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Abstract: Ubiquinone is an important cofactor that plays vital and diverse roles in many biological
processes. Ubiquinone-binding proteins (UBPs) are receptor proteins that dock with ubiquinones.
Analyzing and identifying UBPs via a computational approach will provide insights into the pathways
associated with ubiquinones. In this work, we were the first to propose a UBPs predictor (UBPs-Pred).
The optimal feature subset selected from three categories of sequence-derived features was fed into
the extreme gradient boosting (XGBoost) classifier, and the parameters of XGBoost were tuned by
multi-objective particle swarm optimization (MOPSO). The experimental results over the independent
validation demonstrated considerable prediction performance with a Matthews correlation coefficient
(MCC) of 0.517. After that, we analyzed the UBPs using bioinformatics methods, including the statistics
of the binding domain motifs and protein distribution, as well as an enrichment analysis of the gene
ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway.

Keywords: ubiquinone-binding proteins; XGBoost; binding domain motifs; gene ontology; KEGG
pathway

1. Introduction

Ubiquinone, also known as coenzyme Q (CoQ), is a fat-soluble organic compound that is ubiquitous
in all cell membranes of all animals and most bacteria. It is a powerful antioxidant in cell membranes
and lipoproteins, an important component of the electron transport chain, and plays a central role in
the process of mitochondrial oxidative phosphorylation [1,2]. Coenzyme Q-10 (CoQ10) is the most
common form of ubiquinones, where Q represents the quinone chemical group, and 10 represents
the number of isoprenyl chemical subunits in its tail [3]. CoQ10 tends to concentrate in organs with
high energy requirements, such as the heart, liver, and kidney. Special interest in CoQ10 has arisen
from the fact that it associates with many types of diseases, such as heart disease [4,5], chronic kidney
disease [6,7], and cancer [8,9]. However, the pharmacology of CoQ10 is not entirely clear, and further
comprehensive studies are required for clarity.

Like other ligands, ubiquinones perform their functions mainly by binding with receptors.
Ubiquinone-binding proteins (UBPs) are receptor proteins that dock with ubiquinones. The identification
and characterization of UBPs provide important clues for understanding the metabolic pathways involving
ubiquinones. Currently, abundant protein sequence data have been garnered. Recognizing UBPs from
large numbers of proteins through traditional biochemical experiments has become more and more
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difficult because of high time, labor, and financial costs [10,11]. In this case, analyzing and identifying
UBPs by computational methods will assist in annotating protein functions, help to characterize motifs,
provide insights into the pathways associated with ubiquinones, and contribute to the development of
the pharmaceutical industry.

In recent decades, a number of prediction models have been proposed to identify ligand-binding
proteins from sequence-derived information using computational methods [12]. For example,
Shaherin B. et al. [13] identified growth hormone-binding proteins by using the extremely randomized
tree; Chauhan S. et al. [14] predicted DNA-binding proteins using multilayer perceptron (MLP)
and deep convolutional neural network (CNN); and Pan X.Y. et al. predicted RNA-binding proteins
using CNN and bidirectional long short term memory network (BLSTM) [15]. Although great attention
has been paid to ubiquinones and UBPs by biochemical and medical researchers, few studies have
been done in the field of bioinformatics and, at present, no computational prediction methods currently
exist for UBPs identification.

In this study, we proposed a machine learning-based predictor (UBPs-Pred) to identify UBPs from
primary protein sequence information. First, we collected UBPs from the Swiss-Prot database [16]
to establish a high-quality benchmark dataset. Then, three kinds of sequence-derived features were
extracted, including amino acid composition (AAC), dipeptide composition (DC), and position-specific
scoring matrix (PSSM). In order to determine the optimal features needed to provide key clues
for UBP identification, random forest (RF) was used to rank the importance of the features,
and incremental feature selection (IFS) was used to build the optimal subset of features. Subsequently,
the selected features were fed into the extreme gradient boosting (XGBoost) classifier. To fully leverage
the advantages of XGBoost, multi-objective particle swarm optimization (MOPSO) was employed for
parameter tuning. The results of the independent testing demonstrated that the predictor achieved
excellent performance, with a Matthews correlation coefficient (MCC) of 0.517. The source code can be
found at https://github.com/NENUBioCompute/UBPs-Pred.

