
genes
G C A T

T A C G

G C A T

Article

CNV Detection from Circulating Tumor DNA in Late
Stage Non-Small Cell Lung Cancer Patients

Hao Peng 1,†, Lan Lu 2,†, Zisong Zhou 3,†, Jian Liu 4, Dadong Zhang 5, Kejun Nan 6,
Xiaochen Zhao 7 , Fugen Li 3, Lei Tian 8,*, Hua Dong 3,* and Yu Yao 6,*

1 Department of Clinical Medicine, Kunming University of Science and Technology, Yunnan 650093, China
2 National Cancer Center, National Clinical Research Center for Cancer, Shenzhen 518116, China
3 The Bioinformatics Department, 3D Medicines Inc., Shanghai 201114, China
4 Department of Clinical Medicine, Guangzhou Medical University, Guangzhou 511436, China
5 The Translational Medicine Department, 3D Medicines Inc., Shanghai 201114, China
6 Department of Medical Oncology, Xi’an Jiaotong University, Shaanxi 710061, China
7 The Medical Department, 3D Medicines Inc., Shanghai 201114, China
8 Department of Thoracic Surgery Clinical Colleage, Chongqing Medical University, Chongqing 400016, China
* Correspondence: leitian@cqmu.edu.cn (L.T.); hua.dong@3dmedcare.com (H.D.);

yaoyu123@xjtufh.edu.cn (Y.Y.); Tel.:+86-187-2563-6892 (L.T.); +86-21-3469-6522 (H.D.);
+86-135-7210-1611 (Y.Y.)

† These authors contributed equally to this work.

Received: 12 October 2019; Accepted: 12 November 2019; Published: 14 November 2019 ����������
�������

Abstract: While methods for detecting SNVs and indels in circulating tumor DNA (ctDNA) with
hybridization capture-based next-generation sequencing (NGS) have been available, copy number
variations (CNVs) detection is more challenging. Here, we present a method enabling CNV detection
from a 150-gene panel using a very low amount of ctDNA. First, a read depth-based CNV estimation
method without a paired blood sample was developed and cfDNA sequencing data from healthy
people were used to build a panel of normal (PoN) model. Then, in silico and in vitro simulations
were performed to define the limit of detection (LOD) for EGFR, ERBB2, and MET. Compared to
the WES results of the 48 samples, the concordance rate for EGFR, ERBB2, and MET CNVs was
78%, 89.6%, and 92.4%, respectively. In another cohort profiled with the 150-gene panel from 5980
lung cancer ctDNA samples, we detected the three genes’ amplification with comparable population
frequency with other cohorts. One lung adenocarcinoma patient with MET amplification detected
by our method reached partial response to crizotinib. These findings show that our ctDNA CNV
detection pipeline can detect CNVs with high specificity and concordance, which enables CNV calling
in a non-invasive way for cancer patients when tissues are not available.

Keywords: copy number variations; targeted sequencing; circulating tumor DNA; non-small cell
lung cancer

1. Introduction

Tumor genomic profiling plays a critical role in personalized therapy and has become a routine
procedure in the diagnosis and treatment of multiple types of cancers [1,2]. Tissue biopsies sequencing
is the golden standard for genomic profiling [3]. However, tumor tissues are sometimes not available
in late-stage or intensively treated patients due to poor physical condition or inaccessible location of
tumors. Thus, liquid biopsies sequencing becomes an alternative way of obtaining genomic information
on cancer patients [4]. In recent years, circulating tumor DNA (ctDNA) has been widely used for
molecular diagnosis, monitoring treatment responses, tracking clonal revolution, and detecting the
emergence of cancer recurrence and drug resistance [5–7].

