blots of cytoplasmic and nuclear NQO1, NRF2 and TP53 content under 
different nutritional conditions: (A) NC2 (low glucose + L-glutamine); (B) NC3 (no glucose and no L-
glutamine). The relative expression is calculated as compared to the control condition (NC1 – high 
glucose + L-glutamine) for: C-cytoplasmic and D-nuclear NQO1; E-cytoplasmic and F-nuclear NRF2; 
G-cytoplasmic and H-nuclear TP53. One-way ANOVA with Tukey post hoc test was used to test the 
differences in relative expression of selected proteins under different nutrient conditions. The values 
are shown as the mean ± SD. n = 3. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.  

3.5.2. Analyses of NRF2 

Figure 10. The expression of NQO1, NRF2 and TP53 in cancer cell lines and IMR-90. The representative
western blots of cytoplasmic and nuclear NQO1, NRF2 and TP53 content under different nutritional
conditions: (A) NC2 (low glucose + l-glutamine); (B) NC3 (no glucose and no l-glutamine). The relative
expression is calculated as compared to the control condition (NC1 – high glucose + l-glutamine) for:
C-cytoplasmic and D-nuclear NQO1; E-cytoplasmic and F-nuclear NRF2; G-cytoplasmic and H-nuclear
TP53. One-way ANOVA with Tukey post hoc test was used to test the differences in relative expression
of selected proteins under different nutrient conditions. The values are shown as the mean ± SD. n = 3.
* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.
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In all cancer cell lines, the more harsh condition of NC3 did not significantly affect the NQO1
cytoplasmic levels which remained close to the NQO1 control levels (NC1). In IMR-90, cytoplasmic
level of NQO1 decreased (Figure 10C). Although not statistically significant as compared with the
control (NC1), this decrease was quite intense when compared with cytoplasmic NQO1 expressed
with respect to NC2 (p = 0.0107). IMR-90 responded with increased nuclear accumulation of NQO1
when exposed to NC3 (p = 0.0056). Under the same conditions, Cal 27 showed a nuclear decrease of
NQO1 (p = 0.0457). Although the NC3 condition did not significantly affect the nuclear level of NQO1
in FaDu when compared with the control (NC1), a significant increase was recorded when compared
to NC2 (p = 0.0178). An increased nuclear NQO1 level in NC3, when compared to NC2, was also
observed in IMR-90 (p = 0.0085) (Figure 10D).

3.5.2. Analyses of NRF2

The cytoplasmic expression of NRF2 in all four cell lines was weak and unaffected by nutritional
conditions (Figure 10E). The nuclear NRF2 expression showed some differences. Although a nuclear
increase of NRF2 in all cell lines under NC2 was recorded, it was statistically significant only in FaDu
(p = 0.0414). Under NC3, a significant increase of NRF2 was recorded in the nucleus of the remaining
three cell lines (NC1 vs. NC3: Cal 27 p = 0.039, Detroit 562 p = 0.0306, IMR-90 p = 0.0103). However,
under these extreme conditions, it was not present in FaDu. With regard to all other cell lines, there
was a difference between the nuclear amount of NRF2 under NC2 and NC3 in IMR-90 (p = 0.0142),
which was manifested as a significant increase (Figure 10F).

It was proposed that NQO1 stabilizes both the wild-type and mutant-type TP53. There was a
mixed situation—wild-type NQO1 and mutant TP53 in the cancer cell lines and mutant-type NQO1
and wt TP53 in IMR-90.

3.5.3. Analyses of TP53

As expected, the wild type TP53 was not detected in the IMR-90 cytoplasm (Figure 10A,B). There
was a significantly high level of the expressed mutant types of TP53 in the cytoplasm of the cancer cells
in NC1. Cytoplasmic TP53 decreased in all cell lines under both NC2 and NC3. However, under NC2,
the decrease reached a statistically significant level only in FaDu (p < 0.0001) (Figure 10G). The nuclear
level of TP53 in Cal 27 and Detroit 562 exposed to NC2 for 48 h, was arround or slightly above the
control (NC1) values (Figure 10H). Under NC3, the strong TP53 signal in the cytoplasm of the cancer
cell lines literally disappeared (Figure 10B,G). It was present in the nucleus and showed very interesting
trends in relation to the conditions applied. In Cal 27, IMR-90 and Detroit 562, the NC3 related TP53
signal was lower than in NC2. The decrease was significant for Cal 27 and IMR-90; NC2 versus NC3;
p = 0.0411 and p = 0.0258. In FaDu, the signal of nuclear TP53 strongly increased and reached statistical
significance (NC2 versus NC3; p = 0.0025) (Figure 10H).