Besides building a UBPs predictor, we analyzed UBPs by using bioinformatics methods. We tried
to discover the motifs of ubiquinone-binding domains and found eight motifs that were statistically
enriched. Then, the distribution of UBPs was counted, and we determined that most of the UBPs were
membrane proteins. The statistics on the distribution of superfamilies showed that the identified UBPs
were members of various kinds of superfamilies that were involved in complex biological processes.
To further analyze the functions of UBPs, especially in the human body, gene ontology (GO) enrichment
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment of human UBPs were
analyzed, and we found that four disease pathways appeared in the top 11 significantly enriched
KEGG pathways.

2. Materials and Methods

2.1. Benchmark Datasets

We built benchmark datasets for training and testing the proposed model. Positive samples were
obtained by the following procedures. First, 10,224 UBPs were collected from Swiss-Prot (released on
June 5, 2019) by parsing the annotation of proteins. Second, we removed the proteins that contained
unknown residues or less than 50 residues because unknown residues may confuse the prediction model,
and sequences of less than 50 residues tend to be peptides rather than complete protein sequences.
Next, to reduce the negative influence of data redundancy and homology bias [17], we removed
the homologous proteins with >30% similarity. CD-HIT [18] was used to cluster the remaining proteins
with a sequence identity cut-off of 0.3, and the representative protein of each cluster was selected.
Finally, we obtained 524 UBPs that were non-redundant positive samples.

Except for the 10,244 UBPs, all other proteins were considered to be non-UBPs. We collected
524 non-redundant negative samples via the same procedure as the positive ones. A total of 450
UBPs and 450 non-UBPs were randomly selected and combined as the training dataset (UBPs900),
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and the remaining 148 samples (74 UBPs and 74 non-UBPs) were used as the testing dataset (UBPs148).
To avoid the potential instability of the predictor, we repeated the process for extracting negative
samples five times and built five benchmark datasets. All the predicted results reported in this work
were the average of the five experiments using these datasets. The benchmark datasets can be found in
the Supplementary Materials (Data S1: BenchmarkDatasets.zip).

2.2. Feature Construction

The primary amino acid sequences of the proteins cannot be directly used by machine learning
methods. Encoding proteins with digital features is the first step in constructing a predictor. The quality
of the features directly affects the performance of the predictor. We chose three types of features to encode
the proteins: the amino acid composition (AAC), the dipeptide composition (DC), and the position-specific
scoring matrix (PSSM).

2.2.1. Amino Acid Composition (AAC)

The twenty amino acids directly encoded by triplet genetic codons are known as the standard amino
acids. A protein sequence is a linear chain of standard amino acid residues. Proteins differ from one
another primarily in their arrangement of amino acids, which results in the protein folding into a specific
structure that determines its function. The amino acid composition (AAC) represents the distribution
of twenty amino acids in proteins, which is the most intuitive way to describe the differences between
proteins. Numerous methods have been developed by using AAC as an important component
of features for annotation of protein function [19,20]. The amino acid composition of a protein is
a 20-dimension vector in which the element is the ratio of the corresponding residue that appears in
the protein. For a given protein, the AAC feature can be defined as

fAAC(i) =
AAi

L i ∈ {1, 2, 3, . . . , 20} (1)

where AAi represents the number of the i-th type of amino acids appearing in the protein, and L
represents the length of the protein.

2.2.2. Dipeptide Composition (DC)

Similar to the feature of AAC, the dipeptide composition (DC) is another amino acid composition
descriptor that introduces the intrinsic information of the protein sequences. The DC feature has been
applied in many predictive problems, such as mycobacterial membrane protein type identification [21]
and bioluminescent protein prediction [22]. DC is a 400-dimension vector that indicates the occurrence
frequency of all the possible adjacent amino acid pairs. The element of the vector is the ratio of
the corresponding amino acid pair that appears in the protein. Given a protein, the DC feature can be
defined as

fDC(i, j) = AAiAA j
L−1 i, j ∈ {1, 2, 3, . . . , 20} (2)

where AAiAA j represents the number of the corresponding adjacent amino acid pair that appears in
the given protein, and L represents the length of the protein.