Genes 2019, 10, 926; doi:10.3390/genes10110926 www.mdpi.com/journal/genes

http://www.mdpi.com/journal/genes
http://www.mdpi.com
https://orcid.org/0000-0002-6603-257X
https://orcid.org/0000-0003-4265-5702
http://www.mdpi.com/2073-4425/10/11/926?type=check_update&version=1
http://dx.doi.org/10.3390/genes10110926
http://www.mdpi.com/journal/genes


Genes 2019, 10, 926 2 of 13

Polymerase chain reaction (PCR)-based platforms such as amplification refractory mutation system
(ARMS), droplet digital PCR (ddPCR), and next-generation sequencing (NGS)-based platforms are
common methods for ctDNA analysis in the clinical setting. The NGS platform possesses incomparable
superiority for providing high-throughput sequencing of large numbers of genes in a single run.
Moreover, almost all types of aberrations could be detected by hybrid capture-based NGS, including
single nuclear variations (SNVs), short insertions/deletions (indels), gene rearrangements, and copy
number variations (CNVs) [8]. Advanced technologies and algorithms have been developed to improve
the sensitivity and accuracy of ctDNA variant analysis with NGS [9,10]. Methods for calling SNVs
and indels in ctDNA-based sequencing have been well established. The sensitivity and specificity of
detecting hot-spot mutations are both >90% [10]. However, CNV calling from ctDNA-based tests is
the most challenging due to high level of biases and artifacts from limited ctDNA fraction in the whole
blood circulating free DNA (cfDNA), which can be as below as 1% [4].

Comprehensive analysis of CNVs is an important component in establishing the molecular
diagnosis of cancer. Aberrations in gene copy number comprising DNA amplifications and deletions
represent important therapeutic targets or are associated with drug resistance and tumor biology in
many cancers [11–14]. Current methods for CNV detection from ctDNA samples using target-captured
sequencing require paired normal-tumor samples and are capable of detecting CNVs in prostate,
gastric, bladder, breast, and lung cancer [15–19]. However, no systematic comparison between ctDNA
and matched tissue biopsies has been performed. This is required to provide evidence to confirm the
reliability of ctDNA-based CNV detection.

In this study, we used a cancer gene panel consisting of 150 genes (GP150) and developed a pipeline
for detecting ctDNA CNVs without paired normal samples, utilizing multiple factory normalization
and a panel of normal as an error model. Spike-in in silico simulation and in vitro cell line dilution data
were generated to validate the performance and determine the limit of detection (LOD) of EGFR, ERBB2,
and MET amplification. Subsequently, the concordance analysis of CNV results between ctDNA and
paired tumor-normal tissues from a cohort study has been completed. Finally, CNV prevalence from
ctDNA in a large independent cohort of lung cancer patients confirmed the CNV detection method
and a case of non-small cell lung cancer (NSCLC) patient with MET amplification who benefitted from
crizotinib treatment supported the validity of ctDNA CNV detection.

2. Materials and Methods

2.1. Cell Culture and cfDNA Extraction

Human breast cancer cell line HCC1975 and human lung adenocarcinoma cell line NCI-H1573
were obtained from ATCC. All cells were maintained in RPMI-1640 (Hyclone, San Angelo, TX, USA)
supplemented with 10% fetal bovine serum (FBS); (ThermoFisher, Waltham, MA, United States) and
propagated as monolayer cultures at 37 ◦C in a humidified 5% CO2 incubator. The supernatant
(30 mL) of cell culture medium from three 10-cm dishes was concentrated to 3 mL by an ultrafiltration
concentrator Vivacell 100 (Littleton, MA, United States) for 45 min. cfDNA was extracted from a
concentrate of the cell culture medium supernatant using a QIAamp Circulating Nucleic Acid Kit
(Qiagen, Dusseldorf, Germany) according to the manufacturer’s instructions.

2.2. Sample Collection

Ten plasma samples from healthy people were selected as a reference data set to build the panel
of normal controls. Approximately 48 NSCLCs with matched tumor tissues and blood samples were
collected between August 2015 and January 2018 and met the following criteria: (1) Stages IIIB or
IV patients; (2) blood samples were collected before surgery of tumor samples or within 14 days
apart from tumor biopsy samples; and (3) tumor tissues were determined based on the percentage
of tumor cells by H&E staining. Only samples with a tumor cell percentage >20% were included
in this study. All patients provided specimens with written informed consent. All participants
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gave their informed consent before they participated in the study. Another cohort of 5980 NSCLC
cfDNA samples from Chinese patients were collected between July 2017 and September 2019 and were
tested in CAP and CLIA accredited laboratory (3D Medicines, Shanghai, China) for hybrid capture,
followed by next-generation sequencing of the GP150 panel. The study was conducted in accordance
with the Declaration of Helsinki, and the protocol was approved by the Ethics Committee of Xi’an
Jiaotong University.