The images on Figure 10 were obtained with 10 micrograms of proteins, under the same conditions.
For improving the visibility of the bands corresponding to TP53 and NQO1 in IMR-90, a separate
blot was made with the same amount of protein loaded (10 µg). For detection of the signals,
software-controlled prolonged time exposure was used (Supplementary Figure S2).

3.5.4. The General Picture of the NRF2-NQO1 Axis and TP53 at the Protein Level, in the Experimental
Model

Under NC2, the NRF2-NQO1 axis did not seem to be activated in the cancer cell lines. This was
because: a) Only FaDu exhibited a significant increase of NRF2 in the nucleus, which was joined with
decreased NQO1 and TP53 signals in the nucleus; and b) Cal 27 and Detroit 562 had no significant
increase of NRF2 in their nuclear fraction, nor did they exhibit a significant change in NQO1 expression.
However, they had a slight increase of TP53 in their nuclei.

Under NC3, the NRF2-NQO1 axis seemed to have moderate activity in Detroit 562. This was
because: (a) There was a significant increase of nuclear NRF2, associated with a slight increase of
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NQO1 in both cellular fractions; (b) Cal 27 had the strongest increase of nuclear NRF2 among all the
cancer cell lines, which was not associated with the corresponding increase of NQO1; and (c) FaDu
seems to be unresponsive.

There are opposite trends with respect to the TP53 nuclear signal when comparing Cal 27 and
Detroit 562 to FaDu, under NC2 and NC3. Under NC2, the TP53 nuclear signal increased in Cal 27
and Detroit 562 and decreased in FaDu. Under NC3, the TP53 nuclear signal increased in FaDu and
decreased in Cal 27 and Detroit 562.

The axis NRF2-NQO1 was active in IMR-90, the cell line with a wt TP53. This was because: (a) a
slight and strong accumulation of NRF2 was observed in the nucleus under NC2 and NC3, respectively
(Figure 10A,B,F); and (b) and was joined by a recordable accumulation of the NQO1 (S187S) protein,
however unstable it was shown to be [43].

The simplified graphic presentation of phenomena observed at the protein level is presented in
Figure 11.Cells 2019, 8, x FOR PEER REVIEW 18 of 28 
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Figure 11. The cellular distribution and the rate of change of the NRF2, NQO1 and TP53 proteins in all
four cell lines, under NC1-NC3.

4. Discussion

The lack of nutrients leads to cellular oxidative responses. We wanted to explore the NRF2-NQO1
axis by inducing stress through incubating cancer cell lines in the following: A medium with a
decreased concentration of glucose (1 g/L) (NC2); a medium with a complete lack of glucose (NC4)
but supplemented with glutamine; and, in order to induce the strongest level of ROS, by creating an
artificial situation, using a medium deprived of glutamine and glucose (NC3). However, due to trace
amounts of glucose and glutamine in FBS, these cells were still exposed to a minimal concentration of
glucose (~0.125 g/L ≈ 0.69 mM) [46] and glutamine (0.05 mM) [47].

The cellular viability, ROS generation and rate of cellular proliferation, were measured and
compared under these four conditions, in three cancer cell lines, originating from HNSCC: FaDu,
Detroit 562 and Cal 27. According to COSMIC and published papers, these three cell lines can be



Cells 2019, 8, 1001 19 of 28

classified according to their TP53 mutation status [48]: 1. FaDu—heterozygous mutation leading to
substitution of arginine with leucine at aa248 (R→L); 2. Cal 27—mutation (unknown zigosity status)
leading to substitution of histidine with leucine at aa193 (H→L); 3. Detroit 562 mutation (unknown
zigosity status) leading to the substitution of arginine with histidine at aa 175 (R→H). All these
mutations are in the DNA-binding domain of the TP53 protein. Based on the cellular effects observed
in the cancer cells, molecular-genetic experiments were chosen to be performed under conditions NC2
and NC3, to which fetal lung fibroblasts IMR-90 were also exposed. This cell line was used to show
how MYC, after being transduced in IMR-90, makes IMR-90 addicted to glutamine [49]. Terashima et al.
were able to stimulate NRF2 entering in the nucleus of these cells under the low glucose condition [50].
Thus, it was assumed that IMR-90 is likely to be sensitive to NC2 [49]. Many research groups were not
able to show the expressed NQO1 protein in these cells in their native state [36]. However, there are
also data showing the expressed, mature NQO1 in IMR-90 [51].

