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Abstract: Over a decade ago, the formation of neutrophil extracellular traps (NETs) was described as
a novel mechanism employed by neutrophils to tackle infections. Currently applied methods for
NETs release quantification are often limited by the use of unspecific dyes and technical difficulties.
Therefore, we aimed to develop a fully automatic image processing method for the detection and
quantification of NETs based on live imaging with the use of DNA-staining dyes. For this purpose,
we adopted a recently proposed Convolutional Neural Network (CNN) model called Mask R-CNN.
The adopted model detected objects with quality comparable to manual counting—Over 90% of
detected cells were classified in the same manner as in manual labelling. Furthermore, the inhibitory
effect of GW 311616A (neutrophil elastase inhibitor) on NETs release, observed microscopically, was
confirmed with the use of the CNN model but not by extracellular DNA release measurement. We
have demonstrated that a modern CNN model outperforms a widely used quantification method
based on the measurement of DNA release and can be a valuable tool to quantitate the formation
process of NETs.

Keywords: neutrophil extracellular traps (NETs) quantification; automatic image analysis;
convolutional neural networks (CNN), mask R-CNN; neutrophils; chronic granulomatous disease;
reactive nitrogen species; nitric oxide; peroxynitrite

1. Introduction

Neutrophils are the most abundant leukocytes in human blood, constituting the first line of defense
against infecting pathogens. For decades, neutrophils were thought to fight microorganisms via two
major mechanisms—Phagocytosis followed by intracellular degradation in an oxygen-dependent or
oxygen-independent manner and degranulation, i.e., the release of granular content into phagosomes
or extracellular space [1,2]. A discovery of a novel mechanism in which the neutrophil may tackle
an infection—The release of neutrophil extracellular traps (NETs)—Caused a rapid increase in the
interests among the scientific community in the antimicrobial functions of granulocytes [3]. NETs were
first described by Brinkmann et al. in 2004 as extracellular structures released by activated neutrophils,
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composed of a DNA backbone ornamented with antimicrobial proteins, such as myeloperoxidase
(MPO), neutrophil elastase (NE), cathepsin B, and histones. Due to their physical properties and
presence of high concentrations of lytic proteins, NETs are suggested to act as efficient traps for
immobilizing and neutralizing pathogens. The current consensus states that NETs can be released
either by the cells undergoing lytic cell death (in a process called NETosis) or without the destruction
of plasma membranes [4]. In the latter mechanism, activation of neutrophils results in the release of
nuclear DNA after the fusion of DNA-containing vesicles with plasma membranes or the extrusion
of mitochondrial DNA [5,6]. To date, a large body of evidence indicates that NETs can be formed
in response to bacterial, fungal, viral, or parasitic infections. Furthermore, neutrophils release NETs
upon activation of neutrophils by various cytokines or biologically relevant molecules/particles,
e.g., interleukin-8, platelet-activating factor, and monosodium urate crystals [7]. Despite a clearly
beneficial role as a physical barrier controlling the spreading of an infection, NETs have also their dark
side—Increased NETs formation has been associated with multiple pathological conditions, including
autoimmune diseases, diabetes, or cancer [7]. A growing list of NETs-associated diseases gives rise to
intense research on molecular mechanisms governing the process of NETs formation. The results of
these studies might contribute to the development of new strategies for managing conditions arising
from improper NETs formation and/or degradation [8].

Quantification of NETs released by isolated neutrophils in vitro constitutes an indispensable
yet problematic element of NET-related research [9]. Existing protocols rely predominantly on two
methods: analysis of microscopic images or spectrofluorometric quantification of DNA released by
activated neutrophils [10]. The major pitfall of spectrofluorometric measurements is the inability
to distinguish between NETosis and other modes of cell death as a source of extracellular DNA.
On the other hand, manual analysis of microscopic images is time-consuming, laborious, generates
intra-observer variability and hampers comparisons of results between different laboratories [9].
Accordingly, several authors provided digital, semi- or fully automatic solutions to facilitate the
quantitative analysis of microscopic images. Most of the methodologies described previously rely
on an analysis of paraformaldehyde-fixed samples stained either solely with DNA-binding dyes or
in combination with immunofluorescently labeled antibodies [11–16]. However, one should bear in
mind that fixation procedure precludes differentiation between dead and viable cells [17]. Moreover,
immune-histological processing frequently causes artefacts—For example, washing off the fragile
structure of NETs [18]. An alternative technique based on a digital processing of microscopic live images
of cells stained solely with DNA-binding dyes bypasses the necessity of extensive sample handling and
may eliminate some of potential artifacts related to sample preparation [17,19]. Furthermore, it does
not require the use of expensive reagents. For this approach, the state-of-the-art methods of quantifying
NETs release described in references [17,19] are semi-automatic, require applying threshold-based
algorithms, and differentiate resting neutrophils from NETs on the basis of a single parameter—The
size of the object. Notably, recent advances in the field concern the use of multispectral imaging flow
cytometry for quantitative, high throughput analysis of NETs formation. However, this method may
underestimate NETs released in the late stages of this process and requires high-cost, sophisticated
equipment, which makes it unlikely to become widely accessible in the near future [20,21].