2.2.3. Position-Specific Scoring Matrix (PSSM)

With the evolutionary process over successive generations, certain heritable characteristics of
proteins become more common or rarer within a protein family. The similarities of evolutionary
conservation are always associated with structural or functional needs [23,24]. The position-specific
scoring matrix (PSSM) is one of the most effective and widely used descriptors that represent
the evolutionary conservation of protein sequences. PSSM has received a great deal of attention
from researchers and has been successfully used in a number of problems, such as protein secondary
structure prediction [25] and DNA-binding protein identification [26,27]. The PSSM of a given protein
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can be obtained by using the PSI-BLAST [28] tool to search the Swiss-Prot database (released on June
5, 2019) through three iterations, with an E-value threshold of 0.01. The E-value is the statistical
measurement of the number of expected matches in the database. The lower the E-value, the more
likely the match is to be significant. The PSSM of a protein can be defined as

PSSM =


S1,AA1 S1,AA2 . . . S1,AA20

S2,AA1 S2,AA2 . . . S2,AA20
...

SL,AA1

...
SL,AA2

...
. . .

...
SL,AA20

 (3)

where Si,AA j is the element’s value of PSSM, which represents the occurrence frequency of AA j at the i-th
position of the given protein in the result of multiple sequence alignment. L represents the length of
the protein. For a given protein, we further flattened the original PSSM into a vector with equal length
and obtained a 400-dimension feature that can be defined as

fPSSM(i, j) =
L∑

i=1
Si,AA j × δ

{
δ = 1, Ri = AA j
δ = 0, Ri , AA j

i, j ∈ {1, 2, 3, . . . , 20} (4)

where Ri represents the i-th residue in the protein sequence.
In summary, 820-dimensional features were used to encode proteins, including 20 AAC, 400 DC,

and 400 PSSM.

2.3. Feature Selection Strategy

According to the descriptions in the previous section, three categories of features were used for
the prediction model: AAC, DC, and PSSM. All of these features were statistically based and considered
all amino acid types and pairwise combinations. Although these features introduced the intrinsic
information of protein sequences, noisy and redundant features inevitably existed. To better understand
these features and correctly verify the prediction model, a feature selection strategy was required.
By using the process of feature selection, noisy features were removed, and the prediction performance
was further improved.

Random forest (RF) [29–31] was used to rank the importance of the features in this work.
The importance score for a given feature was computed by averaging the decrease in the Gini index
when the feature was chosen to split the nodes. Features with larger scores were ranked as more
important [32]. A total of 526 out of 820 features remained in this step because the important scores of
the other features were 0. We believed that the more important features would contribute more to
the classification performance. According to the ranked feature list, the incremental feature selection
(IFS) [33] strategy was used to build a series of feature subsets by increasing the features one by one.
For each feature subset, a model was built and evaluated. The model that achieved the highest MCC
value was chosen as the final prediction model, and the features in the corresponding subset were
chosen as the optimal features. The optimal feature subset contained 242 features, including 9 AAC,
87 DC, and 146 PSSM features.

2.4. Binary Prediction Model

Extreme gradient boosting (XGBoost) [34] is a decision tree-based ensemble algorithm that
applies the principle of boosting weak learners using gradient descent architecture. XGBoost is
an optimization of the gradient boosting algorithm using both software and hardware optimization
techniques. XGBoost was first proposed by Chen T.Q. and Guestrin C. in 2016. Since its introduction,
this algorithm has become the driving force in several cutting-edge research fields, including (but not
limited to) bioinformatics. XGBoost has been widely used in many bioinformatics problems, such as
gene expression value prediction [35], protein subcellular localization [36], and internal ribosome entry
site prediction [37].
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2.5. Parameter Tuning