2.3. DNA Extraction

Blood was centrifuged in STRECK tubes at 1600 g for 20 min at room temperature to separate
plasma. Then, the plasma layer was carefully transferred to a new 1.5-mL Eppendorf tube, followed by
room temperature centrifugation at 16,000 g for 10 min to remove the residual cells and debris. The buffy
coat was then transferred to a new tube for genomic DNA (gDNA) extraction. Afterward, gDNA from
tumor FFPE tissues and white blood cells were extracted by the DNeasy Tissue or Blood Kit (Qiagen,
Dusseldorf, Germany) following standard protocols and then fragmented to a size ranging from 200 bp
to 400 bp using Covaris S2 Sonolab (Covaris, Woburn, MA, USA). The QiAamp Circulating Nucleic
Acid Kit (Qiagen, Dusseldorf, Germany) was used to extract cfDNA from plasma. DNA concentrations
were determined using a Qubit dsDNA HS Assay Kit (Life Technologies, Carlsbad, CA, USA).

2.4. Library Preparation, Target Capture, and DNA Sequencing

gDNA libraries were established by KAPA Hyper Prep Kit (KAPA Biosystems) according to the
manual. The cfDNA libraries were prepared using an Accel-NGS 2S Plus DNA Library Kit (SWIFT)
with unique identifiers (UIDs, also called barcoding technology) to tag individual DNA molecules.
The concentration and size distributions of libraries were respectively analyzed using Qubit and Caliper.

The pooled DNAs were mixed with 2 µL of DNA blocker (Integrated DNA Technologies) and
5 µL of human Cot-1 DNA (Invitrogen), and then dried using a vacuum concentrator (Thermo Fisher).
The dried mixture was dissolved in a 15 µL of hybridization buffer supplied by the hybridization of
xGen Lockdown Probes Kit (Integrated DNA Technologies), and thereafter IDT xGen Human Exome
Research Panel kit was used to capture targeted DNAs for FFPE gDNA following the standard protocol.
For plasma cfDNA library, we used a customized DNA probes in 150 genes (GP150) with unique
identification (UID) indexed capturing-based sequencing (UC-Seq) method [20].

The captured libraries for FFPE gDNA were loaded into the HiSeq X (illumina) to 150-bp
paired-end sequencing, and the captured libraries for plasma cfDNA were loaded into the NextSeq500
(illumina) to run 75-bp paired-end sequencing according to the manufacturer’s instructions.

2.5. ctDNA CNV Calling Pipeline

Raw fastq files were aligned using bwa-mem against reference genome hg19 and raw read
depth were counted probe by probe. Read depth was normalized by the median depth of all probes.
A combined model of GC content, probe overlap score, and mapping ability was applied to read
count data to further reduce bias. Then we used cfDNA sequencing data from 10 healthy people to
build a panel of normal (PoN) model. Tumor samples’ read depths were further normalized by PoN
model. We used a traditional circular binary segmentation (CBS) method to segment the resulted log
ratios. The standard deviation (SD) of all segment level log-ratios was calculated for each sample and
segments with log ratio above 3*SD were treated as amplification. Because the ploidy of ctDNA is
hard to estimate accurately and ctDNA content in cfDNA is usually low, we did not estimate genomic
deletion in this pipeline.

Calling absolute copy number (ABCN) depends on tumor fraction estimation from cfDNA.
We used insert size-based method to estimate ctDNA fraction in ctDNA. It has been reported that
ctDNA molecules from tumor cells are shorter than the cell-free molecules from normal cells [20,21].
We inferred the ctDNA fraction by the distribution difference between ctDNA and normal cfDNA.
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Proportion of cfDNA fragments below 150 bp was referred as the proportion of ctDNA faction in total
cfDNA [22].

For sample i, gene j, with tumor purity p, log2ratio is calculated by formula (1):

log2Ratio[i, j] = log2
ABCN[i, j] ∗ p + 2 ∗ (1− p)

2
(1)

Thus we could infer the ABCN by formula (2):

ABCN[i, j] =
2 ∗
(
2log2Ratio[i, j] + p− 1

)
p

(2)

The pipeline could be accessed via Github link: https://github.com/3dmed-bioi/btcnv. The raw
sequencing data has been submitted to NCBI SRA database, here is the accession link: https:
//www.ncbi.nlm.nih.gov/bioproject/PRJNA557300.