Here, we aimed to develop an automatic image processing method for detection and quantification
of NETs based on live imaging and machine learning algorithm. Our work is based on the concept
of Convolutional Neural Networks (CNNs), the origins of which can be traced back to 1968, when
Hubel et al. [22] observed that the visual cortex of a monkey contains numerous neurons that respond
only to small regions of the visual field. This observation inspired further research on artificial neural
networks [23], which later in 1998 allowed for an introduction of a first seven-layer CNN that achieved
impressive performance on 32 × 32 pixel images [24]. With the availability of GPU computing machines
that dramatically speeded-up calculations, in 2012, CNNs demonstrated their superiority over previously
known methods in detection of objects in images [25]. As a consequence, more and more image
analysis problems, including those with a profound impact on research in cell biology and infectious
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biology [26–28] are addressed with the use of CNNs. The actual limitation for new applications of this
machine learning technique is the lack of training datasets required for a CNN model in the training stage,
before the model can be used in the inference mode. Our contribution is creating a public dataset that
can be used by other researchers to train CNN models for quantification of NETs based on live imaging.
In order to demonstrate that at least near-human performance in detecting objects in microscopical
images can be achieved with use of CNNs in this field, we adopted a recently proposed model called
Mask R-CNN [29], carried out training, and evaluated the model on our dataset. We also present
comparison of quantification carried out by the adopted CNN model and spectrofluorometry.

2. Materials and Methods

2.1. Procedures for Isolation and Stimulation of Neutrophils; Visualization of NETs

2.1.1. Reagents

Roswell Park Memorial Institute (RPMI) 1640 medium, HEPES, micrococcal nuclease
(MNase), Hoechst 33342, SYTOX Green and SYTOX Orange were purchased from Thermo Fisher
Scientific (Waltham, MA, USA). Anti-NE (ab21595) and secondary anti-rabbit FITC-conjugated
(ab6717) antibodies were purchased from Abcam (Cambridge, UK). Peroxynitrite and S-nitroso-N-
acetyl-dl-penicillamine (SNAP) were purchased from Cayman Chemicals (Ann Arbor, MI, USA) and
GW 311616A (neutrophil elastase inhibitor, NEi) was purchased from Axon Medchem (Groningen,
The Netherlands). All other reagents, unless otherwise stated, were purchased from Sigma Aldrich
(St. Louis, MO, USA).

2.1.2. Isolation of Human Neutrophils and Stimulation of NETs Release

This study was approved by the Ethics Committee of the Medical University of Warsaw, Poland
(reference numbers: KB/225/2014 and KB/55/A/2017), and the investigations were carried out following
the rules of the Declaration of Helsinki. For most experiments, samples of peripheral blood of adult
healthy blood donors were collected at and purchased from Regional Blood Donation Center. According
to Polish legal regulations, each donor signed an informed written consent which enabled blood
donation center to sell their blood constituents for research purposes. The blood was also collected
from seven patients, including three children, suffering from chronic granulomatous disease (CGD;
age in years mean ± SEM: 6 ± 1.7) and three control, healthy children (age in years, mean ± SEM:
6 ± 1.7). CGD diagnosis was based on clinical symptoms and the defective production of superoxide,
as confirmed by nitroblue tetrazolium assay and/or dihydrorhodamine 123 oxidation assay by flow
cytometry. Informed written consent was signed by each individual or their caretakers.