4.1. Cancer Cells and Fibroblasts IMR-90 Differ in Their Sensitivity to Nutrient Deprivation

We were aware that the chosen conditions were likely to reduce cellular viability and increase
the level of ROS, but we could not predict to what extent that would happen. What was visible
immediately was that the viability of the cancer cells under NC2 decreased significantly, but far less
than under NC3. With respect to NC2 and the cancer cell lines, our results were in the strongest
agreement with results published by Terashima et al., who presented a similar decrease of HepG2
viability cultured in a medium with low glucose (1 g/L) [50] In IMR-90 only, the NC2 condition had
extremely strong effects with respect to the examined cellular parameters. In IMR-90 only, the effect
of the NC2 condition was much stronger than in the cancer cell lines, confirming that IMR-90 are
primarily dependent on glucose. The result obtained on IMR-90 is in agreement with data presented
by Yunova et al., who also convincingly showed the sensitivity of IMR-90 to glucose deprivation [49].
With respect to glutamine, van den Heuvel et al. showed the insensitivity to glutamine depletion of
normal human lung fibroblasts (NHLF)) cells originating from lung fibroblasts [52].

As shown on Figure 2A,D, among all four tested cell lines exposed to NC2, the viability of
fibroblasts decreased below 50% (app. 80% in cancer cell lines). It did not decrease further when there
was a lack of both glucose and glutamine (NC3). One possible explanation of this effect may be the
high expression of glutamate/cystine antiporter solute carrier family 7 member 11 (SLC7A11, also
called xCT) in IMR-90 cells [53]. In cancer cells, SLC7A11 mediates the efflux of intracellular glutamate,
thereby rendering them metabolically less adaptable and more reliant on glucose for survival [54].
The drop in cellular viability of all cancer cell lines, contrary to IMR-90, was less pronounced under
NC2 than under NC3. The proliferation rate of FaDu under NC4 was far below the proliferation rate
in Cal 27 and Detroit 562. This indicates that there is a differential sensitivity to glutamine between
FaDu and the other two cancer cell lines, when there is a lack of glucose.

Both FaDu and Cal 27 cells have been reported to express a high level of SLC7A11 [55]. The relative
unresponsiveness of FaDu observed under NC4 may be explained, at least in part, by the observed
high increase of nuclear NRF2 (p = 0.0414) (Figure 10F), joined with increased NRF2 transcription and
the significantly increased generation of ROS (p < 0.0001) (Figure 2C), in response to NC2. Considering
that NRF2 has been reported to induce SLC7A11 expression in response to glucose starvation [51],
it is conceivable that FaDu cells, in which exposure to NC2 upregulated NRF2, would under NC4
(complete lack of glucose, albeit supplemented with glutamine) have a more pronounced expression
of SLC7A11 and efflux of glutamate that would prevent the recovery of cellular proliferation. Cal 27
cells, which were also reported to express a high level of SLC7A11 [55] but did not respond to NC2
by statistically significant upregulation of nuclear NRF2, significantly recovered cellular proliferation
under NC4NC4), as contrasted with FaDu cells.

Under NC3, FaDu was the only cancer cell line which had a significant increase of NQO1 in the
nucleus (NC2 vs. NC3 p = 0.0178). However, at the transcriptional level, significant changes relating to



Cells 2019, 8, 1001 20 of 28

NQO1 transcriptional activity in FaDu were not detected, neither under NC2 (accurately measured),
nor under NC3 (approximated).

Cal 27 was the cell line with the lowest basal level of NRF2 (Figure 10A,B, NC1—nuclear fraction).
Probst et al. were able to show that the cell lines with high basal NRF2 activity exhibited little or no
increase in NQO1 mRNA levels following NRF2 activation with the compound RTA 405 [56]. We think
this fact can explain part of our results obtained on NQO1 transcripts.

