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Alternative splicing generates multiple protein isoforms from one primary transcript and represents
one of the major drivers of proteomic diversity in human cells [1]. Alternative splicing variants regulate
cell-, tissue- or developmental-specific programs, whereas their aberrant expression is involved in
many pathologies, including cancer [2,3]. In this regard, alternatively spliced isoforms expressed
exclusively in tumor cells are particularly relevant for the diagnosis, prognosis and targeted therapy of
multiple cancer types [4].

Although significant progress has been made in recent years, important questions still remain
to be addressed. In particular, we need to determine (i) the role(s) of the majority of the splicing
isoforms during physiological (or pathological) processes, (ii) the factors involved in their production,
and (iii) how splicing is integrated with other gene expression regulatory programs.

This special issue collects recent insights addressing the above interrogatives. More specifically,
Palombo and colleagues illustrate the function of two splicing factors (hnRNPM and SRSF3) in
regulating DHX9 poison exon, with potential implications in Ewing sarcoma proliferation and
sensitivity to chemotherapy [5], whereas Gajan and collaborators highlight splicing errors in RAD6B
gene and their association with melanoma pathogenesis [6]. La Cognata and coworkers describe the
involvement of splicing factors and spliceosome components in the pathogenesis of Amyotrophic
Lateral Sclerosis (ALS) [7], while Mfossa et al. identify circular RNAs induced in response to radiation in
a p53-dependent fashion [8], which may represent biomarkers of brain ageing. Moon and collaborators
deal with the splicing regulation and activation of a cryptic 3’ splice site in SMN2 gene [9], involved
in another human disorder, such as the Spinal Muscular Atrophy (SMA). NOVA2 regulation of
splicing isoforms for two transcription factors (Ppar-y andTfdp2) and the subsequent control of mRNA
steady-state levels in endothelial cells is presented by Belloni et al. [10]. In their article, Yu and
colleagues use proteomics data to validate and modify the gene annotation information of moso bamboo
(an important forest species) by supporting the translation of a fraction of transcript isoforms targeted
by nonsense-mediated mRNA decay (NMD) pathway [11]. Taking advantage of high throughput
RNA sequencing approaches, Neves-da-Rocha and colleagues identify intron retention events in
the transcripts encoding Hsp70 family members and discuss the role played by the regulation of
HSP-mediated networks in cell adaptation in Trichophyton rubrum (a dermatophytic fungus) suggesting
strategies employed by dermatophytes in response to antifungal therapy [12].

This special issue also includes four reviews. In particular, Biamonti and colleagues discuss
the key role played by alternative splicing in cancer cell plasticity and tumor heterogeneity [13].
The possibility of using alternative splicing as a prognostic factor and potential therapeutic target
in cancer is addressed by Nikas et al., which discuss the prognostic role of SRPK1 (an enzyme that
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phosphorylates splicing factors rich in serine/arginine domain) and preclinical studies supporting
SRPK1 as cancer treatment target are presented [14]. Bielli et al. focus on the role of alternative
splicing errors in brain tumors and present recent efforts aimed at developing novel splicing-targeted
cancer therapies [15]. Finally, Rowlands and colleagues present a critical comparative analysis of the
bioinformatic tools designed to predict genomic variants impacting on the splicing process [16].

We hope that the articles and reviews included in this special issue will illuminate new progresses
in the field of alternative splicing and its function(s) in physiological and pathological conditions.
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