XGBoost is a highly sophisticated algorithm that involves multiple parameters. We needed
to consider parameters and tune their values to fully leverage the advantages of XGBoost.
These parameters could be divided into three categories: general, booster, and learning task parameters.
General parameters define the overall functionality, notable among them are booster and nthread.
“booster” controls the type of booster to be run at each iteration, which can be gbtree (tree-based
booster, which is the default) or gblinear (linear booster). We set it as default because the tree-based
booster significantly outperforms the linear booster. “nthread” controls the number of cores used
for parallel processing based on the maximum number of threads that are available. We set nthread
as default to obtain the optimal speed. In each iteration, the booster parameters define the individual
tree-based booster, and the learning task parameters guide the optimization objective. There are plenty
of parameters in both categories, but not all of them are worthy of tuning. We tuned eight parameters
that significantly influence the predictor, including learning_rate, n_estimators, max_depth, subsample,
colsample_bytree, gamma, reg_alpha, and reg_lambda. The details of these parameters are illustrated
in Table 1.

Table 1. Information about the parameters of XGBoost tuning by multi-objective particle swarm
optimization (MOPSO) in this work: name, description, default value, threshold while searching,
and tuned value.

Parameter Description Default Threshold Tuned

Booster Parameters

learning_rate Step size shrinkage 0.10 [0,0.5] 0.08
n_estimators Number of trees 100 [100,2,000] 162
max_depth The maximum depth of a tree 3 [1,10] 8
subsample Percentage of samples used per tree 1.00 [0,1] 0.75

colsample_bytree Percentage of features used per tree 1.00 [0,1] 0.12

Learning Task Parameters

gamma Controls a given node will split or not 0 [0,1] 0.83
reg_alpha L1 regularization term on weight 0 [0,1] 0.08

reg_lambda L2 regularization term on weights 1.00 [0,2]

Tuning the parameters of XGBoost is a typical multi-objective optimization problem,
and the traditional grid search method is extraordinarily time-consuming. In this case, multi-objective
particle swarm optimization (MOPSO) [38] was employed to obtain the ideal values of these parameters.
Particle swarm optimization (PSO) [39] is a single-objective optimization algorithm that mimics
the social behavior of bird flocks. MOPSO is an extension of PSO for multi-objective optimization
problems, which takes the concept of Pareto dominance to list the best solutions to guide the movement
of the particles. We randomly initialized 80 sets of 8-dimension vectors as the particle population,
in which each item in the vector of a particle represented one parameter of XGBoost. The stopping
criterion was when the maximum number of iterations was reached (200 times). The default values of
the parameters before tuning, the searching thresholds, and the optimal value combination tuned by
the MOPSO is illustrated in Table 1.

2.6. Performance Evaluation

The identification of UBPs is a typical binary classification problem that requires reliable evaluation
processes and metrics. When training the model and tuning the parameters on the training dataset,
we used 5-fold cross-validation to evaluate the model. First, the training dataset was randomly
divided into five equal subsets. Then, one subset was chosen as the validation dataset, while all
of the remaining samples were used for training. This process was repeated ten times to build ten
submodels. Finally, the average validation results between the rounds were used as an estimate
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of the identifier. After training the model, the samples in the testing dataset were tested to assess
the identification model’s ability to predict the first seen samples.

To quantitatively evaluate the proposed identifier, six measurements that are widely used for
binary classification problems were adopted in this study: sensitivity (Sen), specificity (Spe), precision
(Pre), accuracy (ACC), F1-measure (F1), and the Matthews correlation coefficient (MCC). Sen measures
the proportion of observed UBPs that are correctly identified. Spe measures the proportion of observed
non-UBPs that are correctly identified. Pre measures the proportion of predicted UBPs that are correctly
identified. ACC measures the proportion of samples that are correctly identified. The F1-measure is
a comprehensive measurement of test accuracy that considers both the Sen and the Pre. The value range
of these five metrics is [0,1]. The higher the coefficient, the better the prediction performance. MCC is
the correlation coefficient between the observed and predicted classification values, whose range is
[−1,1]. The coefficient value 1 represents an entirely correct prediction, −1 represents a completely
wrong prediction, and 0 represents a random prediction. MCC was regarded as the most reliable
evaluation metric when tuning the model.

Sen =
TP

TP + FN
(5)

Spe =
TN

TN + FP
(6)

Pre =
TP

TP + FP
(7)

ACC =
TP + TN

TP + TN + FP + FN
(8)

F1 = 2×
Sen× Pre
Sen + Pre

(9)

MCC =
TP× TN − FP× FN√

(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)
(10)

where TP, FP, TN, and FN represent true positive, false positive, true negative, and false negative,
respectively.