4.2. Importance of Defining the SNVs, in a Given Experimental Model

When NQO1 transcripts were quantified, a significant increase of the NQO1 transcript was shown
only in IMR-90 and Cal 27 but not in FaDu (under NC2) and Detroit 562. Unfortunately, however high
was the expression in IMR-90, there was a minimal amount of NQO1 protein. The level of the NQO1
transcript in IMR-90 was strong and it did not differ from the mRNA NQO1 signal in the cancer cell
lines. A majority of research groups had not detected NQO1 protein in IMR-90 (at least not under
restful conditions). However, it seems that nobody reported the data on the IMR-90 NQO1 genotype.
After performing the DNA sequencing, it was concluded that this cell line is a NQO1*2/*2 homozygote
(rs180566). Some inconclusive data obtained on another human fibroblast cell line, WI-38, encouraged
us to analyze it in the same way. It was shown that WI-38 also bears rs180566 but is a heterozygote
(NQO1*1/*2) cell line. Thus, at least with respect to NQO1, IMR-90 and WI-38 are not normal fibroblasts.
Accordingly, any conclusion obtained on one cell line cannot be automatically translated to another (or
any other) cell line. Regarding rs180566, detailed modeling performed by Lienhart et al. [43] did not
provide a structure-based explanation for the lower enzymatic activity of NQO1 P187S. A plausible
explanation given in an in vivo model by Tsvetkov et al., should be considered in light of discovering
that E3 ligase STUB1/CHIP (C terminus of Hsc70-interacting protein) regulates the NQO1 protein
level through ubiquitination and degradation [57]. The heterozygote P187S (rs180566) was shown
to be a stronger STUB1 interactor with an increased susceptibility to ubiquitination by the E3 ligase
STUB. Thus, we concluded that the homozygote, S187S, may have even stronger affinity for STUB1.
This finally resulted in an almost undetectable NQO1 in IMR-90, notwithstanding the increase of NQO1
transcriptional activity (Figure 3; Figure 4) under NC3 which was associated with a physiological
increase of nuclear NRF2 (Figure 10B). An increased sensitivity of IMR-90 to NC2 may be a consequence
of lacking a strong mechanism for influencing the NAD(P)+/NAD(P)H redox balance during the
stress-related events, due to catalytically insufficient NQO1.

4.3. FaDu Proliferative Potential with Respect to GLS1 and Decreased Sensitivity to Glutamine When Deprived
of Glucose

It was very interesting to see that that the effect of glutamine on FaDu, with respect to proliferative
potential when deprived of glucose, exerts a less positive effect than with Cal 27 and Detroit 562
(Figure 2B). The enzyme, Glutaminase 1 (GLS1), enables malignant cells to undergo increased
glutaminolysis and utilization of glutamine as an alternative nutrient. A recently published study has
clearly shown that the expression of GLS1 in FaDu is far less prominent than in Detroit 562 cells [58].
Thus, the capacity of FaDu for glutamine utilization seems to be constitutively decreased. Although we
did not measure GLS1, we hypothesized that the less prominent rescuing effect of glutamine on FaDu
than on Detroit 562 and Cal 27, in the absence of glucose, occurs as a result of low basal expression of
GLS1 In IMR-90, GLS1 is also present at a low level and its pharmacological inhibition does not change
the level of intracellular ATP [59]. Sandulache et al. discovered that a majority of HNSCC cancer
cell lines show a dependence on glucose and not glutamine [60]. This study also referred to FaDu.
However, FaDu, as contrasted with all of the other 14 tested HNSCC (Detroit 562 and Cal 27 were
not included in the panel), did not exert a similar rate of sensitivity to non-metabolizable D-glucose
analogues. The data was: IC50 10.90 (FaDu) versus IC50 0.79 with UMSCC22B—the most sensitive
cell line.
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4.4. NQO1 and Its Splice Variants—TaqMan Probes Validation