Neutrophils were isolated using density gradient centrifugation and a polyvinyl alcohol
sedimentation method, as described elsewhere [30]. Isolated neutrophils were resuspended in
RPMI 1640 without phenol red supplemented with 10 mM HEPES. Cells were seeded into wells of
appropriate plates (as indicated below), pre-treated with NEi (20 µM) when necessary, and allowed to
settle for 30 min. Subsequently, cells were stimulated with 100 nM phorbol 12-myristate 13-acetate
(PMA), 500 µM SNAP (nitric oxide donor), or 100 µM peroxynitrite for 1–3 h at 37 ◦C, 5% CO2.
Alternatively, culture medium (RPMI 1640 without phenol red supplemented with 10 mM HEPES)
was added to the wells instead of NETs-inducing agents; these samples served as negative controls.

2.1.3. Microscopic Live Imaging of NETs

To visualize in vitro NETs release, 2 × 104 cells per well (1 × 105 cells/mL) were seeded into
48-well plates and treated as stated above. Fifteen minutes before indicated time point, cells were
simultaneously stained with Hoechst 33342 (1.25 µg/mL) to visualize nuclear DNA in all cells and
SYTOX Green (100 nM) to visualize DNA of cells with compromised cell membranes. At indicated
timepoint NETs were visualized using an inverted fluorescent microscope Leica DMi8 equipped with a
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40×magnification objective. During each experiment, imaging parameters (exposure time and light
intensity) were adjusted so that the fluorescence signal from the brightest objects in both channels was
≥235 arbitrary units (8-bit camera).

2.1.4. Immunofluorescence Staining of NETs

Neutrophils were seeded into 8-well Lab-Tek chambers (2.5 × 104 cells/well, 6.25 × 104/mL) and
stimulated as stated above. After a two-hour incubation, samples were fixed with 4% paraformaldehyde
for 20 min, permeabilized with 0.1% Triton X-100, and blocked with 5% bovine serum albumin (BSA)
and 10% goat serum. Samples were stained with antibodies directed against NE (1:100, overnight,
4 ◦C) and secondary antibodies conjugated with FITC (1:2000, 1 h, room temperature (RT). DNA
was counterstained with 1 µM SYTOX Orange. NETs were visualized using an inverted fluorescent
microscope Leica DMi8 equipped with a 40×magnification objective.

2.2. Open NETs Dataset for Image Analysis Models

To advance research regarding quantification of NETs release, we have created a dataset of
microscopical pictures of neutrophils stimulated to release NETs. In our studies we used live imaging
approach and we make the dataset available to the public together with bounding box ground
truth annotations. A dataset of microscopical pictures of neutrophils with bounding box ground
truth annotations is available at https://github.com/krzysztoffiok/CNN-based-image-analysis-for-
detection-and-quantification-of-neutrophil-extracellular-traps. All images were acquired according
to the procedures described above and stained with SYTOX Green and Hoechst 33342. The objects
in the images were manually assigned by one qualified scientist into four categories: unstimulated,
decondensed, NET-producing and dead cells. Objects stained blue (solely with Hoechst 33342),
of polymorphonuclear shape were classified as “unstimulated” cells; blue decondensed objects of
round shape, bigger than unstimulated cells, were designated as “decondensed” cells. The presence
of “decondensed cells” can be interpreted as an early stage of neutrophils activation preceding NETs
release. Big, decondensed objects stained both with SYTOX Green and Hoechst 33342 of characteristic
cloud-like or net-like appearance were designated as “NETs”. Objects stained with both DNA dyes,
of condensed chromatin and smaller size than NETs, were classified as “dead” cells. Notably, this
type of cells can be a source of extracellular DNA, which interferes with fluorometric measurements
and falsely elevates the estimates of NETs release levels. Examples of objects classified into the
aforementioned categories are shown in Figure 1.

Ground truth annotations were created with the use of open software [31] in popular Pascal
VOC [32] format and are also provided in MS CoCo [33] format. The acquired images were randomly
divided into training data set (61.6% images, 62.5% cells), validation data set (19.7% images, 21.5%
cells), and test data set (18.7% images, 16% cells). Following random split of the images, the data sets
consisted of

• Training data set: images from 15 individuals, 5–27 images (mean ± SEM: 12.5 ± 1.9) and 65–473
labeled objects (mean ± SEM: 210.6 ± 37.3) per each individual;

• Validation data set: images from four individuals, 2–22 images (mean ± SEM: 15.0 ± 4.5) and
27–438 labeled objects (mean ± SEM: 332.5 ± 101.8) per each individual;

• Test data set: images from six individuals, 6–12 images (mean ± SEM: 12.5 ± 1.0) and 122–271
labeled objects (mean ± SEM: 169.3 ± 22.8) per each individual.