3. Results and Discussion

3.1. Comparison of Different Classifiers

A powerful binary classifier is the foundation of a predictor. Thus, we tested six commonly used
machine learning methods via cross-validation, including naïve Bayes (NB), multi-layer perceptron
(MLP), support vector machine (SVM), adaptive boosting (AdaBoost), random forest (RF), and extreme
gradient boosting (XGBoost). According to Table 2, XGBoost achieved the best prediction performance
and was chosen as the classifier for the predictor. Notably, the last three methods were ensemble
learning-based and significantly outperformed the others.

3.2. The Feature Selection Result

After ranking the importance of the features by random forest, 526 out of 820 features remained.
The incremental feature selection (IFS) strategy was used to build a series of feature subset by
increasing the features one by one. For each feature subset, a model was built and then evaluated
over cross-validation. The performance of these prediction models was measured by the MCC
value. As shown in Figure 1, the MCC value reached its maximum when 242 features were collected
as the optimal feature subset. The predictor obtained an MCC value of 0.490 using all the features
and obtained an MCC of 0.560 using the optimal feature subset.
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Table 2. Comparison of the different classifiers.

Classifier Sen 1 Spe 2 Pre 3 ACC 4 F1 5 MCC 6

NB 0.536 0.767 0.696 0.650 0.604 0.311
MLP 0.594 0.738 0.744 0.675 0.629 0.377
SVM 0.688 0.705 0.698 0.695 0.692 0.393

AdaBoost 0.704 0.734 0.723 0.719 0.712 0.438
RF 0.651 0.814 7 0.781 0.734 0.708 0.474

XGBoost 0.754 0.759 0.756 0.755 0.753 0.511
1–6 are the performance evaluation indicators of the predictor: Sen represents the sensitivity; Spe represents
the specificity; Pre represents the precision; ACC represents the accuracy; F1 represents the F1-measure;
MCC represents the Matthews correlation coefficient (MCC). 7 The bolded parts represent the highest value
of the corresponding evaluation indicator.

Figure 1. The Matthews correlation coefficient (MCC) value of the models in the process of incremental
feature selection (IFS).

To discover the contributions of different types of features, we investigated the distribution
of each kind of feature in the optimal feature subset. As shown in Figure 2, 9 out of 20 (45%)
for the amino acid composition (AAC), 87 out of 400 (22%) for dipeptide composition (DC), and 146 out
of the position-specific scoring matrix (PSSM) were selected for the optimal feature subset. The PSSM
was obviously much better than the others. Although the number of DC in the optimal feature subset
was higher than that of the AAC, the percentage of the selected DC among all the DCs was much lower
than that of the AAC. We thus considered AAC to be more effective than DC.

Figure 2. Distribution of each kind of feature in the optimal feature subset. AAC: amino acid
composition; DC: dipeptide composition; PSSM: position-specific scoring matrix.

3.3. The Result of Parameter Tuning

XGBoost is a highly sophisticated algorithm that involves multiple parameters. To leverage
the advantages of XGBoost, we tuned the eight most common parameters using multi-objective
particle swarm optimization (MOPSO). The prediction performance of the predictor before and after
the parameter tuning over the cross-validation and independent validation are shown in Table 3.
The prediction performance of the predictor was significantly improved after parameter tuning.
This demonstrated that XGBoost was parameter-sensitive, and the process of parameter tuning
was necessary.
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Table 3. Comparison of the prediction performance before and after parameter tuning through
cross-validation and independent validation.

Models Sen Spe Pre ACC F1 MCC

Cross-Validation

Default parameters 0.759 0.786 0.779 0.772 0.768 0.545

Tuned parameters 0.746
* 0.807 0.796 0.776 0.768 0.577

Independent Validation

Default parameters 0.649 0.760 0.727 0.705 0.686 0.411
Tuned parameters 0.703 0.811 0.788 0.757 0.743 0.517

* The bolded parts represent the highest value of the corresponding evaluation indicator.

