Supplementary Information

On the close relatedness of two rice-parasitic root-knot nematode species and the recent expansion of Meloidogyne graminicola in Southeast Asia

Guillaume Besnard, Ngan ThiPhan, Hai Ho Bich, Alexis Dereeper, Hieu Trang Nguyen, Patrick Quénéhervé, Jamel Aribi and Stéphane Bellafiore

Supplementary information includes the following items:

Supplementary methods1. Reference genomes used to screen contaminants
Supplementary methods 2. Estimation of genome size and depth of sequencing
Figure S1. k-mers distribution of M. graminicola and M. oryzae genomes at $k=15,19,23$ and 27
Figure S2. Comparative alignment of repeated elements composing the $65 \mathrm{R} / 94 \mathrm{R} / 63 \mathrm{R}$ mitogenomic region of M. oryzae, M. graminicola and M. incognita, respectively

Figure S3. Linearized representation of mitogenomes of M. oryzae and M. graminicola
Figure S4. Reduced-median network of Meloidogyne graminicola mitochondrial haplotypes including the information of heteroplasmic sites

Figure S5. Distribution of sequence polymorphisms between ribotype I and II along the whole nrDNA cluster of M. graminicola and M. oryzae

Figure S6. Phylogenetic relationships within Meloidogyne species based on ITS
Table S1.Origin and genome sequencing data summary generated in this study for each nematode isolate

Table S2. Accession numbers of mitochondrial genes of M. hapla and M. floridensis
Table S3. Diversity of mitochondrial genomes between and within the Meloidogyne species
Table S4. Position of SNPs, indels and heteroplasmic sites within the M. graminicola mitogenome among 13 isolates

Table S5. Assessment of the assembly completeness of available Meloidogyne graminicola genome and transcriptome

Table S6. Sequence identity between each type of homolog for the three nuclear regions investigated
Table S7. Sequencing depth of each type of homolog for the nuclear genomic regions TAA6 and ACC6 among 12 M. graminicola and two M. oryzae isolates

References

Supplementary methods

Supplementary methods $\mathbf{1}$. Reference genomes used to screen contaminants
Reference genomes used to screen contaminants include (1) NCBI RefSeq bacterial genomes (70,293 entries as of 8 December 2016), (2) NCBI GenBank fungal genomes (2,314 entries as of 4 May 2017), rice genomes (IRGSP-1.0_genome and nippon_ir64 from Schatz laboratory), human genome (GRCh38/hg38) and the mitogenomes presented in this work.

Supplementary methods 2. Estimation of genome size and depth of sequencing
k-mers are nucleotide sequences that can be extracted directly from sequencing reads by a sliding window of length k. For novel genome, k-mer analysis can reveal some insights in terms of structure and complexity. Hereafter, read length is denoted as L, total number of reads as N, haploid genome size as G, sequencing depth as S, and D as average homozygous coverage. We excluded k-mers with coverage out of range 5 to 1,000 , denoted as B. Based on the hypothesized ploidy, D is determined from the average unique heterozygous λ. In our case, if M. graminicola is deemed as diploid and M. oryzae as triploid, the average homozygous coverage is 2λ and 3λ, respectively [1]. Repetitive homozygous k-mers, used to calculate repeat proportion, have coverage of more than $6 * \lambda$. Considering heterozygosity rate as the probability of a heterozygous nucleotide, we can indirectly estimate it via the number of unique heterozygous k-mers. G and S are calculated as follows:

$$
G=\frac{N *(L-K+1)-B}{D}
$$

$$
S=\lambda * \frac{L}{L-K+1}
$$

Figure S1. k-mers distribution of the M. graminicola and M. oryzae genomes at $k=15,19,23$ and 27. Histogram curves for $k=27$ (blue curve), $k=23$ (green curve), $k=19$ (red curve) and $k=15$ (black curve).

```
M.graminicola(NC024275.1)TTTCAATATAAGTAATTAATAACTATTAATCACTTCTATATTATTAATAAATTATTATTTATTAATTTTATATTAATAAATTATTATTTATTAA
    M. oryzae Suriname TTTCAATATAAGTAATTAATAACTATTAATAACTTCTATATTATTAATAAATTATTATTTATTAA,
M. incognita(NC 024097.1) TAATTACGAAAAATTAAGTTTAGATTATTTTTGTAAAATTATTGTTAAATGTAAATTAGAAAATAATTACGAAAAATTAAGTTTAGATTATTTT
    *
M. graminicola(NC024275.1 ITTCAATATAAGTAATTAATAACTATTAATTACTTCTATATTATTAATAAATTATTATTTATTAATITIAIAITAAIAAAITAITAITIATIAA
    graminicola(NC024275.1 TTTCAATATAAGTAATTAATAACTATTAATTACTTCTATATTATTAATAAATTATTATTTATTAAT
M. incognita(NC024097.1 TGTAAAATTATTGTTAAATGTAAATTAGAAAATAATTACGAAAAATTAAGTTTAGATTATTTTTGTAAAATTATTGTTAAATGTAAATTAGAAA
M.graminicola(NC024275.1 TTTCTATATAAGTAATTAATAACTATTAATCACTTCTATATTATTAATAAATTATTATTTATTAATTTTATATTAATAAATAATAGTTATTTAT
    M. oryzae Suriname TTTCAATATAAGTAATTAATAACTATTAATTACTTCTATATTATTAATAAATTATTATTTATTAA/
M. incognita(NC024097.1) ATTAATTACGAAAAATTAAGTTTAGATTATTTTTGTAAAATTATTGTTAAATGTAAATTAGAAAATAATTACGAAAAATTAAGTTTAGATTATTT
M. graminicola (NC 024275.1)
    M. oryzae Suriname
M. incognita(NC 024097.1) TTGTAAAATTATTGTTAAATGTAAATTAGAAAATTAATTACGAAAAATTAAGTTTAGATTATTTTTGTAAAATTATTGTTAAATGTAAATTAGAA
M. graminicola (NC 024275.1) -
    M. oryzae Suriname
M. incognita (NC 024097.1) AATTAATTACGAAAAATTAAGTTTAGATTATTTTTGTAAAATTATTGTTAAATGTAAATTAGAAAAGTAATTACGAAAAATTAAGTTTAGATTATT
M. graminicola (NC 024275.1) -
    M. oryzae Suriname
M.incognita(NC024097.1) TTTGTAAAATTATTGTTAAATGTAAATTAGAAAATAATTACGAAAAATTAAGTTTAGATTATTTTTGTAAAATTATTGTTAAATGTAAATTAGA
```