Regardless of the conditions applied, three NQO1 transcript variants were detected. Based on WB
analyses, only the longest one, TV1, as compared with the other two, TV3 and TV4, seemed to translate
in the mature protein. The change of the ratio TV1/TV3 was measured. We have shown that only in Cal
27, under NC3, did this ratio increase. It decreased in the other three cell lines. It is unfortunate that the
NQO1 transcript fold change under NC3 in FaDu could not be accurately measured (Figure 3F), where
there was a significant decrease of the TV1/TV3 ratio (Figure 6). Based on the Ct values, we estimated
that the NQO1 transcription, under NC3, does not significantly vary from the control condition (NC1)
(Figure 3). The change of TV1/TV3 ratio was not influenced by rs1131341 [31], as all cell lines had the
same genotype with respect to this SNV. Thus, we concluded that the change TV1/TV3 depends on
both conditions applied and the cell-type specific response, which clearly differentiated Cal 27 from
other cell lines [61]. It is possible that, through this mechanism, this cell line compensates NQO1 basal
activity, which is significantly lower (90 U) than the NQO1 activity in Detroit 562 (790 U) and FaDu
(1400 U) [36]. It also raises a question with respect to compensatory mechanisms associated not only
with the level of transcription, but also with splicing, when there is a high ROS generation. Cal 27, the
cell line with the lowest NQO1 activity under basal conditions, had the strongest increase of NQO1
transcript and adjusted the TV1/TV3 ratio in favor of TV1. FaDu, the cell line with the highest NQO1
activity under basal conditions, had no increase of NQO1 transcript and reduced the TV1/TV3 ratio.

4.5. Activation of NRF2 and Sensitivity to Glutamine

In the Results section, we presented how some cellular parameters are indicative of a different
sensitivity to glutamine, which is higher in Cal 27 and Detroit 562, and lower in FaDu. How is that to
be explained, in addition to the previously given explanation relating to the cellular transporters? First,
it should be noted that the intensity of the nuclear and cytoplasmic NQO1 signal was far less prominent
in Cal 27 under NC1, than in the other two cancer cell lines (Figure 10A,B). The same phenomenon
was shown in Li’s paper [36]. The reason for less NQO1 protein is not the presence of rs18066, as Cal
27 are NQO1*1/*1. One possibility may be that these cells have a genuinely less active NRF2-KEAP1
pathway. Indeed, Romero et al. have suggested NQO1 as a suitable biomarker for NRF2 activation,
when researching a human KRAS-mutant lung adenocarcinoma (LUAD) [62]. In our experimental
model, this was not shown. However, one can speculate that the NRF2-KEAP1 axis, weaker in Cal 27
than in FaDu and Detroit 562, can be strongly activated. Based on the results presented, Cal 27 cells
indeed have a stronger potential for activating the NRF2-NQO1 axis than the other two cancer cell
lines. The activation of the NRF2-KEAP1 axis, which was shown to be, according to the majority of the
parameters measured, highly dependent on glutamine [63], needs to be explored further in dynamic
and not end-point experiments.

4.6. TP53 and Its Potential to Influence Phenomena Observed

Regarding the influence of MT TP53 on NRF2, there are many data, but there are no conclusions.
Lisek et al. showed that mutant TP53 increases NRF2 localization to the nucleus of cancer cells,
where it redirects NRF2 to ARE elements of specific genes to activate their transcription. Conversely,
it sequesters NRF2 from other targets, leading to their downregulation [64]. Kalo et al. have shown that
induction of stress in HCT116 cells bearing TP53 mutant R273H results in NRF2 nuclear accumulation.
However, the transcription of target genes was induced to a much lesser extent than in HCT116 without
TP53 activity (TP53−/−). They also showed that the down-regulation of endogenous mutant TP53,
results in increased mRNA levels of NQO1 and Hem Oxygenase (HMOX-1). Thus, they proposed
that MT TP53 promotes the survival of cells with high level ROS [65]. Under NC3, a decrease of
nuclear TP53 in Cal 27 is related to an increased transcription rate of NQO1. At the same time, the
strong increase of TP53 in the nuclei of FaDu under NC3 may be associated with its silencing effect on
NQO1 transcription (as estimated). This would be in accord with Kalo’s results, at least at the level of
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transcriptional activity of only NQO1. When we measured the transcriptional activity of HMOX-1,
a tremendous transcriptional activity of HMOX-1 in IMR-90 and FaDu under NC3 was recorded (data
not shown). This does not necessarily mean that this increased transcription relies on NRF2, as we
need to perform chromatin immunoprecipitations and selective silencing in order to understand the
molecular mechanisms involved.