Further characteristics of the dataset are presented in Table 1.

https://github.com/krzysztoffiok/CNN-based-image-analysis-for-detection-and-quantification-of-neutrophil-extracellular-traps
https://github.com/krzysztoffiok/CNN-based-image-analysis-for-detection-and-quantification-of-neutrophil-extracellular-traps
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Figure 1. Representative examples of objects manually assigned as unstimulated, decondensed, 
neutrophil extracellular trap (NET)-releasing or dead cells. Isolated human neutrophils were seeded 
into plates, pre-incubated with or without neutrophil elastase inhibitor (NEi) for 30 min and 
stimulated with phorbol 12-myristate 13-acetate (PMA), S-nitroso-N-acetyl-DL-penicillamine (SNAP) 

Figure 1. Representative examples of objects manually assigned as unstimulated, decondensed,
neutrophil extracellular trap (NET)-releasing or dead cells. Isolated human neutrophils were seeded into
plates, pre-incubated with or without neutrophil elastase inhibitor (NEi) for 30 min and stimulated with
phorbol 12-myristate 13-acetate (PMA), S-nitroso-N-acetyl-dl-penicillamine (SNAP) or peroxynitrite
or left unstimulated. After 1–3 hours of incubation, cells were simultaneously stained with Hoechst
33342 and SYTOX Green. Samples were visualized with inverted fluorescent microscope and 300
images were gathered at 40× magnification to create a NETs dataset. The observed objects were
manually assigned into four categories: unstimulated, decondensed, NET-producing, and dead cells.
In this figure representative examples of objects assigned into aforementioned categories are shown.
Bar = 50 µm.

Table 1. Dataset created using live imaging of neutrophils releasing NETs.

Subset Images Cell Type

Unstimulated Decondensed NET Dead

Split

Total 305 3017 638 1919 581
Train 188 1918 492 1241 193
Val 60 701 69 374 182
Test 57 398 77 304 206

2.3. CNN Quantification Method

In our work, we applied a known Convolutional Neural Network (CNN) model to address
the problem of quantification of NETs release. The choice of proper CNN architecture is connected
with speed–quality tradeoff. In our application, the goal was to carry out a high-quality analysis of
microscopic images that does not require real-time operation. Therefore, we adopted a model that is
slow but provides high-quality results, namely Mask R-CNN [29]. For our work, we chose an open
source implementation by Matterport [34] in Python with the use of Keras and Tensorflow frameworks.
The model and its implementation has already gained popularity among various researchers [35–40]
for of several reasons—The model is published under MIT license, which allows users to modify the
model; it adopts well established CNN backbone ResNet [41] and recently introduced concepts like
Feature Pyramid Network (FPN) [42] and ROI Align that in terms of quality make Mask R-CNN
superior to comparable models like Faster R-CNN; the maximum accepted input image resolution of
the model (1024 × 1024 pixels) is high when compared to many previously developed CNN models
like YOLO (up to 608 × 608 pixels) [43] or Faster R-CNN [42] Python implementation (600 × 1000
pixels). The ability to analyze higher resolution images is important especially when dealing with
small objects like biological cells [35].
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2.3.1. Model Training

Training of the adopted model was carried out on a single GPU Tesla K80 12 GB RAM, and the
above described dataset was only slightly augmented for training by affine transformations. Due to
limited hardware resources the whole training was carried out at batch size = 1. All hyper-parameters
and training parameters are provided in the Supplementary Materials. We carried out transfer learning
started from the MS CoCo pre-trained model weights. As a result, the later described performance of
our model can be treated as a baseline that should be easy to outperform.

2.3.2. Performance Metrics for the CNN Model

To assess model performance, subsequent metrics in the object detection domain were adopted:
MS CoCo (Average Precision at 10 Intersection over Union (IoU) levels of 0.50:0.95) [33]; Pascal VOC
(Average Precision and at IoU 0.50) [32]. In addition, we have also calculated the values of: Average
Precision at IoU 0.10; Average Recall at IoU 0.50; Average Recall at 10 IoU levels 0.50:0.95; Average
Recall at IoU 0.10.