3.4. Case Studies

We investigated four proteins that composed a mitochondrial respiratory complex II (PDB ID:
1YQ4 [40]) as case studies to demonstrate the effectiveness of UBPs-Pred. The UniProt IDs of the four
proteins were Q9YHT1 (SdhA), Q9YHT2 (SdhB), D0VWW3 (SdhC), and Q5ZIS0 (SdhD). It should be
noted that the sequences of these proteins were different in PDB and UniProt, and we used the version
of UniProt. UBPs-Pred identified that SdhB, SdhC, and SdhD were ubiquinone-binding proteins,
but SdhA was not a ubiquinone-binding protein. SdhB and SdhD were annotated as ubiquinone-binding
proteins in UniProt. Although SdhC was not annotated as a UBP in UniProt, previous work demonstrated
that SdhC contained ubiquinone binding sites [41]. These proteins are potential drug targets through
which the nuclear SdhB, SdhC, and SdhD genes encoding complex II are considered to be tumor
suppressor genes. Furthermore, in SdhC, mutation (Gly-713 to Glu) leads to the increased production
of reactive oxygen species and premature aging that shortens the life span [42,43]. The sequence
and structure information of these proteins can be found in the Supplementary Materials (Data S2:
CaseStudies.zip).

Respiratory complex II or succinate dehydrogenase (Sdh) is an enzyme complex that can
be found in the inner mitochondrial membrane. It is the only enzyme that participates in both
the Krebs cycle [44] and the mitochondrial respiratory chain [45]. As illustrated in Figure 3, Sdh is
composed of four subunits: a flavoprotein subunit (SdhA), an iron-sulfur protein subunit (SdhB),
a cytochrome b560 subunit (SdhC), and a cytochrome b small subunit (SdhD) [46]. SdhA and SdhB are
hydrophilic proteins where the enzymatic activity of the complex takes place. SdhC and SdhD are
hydrophobic transmembrane proteins that anchor to the inner mitochondrial membrane. In the Krebs
cycle, Sdh catalyzes the oxidation of succinate to fumarate with the reduction of ubiquinone to
ubiquinol [47]. In the mitochondrial respiratory chain, the fully oxidized form of flavin adenine
dinucleotide (FAD) is reduced to its hydroquinone form (FADH2). Electrons flow from FAD to FADH2

and are then transferred to ubiquinone through a series of iron–sulfur clusters: Fe2S2, Fe4S3, and Fe3S4.
The ubiquinone undergoes reversible redox cycling between its oxidized form (ubiquinone) and its
reduced form (ubiquinol). This redox cycling allows the ubiquinone to function as an electron carrier
in the mitochondrial respiratory chain [48,49].

3.5. Ubiquinone-Binding Domain Analysis

In genetics, a protein sequence motif is a sequence pattern that is widespread and has biological
significance. We tried to determine the motif within ubiquinone-binding domains that might assist
the discovery of potential drug targets. The ubiquinone-binding domains were extracted from all
10,224 UBPs in the Swiss-Prot database. A total of 1803 binding sites were annotated for 1791 UBPs.
The ubiquinone-binding domain for a given binding site was constructed by slicing a sequence
fragment with 21 residues for which the binding site was the center. We determined the motifs of these
sequence fragments by using MEME [50]. The statistical significance of each motif was measured by
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its E-value. Motifs with an E-value within 0.05 were considered to be statistically significant, and eight
motifs were identified. Figure 4 shows the sequence logos of eight motifs and the 3D visualizations of
these examples. Details on motif discovery can be found in the Supplementary Materials (Data S3:
BindingDomain.zip).

Figure 3. Illustration of the respiratory complex II of the mitochondrial respiratory chain.

Figure 4. Cont.
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Figure 4. Sequence logos of the motif within the ubiquinone-binding domains. The threshold of
the E-value is 0.05. “Sites” represents the number of sites contributing to the construction of the motif.
“Width” represents the width of the motif. The 3D visualization on the right is an example of
the corresponding motif. “Protein” represents the PDB ID_Chain (domain). “Ligand” represents
the type of ubiquinone.