One important aspect of the events which seems connected to accumulating phenomena related
to nutritional stress and TP53, may be on an entirely different level. The ubiquitin ligase Mdm-2,
which mediates TP53 degradation in the proteasome [66], is a transcriptional target of TP53 [67].
Qie et al. [68] reported the upregulated transcription of MDM2 in Hep3B cells cultured in a glutamine
free medium, despite the homozygous deletion of TP53, pointing to the existence of alternative
regulatory mechanisms. Considering the role of MDM2 in TP53 degradation, if the reported increase in
MDM2 transcripts translates to an increased protein level, one would expect a decrease in the TP53 upon
glutamine deprivation in TP53 expressing cells. Although it is seemingly surprising, a redistribution
of TP53 among cellular compartments (cytoplasm and nucleus) was observed, rather than its decrease
in the cells deprived of glutamine (NC3; Figure 10B). A possible explanation for this effect may be
the nuclear retention of TP53 due to its poly(ADP-ribosyl)ation that prevents TP53 interaction with
the nuclear export receptor CRM1 [69]. Chiodi et al. recently reported that glucose and/or glutamine
deprivation causes very rapid PARP-1 activation and protein poly(ADP-ribosyl)ation [70]. This is
consistent with the intracellular distribution of TP53 that was observed in all the tested cells grown in a
low glucose medium (NC2) or glucose- and glutamine-free medium (NC3) (Figure 10C). Namely, in all
cell lines, TP53 was less abundant in the cytoplasm of the cells grown under NC2 and almost completely
absent in the cytoplasm of the cells simultaneously deprived of glucose and glutamine (NC3). Contrary
to cytoplasm, a significant amount of TP53 was present in the nuclear fraction. The retention of TP53 in
the nuclei of all cells exposed to NC2 and NC3, regardless of their TP53 mutational status, is consistent
with the report that three amino acids (E258, D259 and E271) are the targets of poly(ADP-ribosyl)ation,
and that TP53 failed to get poly(ADP-ribosyl)ated only when all three of them were replaced with
alanine [69]. Therefore, poly(ADP-ribosyl)ation can retain both mutant and WT TP53 in the nucleus.

The importance of NQO1 activity for TP53 accumulation in the cell strongly argues in favor
of the involvement of poly(ADP-ribosy)lation in TP53 stabilization. This is because it was shown
that the inhibition of NQO1 activity by dicumarol induces proteasomal degradation of WT and MT
p53 [18]. The enzymatic activity of NQO1 is needed for generating NAD+, which is a co-substrate for
PARP-1 that transfers ADP-ribose moieties from NAD+ to proteins including TP53 [71]. Experimentally
induced PARP-1 or NAD+ deficiency has been reported to result in a significantly reduced level
and activity of TP53 [72]. Therefore, the accumulation of TP53 in the nuclei of the cells exposed to
glucose and glucose/glutamine deprivation (NC2 and NC3), may be partly mediated by NQO1 (and
other oxidoreductases like WOX1 [73]. Asher et al. [18] suggested that, considering the presence of
several putative TP53-binding elements in NQO1 promoter, NQO1 may belong to TP53-inducible
genes involved in a positive autoregulatory loop that regulates the level of TP53. Therefore, the
mutational status of TP53 may have a profound influence on NQO1 expression in cells that are exposed
to nutritional stress.

5. Conclusions

After modulating FaDu, Cal 27 and Detroit 562 for the vital cellular parameters of viability,
proliferation and generation of ROS while cultivating them under four different nutritional conditions
(NC1-NC4), some general conclusions can be drawn: (a) In relation to all three parameters analyzed,
these cell lines showed sensitivity to glucose deprivation; (b) when having available minimal amounts
of glucose and glutamine (NC2) FaDu, Cal 27, Detroit 562 responded strongly with respect to all three
parameters; (c) only FaDu cells showed an increased need for glucose, not glutamine (NC3 versus
NC4), for sustaining replication activity. A strong increase of ROS influences the NRF2-NQO1 axis
in these cells in a fashion which is apparently cell-type specific. When considering the activation of
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the axis through NRF2 nuclear accumulation, the strongest response under a milder condition (NC2)
was recorded in FaDu, associated with a decrease of the nuclear TP53 signal. Under harsh conditions
(NC3), Cal 27 and Detroit 562 responded with NRF2 nuclear accumulation, associated again, with
a decrease of the nuclear TP53 signal. Obtaining the same phenomena under different conditions
(Cal 27 and Detroit 562 versus FaDu) pointed out the differences in response to identical stress, which
correlates with the fact that only FaDu cells did not recover their replicative potential when deprived
of glucose, in the presence of glutamine.