The metrics are rarely calculated at low IoU levels, such as 0.10, due to the fact that this would
imply that model accepts high localization error. We have decided to add this assessment parameters
because for our research goal, which is simple quantification of the objects, their proper localization
is of secondary importance. All of calculated parameters were averaged over four object categories.
Also, we have followed the MS CoCo metrics approach and added distinction of parameter’s values
according to the size of analyzed objects. The object’s sizes were divided into three groups—Smaller
than 32 square pixels, medium between 32 and 96 square pixels, and larger than 96 square pixels.

2.4. Quantification by Measurement of Extracellular DNA Release

Neutrophils (5 × 104 cells per well, 1.25 × 105 cells/mL) were seeded into 48-well plates and
stimulated as stated above. After 2 h incubation, 500 mIU of MNase were added to each well to detach
DNA from the cell surface. Following a 20 min incubation, the activity of MNase was stopped with
5 mM EDTA, and the plates were centrifuged for 10 min at 415 g. Supernatant was then transferred into
a black 96-well plate in triplicates, and 500 nM of SYTOX Green were added to each well. The amount
of DNA released from the cells was measured in a FLUOstar OMEGA plate reader (BMG Labtech,
Ortenberg, Germany).

The data were normalized and presented as the fold changes in NETs formation. Mean fluorescence
readout from unstimulated cells was set as 100% DNA release in each donor. Subsequently, individual
fluorescence readouts from samples stimulated with peroxynitrite and/or pretreated with NEi were
normalized to this value and shown as the percentage.

2.5. Statistical Analysis

The results were analyzed using GraphPad Prism version 5 (one-way ANOVA) or 6 (two-way
ANOVA). Kolmogorov-Smirnov test was used to check if the values come from a Gaussian distribution.
Multiple groups were compared with a one-way ANOVA test with post-hoc Bonferroni’s multiple
comparison test. Alternatively, two-way ANOVA with Tukey’s post hoc test was used. P ≤ 0.05 was
considered as significant.

3. Results

3.1. The Adopted Model Detects Objects with Quality Comparable to Manual Counting

To create the NETs dataset, neutrophils isolated from healthy blood donors were stimulated with
PMA, SNAP, and peroxynitrite for up to 3 h. When appropriate, cells were incubated with NEi for
30 min prior to stimulation. At the indicated timepoint, cells were simultaneously stained with Hoechst
33342 and SYTOX Green and visualized. As we and others reported previously [44–46], all three
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stimuli efficiently induced NETs release and preincubation with NEi diminished NETs formation
(Supplementary Figure S1). NETs formation could be consecutively observed as the loss of lobulated
nuclear shape, rounding of the nucleus and loosening of the chromatin structure followed by the
rupture of cell membrane and release of cloud-like NETs structures. In SNAP- and PMA-stimulated
samples pretreated with NEi, NEi activity was manifested mostly as a decrease in a fraction of cells
releasing NETs and an increase in a fraction of multilobulated cells, stained only with Hoechst 33342.
Conversely, samples preincubated with NEi and stimulated with peroxynitrite could be distinguished
by the dominance of small, condensed object stained both with SYTOX Green and Hoechst 33342,
classified as “dead” cells. Images of stimulated cells and negative controls were taken, and objects
were manually assigned into four different categories and this dataset was used for training of the
adopted CNN model as described in Methods.

To enlarge NETs dataset, we included similarly processed images of neutrophils isolated from
CGD patients and stimulated with SNAP or peroxynitrite. As we reported previously, peroxynitrite
efficiently stimulated NETs release, whilst no or very weak NETs release upon incubation with SNAP
was observed [46] (Supplementary Figure S2).