3.6. Distribution of UBPs

3.6.1. Most UBPs are Membrane Proteins

As of June 5, 2019, a total of 10,224 UBPs were found in the Swiss-Prot database. According to
the statistics, 8880 out of 10,224 proteins (86.9%) were membrane proteins (MPs). Among them,
6085 proteins (68.5%) were transmembrane proteins (TMPs). All of the TMPs wereα-helical transmembrane
proteins (α-TMPs). After preprocessing, we collected 524 UBPs to construct the benchmark datasets,
including the training dataset and the testing dataset. According to the statistics of the selected UBPs,
387 out of 524 proteins (73.9%) were membrane proteins (MPs). Among them, 265 proteins (68.5%) were
α-helical transmembrane proteins (α-TMPs). All of the TMPs were α-helical transmembrane proteins
(α-TMPs). It was obvious that the majority of UBPs were membrane proteins. The statistics of UBP types
can be found in Supplementary Materials (Distribution.zip).

3.6.2. Superfamilies of UBPs

The protein superfamily is the largest protein clade with common ancestry. This common ancestry
is usually inferred from the similarity of proteins’ sequence, structure, and function. A superfamily
typically contains several homologous protein families that have similar motifs or are involved in
similar biological processes. We analyzed the superfamily distribution of the selected UBPs by
extracting the clan annotation from the Pfam protein family database [51]. A total of 280 out of 525
UBPs were annotated by Pfam, and the statistical results are illustrated in Figure 5.

A total of 47 protein superfamilies appeared in the statistics, and the top 10 superfamilies contained
about 74.1% UBPs. The top three superfamilies were ComplexI-N (CL0425), NADP_Rossmann
(CL0063), and FumRed-TM (CL0335). ComplexI-N (CL0425) contained 80 UBPs. Proteins in this
superfamily were part of respiratory complex I, which is associated with proton translocation across
the membrane by catalyzing the electron transfers from NADH to ubiquinone. NADP_Rossmann
(CL0063) [52] contained 34 UBPs and was a class of redox enzymes that contains two domains:
one is a catalytic domain that confers the precise reaction of the enzyme, and the other one is
the Rossmann domain that binds nicotinamide adenine dinucleotide (NAD) and FAD. FumRed-TM
(CL0335) included 20 UBPs that contain transmembrane proteins from both the succinate dehydrogenase
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and fumarate reductase complexes [53]. Information about the superfamilies of UBPs can be found in
the Supplementary Materials (Data S4: Distribution.zip).

Figure 5. The superfamily distribution of the selected Ubiquinone-binding proteins (UBPs). The digital
labels on the chart represent the number of UBPs that the superfamily contains. The names of the categories
listed in the legend are the clan name in the Pfam database. All superfamilies in the “Others” category
contain one protein.

UBPs appeared in various superfamilies that were involved in multiple complex biological
processes. In order to understand the functions of UBPs, especially in the human body, we further
analyzed the gene ontology enrichment and KEGG pathway enrichment of UBPs in the human species.

3.7. Gene Ontology Enrichment Analysis

Gene ontology (GO) is an important bioinformatics project that unifies information of genes
and gene products across species. The basic information of GO contains information about the biological
process (BP), cell component (CC), and molecular function (MF). The enrichment analysis of GO was
used to test whether the queried set of genes was statistically enriched in a GO term, which could be
measured by P-values:

P-value = 1−
m−1∑
i=0

(
M
i

)(
N −M
n− 1

)
(

N
n

) (11)

where M is the number of all genes that are annotated by certain GO terms, m is the number of query
genes annotated by certain GO terms, N is the number of all the genes of the specific organism that
are annotated in GO, and n is the number of query genes annotated by the GO term. The cut-off for
the P-value was set to 0.05.

We obtained information regarding 113 human ubiquinone-binding proteins from Swiss-Prot.
Figure 6 illustrates general information of the GO enrichment analysis results for these proteins,
which feature 10 significantly enriched terms in BP, CC, and MF. A total of 2225 BPs were enriched,
and this was considered statistically significant for 923 of them. The mitochondrial respiratory chain
and metabolic processes were the most highly enriched biological processes. In total, 266 CCs were
enriched, and this was considered statistically significant for 130 of them. The mitochondrial associated
cell components were highly enriched; 407 MFs were enriched, and this was considered statistically
significant for 140 of them. Apart from ubiquinone binding, catalytic activity, oxidoreductase activity,
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and dehydrogenase activity were the three molecular functions that were observed to be the most
highly enriched.