2.6. WES CNV Calling Pipeline for Tumor-Normal Sample Pairs

Raw data (fastq files) with paired samples (FFPE and its normal control) were aligned to the
human genome (hg19) using BWA aligner v0.7.12. PCR duplicate reads were removed and sequence
metric collection were done using Picard: https://github.com/broadinstitute/picard/releases/tag/1.130.
Copy number variation analysis was performed using FACETS V0.5.6: https://github.com/mskcc/

facets [23]. Tumor fraction was estimated by FACETS from WES tumor samples’ data and absolute
copy number (ABCN) were called based on the same formula (2) above.

3. Results

3.1. ctDNA CNV Detection Assay and Pipeline Development

We have designed a 150-gene panel by IDT capture method that encompasses full exons of
the 150 genes and some extra intronic probes for fusion calling. The assay development has been
validated in a CAP-accredited lab in 3DMed and the concordance between ctDNA SNV calling and
blood tumor mutation load (bTMB) has been published [20,24]. Here a coverage-based copy number
estimation method without paired blood samples was developed and the main workflow is shown
is Figure 1. Absolute copy number (ABCN) was estimated by gene log2ratio and tumor fraction
estimation from cfDNA.

3.2. In Silico Simulation and In Vitro Dilution Validation to Train the Pipeline

Two cell lines, NCI-H1573 and HCC1954, with important CNVs in clinical practice, including
ERBB2 (HCC1954), EGFR, and MET (NCI-H1573), were used for technical validation. The copy number
of MET and EGFR is 13 and 20 in NCI-H1573 respectively, and ERBB2 is 60 in HCC1954 from the CCLE
database [25,26]. We generated sequence files by down-sampling the CNV positive sequences and
spiking into three sets of four normal cfDNA samples sequenced with the same panel in a series of 5%,
4%, 3%, 2%, 1%, 0.6%, and 0.3% to reach a sequencing depth of 10,000x. The LOD was about 0.3% for
ERBB2 (2.2 copies), 3% for MET (2.5 copies), and 1% for EGFR (2.2 copies) (Figure 2A,B). The small
standard error assures high reproducibility with different sets of Panel of Normal.

We diluted the same cell lines’ cfDNA described above with another set of four normal cfDNAs to
tumor fractions of 5%, 3%, 1%, and 0.5% by in vitro experiments to re-determine the LOD. The LOD
based on in vitro dilution was about 1% (2.5 copies) for ERBB2, 3% (2.5 copies) for EGFR, and 5%
(2.5 copies) for MET (Figure 2C,D), which is slightly higher than these in silico simulation. Our ctDNA
CNV experimental validation data also showed that the target CNV can be detected when the ctDNA
ratio is 0.3–3% in silico and 1%~5% in vitro, which is in line with or better than the reference data [27,28].

https://github.com/3dmed-bioi/btcnv
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA557300
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA557300
https://github.com/broadinstitute/picard/releases/tag/1.130
https://github.com/mskcc/facets
https://github.com/mskcc/facets
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Figure 1. Flowchart of the copy number variation (CNV) calling pipeline.

3.3. Clinical Sample Validation

To further validate the performance of the ctDNA pipeline, we performed the profiling of paired
tumor-normal WES and matched cfDNA with 150-gene panel in a cohort with 48 small cell lung cancer
patients. Patient demographic and clinical characteristics of this cohort is shown in Supplementary
Table S1. The absolute copy number of the WES was determined using FACETS software with default
parameters [23], and gene level copy number was determined by overlapping CNV segments with
RefSeq gene annotations. For EGFR, ERBB2, and MET gene amplification, we set the absolute copy
number ≥6 as amplification for WES with tumor and normal pairs and log2 ratio ≥ 3-fold standard
derivation (SD) as amplification for the ctDNA compared with a panel of normals. With the WES CNV
results as a reference standard, the accuracy or concordance rate for EGFR, ERBB2, and MET CNV
calling for ctDNA was 78%, 89.6%, and 92.4%, respectively. The detection sensitivity for EGFR, ERBB2,
and MET in ctDNA was 35%, 37.5%, and 40%, respectively, and the specificity was 100% for all the
three genes.