To validate the ability of the adopted model to detect and qualify cells into pre-determined
categories, we prepared a set of 57 images containing almost 1000 objects not previously used to train
our model. These images were subjected to automatic analysis using the trained CNN model, and the
results of this analysis were compared with the results of manual analysis performed by a person who
had previously prepared the dataset for training. When considering results with higher localization
error (IoU = 0.5 and IoU = 0.1), the CNN model achieved average recall of 0.925 and 0.931 respectively,
thus it was able to detect over 92% of all manually detected cells. At the same time, the average
precision of the model was 0.906 and 0.913, respectively, meaning that over 90% of detected cells were
classified in the same manner as in manual labelling. Detailed results of the comparison are presented
in Table 2. Examples of detections made by the CNN model compared to manual human labeling are
shown in Figure 2. The pre-trained CNN model acquired a good performance in detecting NETs that
overlapped and/or consisted of highly decondensed chromatin (thus exhibiting less bright fluorescence
than NETs covering smaller areas), yet these types of NETs were more likely to be missed during the
automatic analysis than brightly-stained, well-separated NETs. Examples of NETs incorrectly classified
by the pre-trained CNN model are shown in Supplementary Figure S3.

Table 2. Performance metrics of the adopted Convolutional Neural Network (CNN) model on our
test subset.

Metric
Area

Small Medium Large All

AP @ IoU = 0.50:0.95 (MS CoCo) 0.380 0.593 0.213 0.593
AP @ IoU = 0.50 (Pascal VOC) 0.580 0.930 0.305 0.906

AP @ IoU = 0.10 0.619 0.930 0.316 0.913
AR @ IoU 0.50:0.95 0.467 0.673 0.235 0.666

AR @ IoU = 0.50 0.625 0.946 0.317 0.925
AR @ IoU = 0.10 0.656 0.947 0.325 0.931

3.2. The CNN Model is Superior to NETs Quantification Based on Extracellular DNA Release

Next, we compared the performance of the CNN model with the widely used assessment of NETs
formation based on the of measurement DNA release. Briefly, isolated neutrophils were pretreated
with NEi for 30 min and stimulated with peroxynitrite for 2 h. At the indicated timepoint, NETs
formation was assessed fluorometrically and simultaneously images of unfixed cells stained with
Hoechst 33342 and SYTOX Green were taken, which were then both inspected visually by an operator
and underwent analysis using the adopted model. Effect of NEi on NETs formation was also verified
using immunofluorescent detection of NETs and manual microscopic evaluation.
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Figure 2. The adopted model trained on our preliminary dataset is able to detect objects with quality
comparable to manual labeling. Images of unfixed neutrophils stained with Hoechst 33342 and SYTOX
Green were analyzed by the CNN model (right) in parallel with manual analysis (left). To facilitate the
assessment of labeling, colored dots are shown at one of the four vertexes of a rectangle surrounding
the object. Grey dots are unstimulated cells (un), blue dots are decondensed cells (dec), violet dots are
NETs, yellow dots are dead cells. Numerical values represent model’s confidence in the given cell class
prediction—1 is maximum confidence, and the scale bar is 100 µm.

Visual inspection of live images confirmed that NEi inhibited peroxynitrite-induced NETs
release (Figure 3a). In peroxynitrite-stimulated samples, after 2 h of stimulation, we detected mostly
NET-releasing or decondensed cells, whilst preincubation with NEi noticeably inhibited NETs formation
and resulted in the predominance of small, condensed, double-positive objects. Importantly, NEi
showed no signs of cytotoxicity in unstimulated samples and control neutrophils pre-incubated
with NEi preserved their multilobulated shape (Figure 3a). No effect of NEi on the morphology of
ustimulated cells and inhibition of peroxynitrite-induced NETs formation by NEi could also be observed
in immunofluorescently-labeled samples (Figure 3b). Notably, in samples preincubated with NEi and
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stimulated with peroxynitrite large proportion of neutrophils’ nuclei lost their multilobulated shape, but
no signs of decondensation were evident (Figure 3b). Analyses performed with the pre-trained CNN
model remained in perfect agreement with aforementioned live microscopy observations. Vast majority
(≥94%) of objects in negative control incubated with or without NEi were classified as unstimulated
cells, most objects in peroxynitrite-stimulated samples were classified as decondensed or NET-releasing
cells (19.3 ± 3.1% and 72.4 ± 3.7% of objects, respectively) and over 70% of objects were classified as
dead cells in samples preincubated with NEi and further stimulated with peroxynitrite (Figure 3c).
Statistical analysis confirmed significant differences in NETs formation between samples stimulated with
peroxynitrite and samples preincubated with NEi and then stimulated with peroxynitrite (Figure 3d).
On the other hand, simultaneous spectrofluorometrical measurements of DNA release failed to show
differences in NETs formation between samples pre-incubated with or without NEi and stimulated with
peroxynitrite (Figure 3e). There was only a slight, insignificant reduction in DNA release in samples
preincubated with NEi and stimulated with peroxynitrite compared to samples not treated with this
inhibitor. Overall, these results confirmed a good performance of our model, superior to DNA release
measurement-based assay and its utility to readily assess NETs formation using live-cell imaging.
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effect of NEi on NETs release. Peripheral blood neutrophils were isolated from peripheral blood of six
healthy donors, samples were pretreated with NEi for 30 min and/or stimulated with peroxynitrite for
2 h. Negative control—Unstimulated cells, incubated only with RPMI 1640. (a) Representative images
of samples pretreated with NEi and/or stimulated with peroxynitrite using live imaging with Hoechst
33342 and SYTOX Green; (b) representative images of immunofluorescently-labeled samples pretreated
with NEi and/or stimulated with peroxynitrite; (c, d) for each patient, 10 images of unfixed cells
stained with Hoechst 33342 and SYTOX Green were taken per each one of four experimental conditions
(negative control; cells pretreated with NEi; cells stimulated with peroxynitrite; cells pretreated with
NEi and stimulated with peroxynitrite). The images were analyzed using the adopted model and
the results were analyzed as percentage of objects of different classes and compared between groups.
(d) n = 6, 2-way ANOVA with post-hoc Tukey’s test. (e) At the indicated timepoint, NETs formation
was assessed fluorometrically using SYTOX green after detachment of DNA with MNase, n = 6, 1-way
ANOVA with posthoc Bonferroni’s test.