Figure 6. The general information of the gene ontology (GO) enrichment analysis result of human
UBPs: (a) enriched biological processes; (b) enriched cell components; (c) enriched molecular functions.
The description on the left side of the bar refers to the name of the gene term. “Percent of Genes” refers
to the percentage of the number of genes involved in a given term compared to the total number of genes
in the query proteins. The digital label on the right side of the bar of a gene term refers to the number of
the genes involved in this term and its corresponding P-value. “Max Level” refers to the maximal annotated
level of the given term in the GO graph. Different colors refer to the different max levels. Terms with
the same max level are sorted according to P-value.

3.8. KEGG Pathway Enrichment Analysis

The Kyoto Encyclopedia of Genes and Genomes (KEGG) is a bioinformatics database that unifies
information on genomes, biological pathways, diseases, drugs, and chemical substances. Enrichment
analysis of the KEGG pathway was used to test whether a query set of genes was statistically enriched
in the KEGG pathway. This enrichment could be measured by the P-value using the formula used for
GO enrichment analysis.

Figure 7 illustrates the top 10 significantly enriched KEGG pathways for the human UBPs.
For the 113 human UBPs, 70 pathways were enriched, and 11 of them were considered statistically
significant. Three categories of pathways were enriched, including five metabolism pathways,
one organismal system pathway, and four human disease pathways. Parkinson’s disease, Alzheimer’s
disease, liver disease, and Huntington’s disease are the top four disease pathways associated with
UBPs. Details about the KEGG pathway analysis can be found in the Supplementary Materials (Data S6:
KEGG.zip).
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Figure 7. The top 10 significantly enriched KEGG (Kyoto Encyclopedia of Genes and Genomes)
pathways of human UBPs. The description on the left side of the bar refers to the name of the KEGG
pathway. “Percent of Genes” refers to the percentage of the number of genes involved in a given pathway
compared to the total number of genes in the query proteins. The digital label on the right side of
the bar of a gene term refers to the number of the genes involved in this pathway and the corresponding
P-value. Different colors refer to the different categories of the pathways. Pathways of the same
category are sorted by P-value.

4. Conclusions

In this study, we proposed the first UBPs predictor (UBPs-Pred), for which three types of
sequence-derived features were collected: AAC, DC, and PSSM. Subsequently, a feature selection
strategy that combined RF and IFS was used to build the optimal feature subset. Then, the selected
features were fed into XGBoost, and the parameters of XGBoost were tuned using MOPSO.
The experimental results demonstrated excellent prediction performance, with an MCC value of 0.517.

We then analyzed the UBPs using bioinformatics methods. By analyzing the ubiquinone-binding
domains, we found eight motifs that were considered statistically significant. By analyzing
the distribution of UBPs, we found that 86.9% of UBPs were membrane proteins. UBPs appeared in
47 superfamilies, and the top 10 superfamilies contained about 74.1% UBPs. ComplexI-N (CL0425),
NADP_Rossmann (CL0063), and FumRed-TM (CL0335) were the top three superfamilies. By analyzing
the GO enrichment of human UBPs, we found that 923 BP, 130 CC, and 140 MF were statistically
significant. The mitochondrial respiratory chain and metabolic processes were the most strongly
enriched biological processes. The mitochondrial associated cell components were highly enriched.
Apart from ubiquinone binding, catalytic activity, oxidoreductase activity, and dehydrogenase activity
were the three molecular functions that were found to be the most highly enriched. By analyzing
the KEGG pathway enrichment of human UBPs, we found that 11 pathways were statistically significant.
Among them, Parkinson’s disease, Alzheimer’s disease, liver disease, and Huntington’s disease were
the top four disease pathways associated with UBPs.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/9/2/520/s1,
Data S1: BenchmarkDatasets.zip, Data S2: CaseStudies.zip, Data S3: BindingDomain.zip, Data S4: Distribution.zip,
Data S5: GeneOntology.zip, Data S6: KEGG.zip.
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