The absolute copy number (ABCN) was estimated for ctDNA based on both DNA fragment
distribution and average variant allelic frequency. Then the ABCNs of EGFR, ERBB2, and MET between
tissue WES and cfDNA were positively correlated (Figure 3). Although our method was trained on
only three genes, it could be extended to other genes in the panel. When we estimate the overall
performance for 150 genes on the panel, using tissue WES as a standard. The overall sensitivity was 65%
when absolute copy number was >6, and 71% when absolute copy number was >13 (Supplementary
Figure S1).
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Figure 2. The EGFR, MET, and ERBB2 limits of detection (LODs) in simulated samples and in vitro
spike-in samples. (A) In silico simulation of NCI-H1573 cell line data with EGFR, and MET amplification
into three sets of four normal cfDNA samples sequenced with the same panel in a series of 5%, 4%,
3%, 2%, 1%, 0.6%, and 0.3% to reach a sequencing depth of 10,000x to define the LOD for EGFR and
MET. (B) In silico simulation of HCC1954 cell line data with ERBB2 amplification into three sets of
four normal cfDNA samples sequenced with the same panel in a series of 5%, 4%, 3%, 2%, 1%, 0.6%,
and 0.3% to reach a sequencing depth of 10,000x to define the LOD for ERBB2. (C) In vitro experiments
dilution NCI-H1573 cell line’ cfDNA described above with another set of four normal cfDNAs to tumor
fractions of 5%, 3%, 1%, and 0.5% by in vitro experiments to re-determine the LOD for EGFR and MET.
(D) In vitro experiments dilution HCC1954 cell line’ cfDNA described above with another set of four
normal cfDNAs to tumor fractions of 5%, 3%, 1%, and 0.5% by in vitro experiments to re-determine the
LOD for ERBB2.
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3.4. An Independent Clinical Cohort Re-Confirmed the Pipeline

For further clinical validation, we profiled 5980 ctDNA samples from the real-world NSCLC
cohort with the 150-gene panel. The amplifications involving EGFR, HER2, and MET were detected in
387 (6.47%), 93 (1.56%), and 118 (1.97%) samples, respectively. We compared the gene amplification
percentage with two public cohorts from cBioPortal (www.cbioportal.org): MSKCC-IMPACT clinical
sequencing cohort for NSCLC, including 1668 tissue samples, and TCGA NSCLC cohort, including
1144 tissue samples. CNVs detected in these two cohorts were 7.62% and 6.10% for EGFR, 2.46%
and 2.40% for HER2, and 2.40% and 2.01% for MET, respectively [29,30]. The comparison results
are shown in Figure 4. The difference of recurrence of EGFR/ERBB2/MET is probably due to the
different stage of tissues, as the majority data of MSKCC-IMPACT is from late-stage biopsy tissues;
while TCGA NSCLC cohort, from early-stage lung cancer primary tumor tissues. The amplification
ratio of EGFR/ERBB2/MET in ctDNA samples is slightly lower, which could be contributed by low
sensitivity of CNV detection in ctDNA. Although age and sex were matched for the three cohort,
the presence of druggable mutation is not matched due to the ethnicity and cancer stages: the cohort
of 3DMed cfDNA samples are from Chinese late stage NSCLC patients, which includes higher EGFR
mutation rate and lower KRAS rate; the cohort of MSKCC-IMPACT samples are mostly US late stage
NSCLC patients and TCGA NSCLC cohort is mostly US early stage NSCLC patients. As large Chinese
NSCLC cohort with cfDNA profiling data is not available, we use these well-known public datasets as
reference for comparison.
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Figure 4. Comparison of EGFR, ERBB2, and MET gene amplification rate from a large cohort of lung
cancer patient circulating tumor DNA (ctDNA) profiling (N = 5980) with two large cohorts with tissue
profiling: MSK (N = 1668) and TCGA (N = 1144).