4. Discussion

This work contributes considerably to the research on the neutrophil extracellular traps by
proposing a breakthrough approach in identifying and quantifying NETs formation based on live
imaging and processing of these images with a CNN-trained model. We provide evidence that this
robust model achieves near-human performance and is superior to NETs quantification based on the
measurement of extracellular DNA release. Moreover, this technology of data acquisition allows to
analyze hundreds of images in much shorter time that manual counting of NETs in microscopical
images and assures reproducibility of the results. In the proposed method, staining of the samples is
performed using readily available DNA-binding dyes and the image acquisition procedure does not
involve the use of expensive laboratory equipment like a confocal microscope—Images can be taken
with an inverted fluorescence microscope. Additionally, analysis of images in the proposed approach
can be carried out on a standard computer.

Soon after its discovery, the process of NETs formation turned out to be implicated in multiple
pathologies [47–50]. Accordingly, it is predicted that quantification of NETs-associated markers
could provide clinically useful information [51]. If NETs are to become a biomarker supporting
patients management, the assay procedure and detection methods must be standardized across clinical
laboratories. Moreover, to compare the results of various research studies, NET-specific measures need
to be unified. To date, experimental conditions used by different authors vary between laboratories
and these differences concern e.g., the type of cell culture medium used, addition of fetal bovine
serum or albumin, material of which the chambers are made (plastic/glass), seeding densities, time of
stimulation or concentrations of stimuli. Notably, all of the aforementioned variables can influence
NETs formation [9,10,17,52,53]. Furthermore, there are multiple methodologies used to quantitatively
assess the process of NETs formation–some of them relying on the measurement of the extracellular
DNA using DNA-intercalating dyes, some of them using ELISA measurements of DNA complexed
with neutrophil-derived proteins, and others are based on the analysis of microscopical images with
manual or automated counting [10,54–56]. Even though a number of automated or semi-automated
methodologies to quantify NETs based on microscopy images have been proposed [11,14,20], some of
them relatively easy to implement on a large scale [12,13,17], still very few of them have been widely
adopted by other researchers. Recently, an imaging flow cytometry has been proposed as a method
for automatic determination of NETosis [21,57]. However, due to limited access of vast majority of
laboratories to such an equipment, it is not likely to become widespread in the nearest future. The main
advantages of the model we propose is the ease of use once the model has been trained and the ability
to differentiate between SYTOX-positive NETs and SYTOX-positive cells of condensed chromatin, here
designated as dead cells.