When considering the activation of the axis through an increase in NQO1 transcription, only Cal
27 responded adequately, through an increase in the NQO1 transcription rate and a modulation of
alternative splicing, in favor of TV1. FaDu responded in an entirely different fashion, with a decrease
in NQO1 transcript and a modulation of alternative splicing, in favor of TV3. These responses may be
consequential with respect to NQO1 enzymatic activity in Cal 27 and FaDu, which was previously
shown to be 15 times higher in FaDu. Thus, the whole response of the NRF2-NQO1 axis to stress
should be considered in the broader context of the cellular background.

Detroit 562 is the cell line which moderately activated its NRF2-NQO1 axis, on both the
transcriptional and protein level. It is the only cancer cell line which had no significant increase of
ROS, under NC2.

Fibroblasts IMR-90 were entirely dependent on glucose. These cells exhibited a physiological
cellular response relating to the activation of NRF2-NQO1 axis during nutritional stress, which resulted
with hardly detectable NQO1 signals when compared to the cancer cell lines. IMR-90 are homozygous
– NQO1*2/*2, with respect to rs1800566.

Without making the genotyping in respect to rs1800566, we would still be confident that IMR-90
indeed are NQO1 non-expressing cells. According to all available data, their rs1800566 genotype
directs an extremely high rate of the NQO1 protein degradation, although the NRF2-NQO1 axis in
these cells activates during nutritional stress.

Thus, when making important conclusions on the strength of the NRF2-NQO1 axis through NQO1
protein level/enzymatic activity, the status of rs1800566, as well as specifics of the cellular background,
are always relevant and must be considered.
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AMPK 5′AMP-Activated Protein Kinase
ARE Antioxidant Response Element
ATCC American Type Culture Collection
ATP Adenosine Triphosphate
BrdU 5-Bromo-2′-Deoxyuridine
COSMIC Catalogue of Somatic Mutations In Cancer
DCFH-DA 2′,7′-Dichlorofluorescin Diacetate
DMEM Dulbecco’s Modified Eagle’s Medium
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EDTA Ethylenediaminetetraacetic Acid
ER Endoplasmic Reticulum
EtdBr Ethidium Bromide
FAD Flavin Adenine Dinucleotide
FBS Fetal Bovine Serum
G6PD Glucose-6-Phosphate Dehydrogenase
GAPDH Glyceraldehyde-3-Phosphate Dehydrogenase
gDNA Genomic DNA
GLS1 Glutaminase 1
HCT116 Human Colorectal Carcinoma
HIF-1α Hypoxia-Inducible Factor, Alpha Subunit
HMOX-1 Heme Oxygenase 1
HNSCC Head and Neck Squamous Cell Carcinoma
HPRT1 Hypoxanthine Phosphoribosyltransferase 1
HSP90 Heat Shock Protein 90
IR-C Intron Retention Complex
IR-S Intron Retention Simple
KEAP-1 Kelch-Like ECH-Associated Protein 1
LUAD Lung Adenocarcinoma
Mdm-2 Mouse Double Minute 2 Homolog
MT Mutated
NADH/NAD+ Nicotinamide Adenine Dinucleotide
NADPH/NADP+ Nicotinamide Adenine Dinucleotide Phosphate
NC Nutritional Condition
NC1 Nutritional Condition 1
NC2 Nutritional Condition 2
NC3 Nutritional Condition 3
NC4 Nutritional Condition 4
NFE2L2 (NRF2) Nuclear Factor (Erythroid-Derived 2)-Like 2
NHLF Normal Human Lung Fibroblasts
NQO1 NAD(P)H:Quinone Oxidoreductase 1
PARP-1 Poly (ADP-Ribose) Polymerase 1
PCR Polymerase Chain Reaction
PPP Pentose Phosphate Pathway
ROS Reactive Oxygene Species
RT-qPCR Reverse Transcription-QuantitativePolymerase Chain Reaction
SIRT1 Sirtuin 1
SLC7A11 Solute-Like Carrier Family 7, Member 11
SLC7A3 Solute-Like Carrier Family 7, Member 3
SNP Single-Nucleotide Polymorphism
SNV Single Nucleotide Variant
TBP TATA-Box Binding Protein
TBS Tris-Buffered Saline
TBST Tris Buffered Saline with Tween-20
TE buffer Tris-EDTA Buffer
TP53 Tumor Protein P53
TV Transcript Variant
WOX1 WUSCHEL Related Homeobox 1
WT Wild-Type
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