3.5. Clinical Case Demonstrated This Patient with MET Amplification Was Response to Crizotinib

A female patient with lung adenocarcinoma accepted gefitinib as first-line therapy because
of EGFR L858R mutation and achieved partial response. One year later, she progressed with
extrathoracic metastasis, and gained EGFR T790M mutation in her metastatic lesion. She took
medication of osimertinib and reached partial response again. After two-year treatment with osmertinib,
she developed multiple liver metastasis. A tissue biopsy was not feasible because of her poor condition
and the high risk of re-biopsy. Thus, plasma ctDNA was profiled with a GP150 panel. MET amplification
was detected with a copy number of 10. MET amplification was considered as the mechanism of
acquired resistance to osimertinib [31]. She was treated with crizotinib and reached partial response.

www.cbioportal.org
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Her disease remained under control during the latest follow-up. Patient treatment history and
follow-up with accompanying images are shown in Figure 5.Genes 2019, 10, x FOR PEER REVIEW  9 of 14 
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4. Discussion

Detection of somatic copy number variations from ctDNA samples using targeted sequencing
is very challenging. In a 2017 study by Chae et al. [19], the comparison between tissue profiling by
FoundationOne and ctDNA profiling by Guardant360 from 45 patients demonstrated the concordance
of CNV detection (total 86 CNVs) was only 3.5%. Another study in 45 prostate cancer patients [15]
showed the concordance was 48.9% (22/45) in cfDNA vs. tissue, which is much better because it
required the samples had sufficiently high ctDNA fraction (>35%). For those samples, there was a very
high correlation between the coverage log ratios of ctDNA and matched tissue biopsies (median R2

= 0.76). Across the clinically informative mCRPC driver genes AR, BRCA2, ATM, PTEN, PIK3CA,
PIK3CB, PIK3R1, TP53, and RB1, the authors observed a concordance of 88.9% for individual gene CNV
between evaluable ctDNA and tissue biopsies. However, another report showed that tumor-derived
cfDNA reach 10% in only 33.3% of prostate cancer patients, and above 35% in 12% of patients [28]. In a
Squamous Lung Cancer Clinical Cohort, patients with high tumor fraction (>25%) in the plasma, CNV
patterns in cfDNA and tissue generally showed high concordance, with Pearson correlation values
greater than 0.75. Pearson correlation values were low (0.3–0.6) when cfDNA tumor fraction was less
than 25%, and below 0.2 when cfDNA tumor fraction was 0% [32].

In our study, we have also performed head-to-head comparison of EGFR, ERBB2, and MET gene
amplifications between tissue WES and ctDNA in 48 lung cancer patients. The concordance of EGFR,
ERBB2, and MET CNV was 78%, 89.6%, and 92.4%, respectively. The detection sensitivity for EGFR,
ERBB2, and MET was 35%, 37.5%, and 40%, respectively, and the specificity was 100% for all the three
genes. The performance was better than the previously reported datasets in breast and prostate cancer
and comparable to theoretical simulation [15,19,27,28].

Molparia et al. assessed circulating CNV detection for cancer screening based on theoretical
simulation data, which showed that CNV calling accuracy is correlated with cancer types, because
the performance is affected by these factors such as cfDNA release content to the circulating blood,
CNV calling resolution and algorithm [27]. However, Molparia et al. did not evaluate and discuss
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the possible factors from NGS experiments. The variables affecting CNV calling include (1) ctDNA
concentration in cfDNA; (2) biases caused by the experiment procedures such as PCR and library
preparing steps, targeted capture, and sequencing procedure; and (3) the heterogeneity and clonal
evolution. Further improvement of CNV detection in ctDNA is possible. ctDNA enrichment by shorter
fragment size [22] to increase ctDNA concentration of cfDNA could overcome the low ctDNA fraction
to affect CNV detection. The normalization based on GC content could reduce bias. We used a panel of
cfDNA from healthy volunteers to build the background model, which could remove some bias from
experiments and platform, and enhance the accuracy of CNV detection in ctDNA.