In our hands, live-imaging-based CNN model was able to show inhibitory effect of NEi on
peroxynitrite-induced NETs release, contrary to spectrofluorometric method, previously criticised
due to inability to differentiate between different modes of cell death as a source of DNA release [10].
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Importantly, simultaneous use of Hoechst 33342 and SYTOX Green for live imaging performed better
than immunofluorescent labelling. Live imaging revealed the preponderance of dead cells in samples
pretreated with NEi and stimulated with peroxynitrite, contrary to the dominance of unstimulated cells
in untreated samples (negative controls). On the other hand, immunofluorescence labelling revealed
only subtle alterations of nuclear morphology in both above-mentioned experimental set-ups, making
these inconspicuous changes easy to overlook or misinterpret. What is more, simple immune processing
of the samples would not allow to differentiate, whether changes in the nucleus morphology coincide
with the disruption of plasma membrane. Live imaging of cells appears to be a good alternative
to immune labelling, since it requires less processing and entails much lower risk of introducing
artifacts [13,17,19]. However, immune-histological staining may be necessary to confirm the presence
of NETs if uncommon inducers are used or in samples consisting of mixed cell populations (not solely
isolated granulocytes). One should also bear in mind that NETs composition may differ and not all of
the markers commonly used to identify NETs might be detected on all immunofluorescently-labeled
NET-like structures [13].

Notably, although our study is not the first one to explore the potential of live imaging to analyze
NETs formation process [17,19], this is the first approach utilizing CNN-based machine learning but
not threshold-based algorithms. Even though an asset of the previously proposed methodology is
higher interpretability due to its simplicity, a CNN-based model streamlines an image-analysis process
(images do not require any pre-processing), as well as may take advantage of higher robustness
towards imaging artefacts. Another advancement proposed by our study, in comparison with previous
reports [17,19], is the ability to discriminate between resting, polymorphonuclear granulocytes (here
designated as “unstimulated” cells) and rounded, decondensed, SYTOX Green-negative cells (here
designated as “decondensed” cells). Changes of nuclear morphology and loss of the nuclear lobules is
well-recognized as an early event preceding NETs release. With this additional class of images, NETs
release process can be more thoroughly monitored at the early steps of its advancement.

In our study, we have decided to calculate standard performance metrics and also take into
consideration those at very low IoU level, thus accepting higher localization errors. This decision came
out from a belief, expressed also by Coelho et al. [14], that, for the purpose of NETs quantification, the
most important is the correct biological result but not pixel correctness. Yet surprisingly the model’s
performance at “standard: IoU = 0.5 is only slightly lower when compared with IoU = 0.1, which
means that the model already achieved acceptable localization correctness.

The evidence has accumulated that the individual variations in enumeration of NETs-producing
cells between observers may be the source of bias and/or systematic error [13,14]. Thus, the fact that our
work capitalized on microscopic data for training of the CNN model provided by a human operator
might be considered as a limitation of our study. The bias can occur if the method is based on human
labelling of images implemented in the training dataset, but on the other hand, the model learns
from the operator to differentiate between separate objects within conglomerate of several objects
(Figure 2), just as well as a qualified operator can do. It was impossible or extremely difficult to reliably
quantify NET-releasing objects among several adjacent cells using previous methods based on object
size [12,13,19]; our model overcomes these limitations. The performance of the proposed model might
be further improved by the enlargement of the training dataset, preferably prepared by a group of
highly qualified scientists and by using a wide variety of stimuli of NETs release to include less typical
morphological features of NET-releasing cells, such as blebbing of the nucleus [21]. Consistently, the
results presented in Table 2 should be treated as a baseline for other researchers who will hopefully
make use of the dataset that we publish along with this study.

5. Conclusions

To our knowledge, no study to date proposed open dataset for training of image analysis models to
quantify the phenomenon of NETs release basing on a live-imaging technique. We have demonstrated
that a modern CNN model outperforms quantification method based on the measurement of DNA
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release. The proposed approach does not require expensive, sophisticated equipment and the images
can be analyzed with a public-domain software package. Moreover, further tuning of the algorithms
for image analysis can improve the model. We hope that our model will contribute to concerted human
effort to quantify NETs both for research and diagnostic purpose.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/9/2/508/s1,
Figure S1. Neutrophil elastase inhibitor diminishes NETs formation upon phorbol 12-myristate 13-acetate (PMA),
S-nitroso-N-acetyl-DL-penicillamine (SNAP), and peroxynitrite stimulation; Figure S2. Peroxynitrite but not
SNAP induce NETs release by neutrophils isolated from chronic granulomatous disease (CGD) patients; Figure S3.
Examples of NETs-objects incorrectly classified by the pre-trained CNN model.
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