Our ctDNA CNV pipeline demonstrated the ability to identify ctDNA CNV in late stage non-small
cell lung cancer patients where tissue biopsy is usually not available. In this study, we largely
focus on the EGFR/ERBB2/MET gene amplification in late stage NSCLC, EGFR, ERBB2, and MET
amplification are the major resistant mechanism for EGFR T790M mutation patients, account for 39.5%
in Chabon, J.J et al’s paper [18]. In the internal cohort of NSCLC cfDNA samples, the major druggable
mutation rate was as follows: EGFR, ERBB2, and MET amplification account for 19.7% in EGFR driver
mutation positive patients, and account for only 1.92% in EGFR driver mutation negative patients,
respectively, which also suggest that EGFR, ERBB2 and MET amplification were enriched in EGFR
TKI resistant patients (Odds Ratio: 12.58; Fisher exact test P-value: < 2.2 × 1016). Our ctDNA CNV
pipeline application would highly benefit in late stage non-small cell lung cancer patients when tissue
biopsy is not available, especially in EGFR TKI resistant patients, where EGFR, ERBB2 and MET can
account for 20%~40% patient population and no effective liquid biopsy assay to identify the resistant
mechanism and following treatment decision. Additionally, our pipeline can be extended to other
cancer types. However, clinical validation should be carefully performed before this assay is applied
to a clinical laboratory.

5. Conclusions

CNV detection from ctDNA based on targeted sequencing has been challenging due to limited
ctDNA fractions in blood circulation. To improve the clinical utility of CNV detection, we developed a
pipeline based on a panel of normal as an error model and ctDNA estimation from DNA fragment
distribution. We have demonstrated that the CNV pipeline can detect EGFR, ERBB2, and MET
amplifications from ctDNA samples, which are highly concordant with these from the corresponding
tissue-based WES. An independent cohort was used for further clinical validation of gene amplification
rates from real-world NSCLC patients. Although actionable gene amplification could not be detected
in ctDNA every time, we presented a clinical case with MET amplification detected in ctDNA and
this patient was response to crizotinib. In summary, our proof-of-concept study both technically and
clinically validated the ctDNA CNV detection pipeline, which enables CNV calling in a noninvasive
way for late stage NSCLC patients when tissues are not available.
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Appendix A

There are five major steps included in the ctDNA CNV calling pipeline,
Step 1. Preprocess depth of reads per probe. Raw reads were aligned using bwa mem against

reference genome hg19; raw read depth were counted in a base within a probe.
Step 2. Normalization and bias correction. Outliers in read depth were first removed, then read

depth was normalized by the median depth of all probes.
Step 3. A combined model of GC content, probe overlap score, and mapping ability was applied

to read count data to further reduce bias. The conventional GC bias correction is a local polynomial
regression fitting (LOESS) [33], while we used spline fitting model to correct GC content bias. Not only
the target region GC content, but also the flanking region GC content will also influence the probe
coverage, as shown in Figure A1. For overlapped probes, we assumed that the capability of capture is
the same when the probe fully overlaps with the DNA segment, and linearly decreases as the length of
overlap decreases, and we applied this assumption to the whole probe set in the panel. As we assumed,
probe level depth increases near-linearly with the overlap score and saturates when the score is high
enough. We also modeled the overlap score as a component in the model using spline fitting.

Step 4. Error correction by a panel of normal. After pervious normalization and bias corrections,
some biases of unknown region were still noticeable, so we introduced a panel of normal strategy to
further refine the data.

Step 5. Segmentation and adaptive threshold. After normal segmentation, we used a traditional
circular binary segmentation (CBS) method to segment the resulted log ratios. The standard deviation
(SD) of all segment level log-ratios was then calculated for each sample, and segments with log ratio
above 3*SD were treated as amplification.
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Calling absolute CNV depends on tumor fraction estimation from cfDNA. We used two methods
to estimate tumor fraction in cfDNA. The first is the variant allele frequency-based method. Variant
calling from cfDNA was introduced in our previous paper [20]. ctDNA fraction was estimated as
two-fold of the average variant allele frequency in the sample. ctDNA fractions were estimated as 0
when no variants were called. The other estimation method we used is the DNA fragment distribution.
It has been reported that ctDNA molecules from tumor cells are shorter than the cell-free molecules
from normal cells [20,21]. We inferred the ctDNA fraction by the distribution difference between
ctDNA and normal cfDNA. We compared the two approaches with the WES CNV data, and the results
showed that ABCN estimated by DNA fragment distribution correlates better than the average VAF as
shown in Figure A2.
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