M. graminicola (NC 024275.1) - -
M. oryzae Suriname
M. incognita (NC 024097.1) AA T

85 Figure S2. Comparative alignment of repeated elements composing the $65 \mathrm{R} / 94 \mathrm{R} / 63 \mathrm{R}$ mitogenomic region of M. oryzae (Mo, this study), M. graminicola (Mg, NC_024275.1) and M. incognita (NC 024097.1), respectively. The boxes indicate the repeated elements in each species. Three repeated 65-bp elements in M. oryzae overlap with 94 R region in M. graminicola which includes two repeated $94-\mathrm{bp}$ elements and one $81-\mathrm{bp}$ element. At position 31 of the $94-\mathrm{bp}$ element, a variable site (C, A or T) was found between repeats for all Mg and Mo populations. For the three repeats, Mg got respectively the nucleotides C-TC and Mo A-T-T. Therefore at position 31 of the first and third repeats, a specific nucleotide is found for Mg and Mo. The variable site at position 31 of the $94-\mathrm{bp}$ and $65-\mathrm{bp}$ element is indicated in bold and with a $*$ below the position. The repeated elements of M. incognita display very different sequence (that cannot be properly aligned) compared with the two other species.

M. graminicola

Figure S3. Linearized representation of mitogenomes of M. oryzae (this study) and M. graminicola (NC_024275.1). Gene and genome size are not drawn to scale. The arrows indicate the direction of the transcription for all genes. The tRNAs are shown by single-letter abbreviation (on the tick marks; see also Besnard et al. [2]).

Figure S4. Reduced-median network of Meloidogyne graminicola mitochondrial haplotypes including the information of heteroplasmic sites. The network was reconstructed with Network v. 5 [3], using the 13 available nematode mitogenome sequences, excluding the 111R region. The nematode populations are indicated in the circles and their geographic origin is displayed by different colors. The number of mutations is shown on the branches with slashes, black squares and white squares that respectively indicate SNPs, indels/inversion and heteroplasmic sites.

Figure S5. Distribution of sequence polymorphisms (SNP or indel) between ribotype I and II along the whole nrDNA cluster of M. graminicola (Mg) and M. oryzae (Mo)

Figure S6. Phylogenetic relationships within Meloidogyne species based on ITS using the GTR + G model. Bootstrap values greater than 50% are given on appropriate clades in the Maximum Likelihood tree presented. GenBank sequences are indicated in parenthesis, and sequences from this study are in bold font. The phylogeny is rooted with Pratylenchus penetrans as an outgroup. Scale bar represents 0.02 substitutions per nucleotide position.

125 Table S1. Origin and genome sequencing data summary generated in this study for each nematode isolate

Isolates	Abbreviation	Origin	Number of paired-end reads	Number of cleaned paired-end reads	Read length (bp)	MtDNA sequence depth*	Mitogenome size without 111R (bp)
Meloidogyne graminicola	Mg-VN6	Vietnam	$8,187,318$	$7,591,266$	100	$1,632 \times \pm$	16,809
VN6							

[^0]Table S2. Accession numbers of mitochondrial genes of M. hapla and M. floridensis

Genes	${\text { M. } \text { hapla }^{1}}^{\text {M. }^{\text {floridensis }}}{ }^{2}$	
cox1	ABLG01002664.1	nMf.1.0.scaf04464
rrnS	ABLG01002664.1	nMf.1.0.scaf04464
cox3	BM884076.1	nMf.1.0.scaf14978
nad4L	-	nMf.1.0.scaf14978
nad3	L76262.1	nMf.1.0.scaf13075
nad4	-	nMf.1.0.scaf13075
nad5	ABLG01002664.1	nMf.1.0.scaf04464

${ }^{1}$ For M. hapla, the accession number of genes/contigs were retrieved from GenBank using Nematode BLAST Server (http://xyala.cap.ed.ac.uk/services/blastserver)
${ }^{2}$ For M. floridensis, the scaffolds containing mitochondrial genes were searched using BLAST in the

Table S3. Diversity of mitochondrial genomes (excluding 111R) between and within the Meloidogyne species

Species	Number of SNPs	Number of indels and inversion
M. graminicola (Mg-P) vs. M. oryzae (Mo-M2)	619	58
Between two M. oryzae isolates	6	5
Among 13 M. graminicola isolates*	11	4
* including a Chinese isolate (KJ139963)		

Table S4. Position of SNPs, indels and heteroplasmic sites within the M. graminicola mitogenome among 13 isolates

												tion site llocat											
Isolate	1573	${ }_{\text {(15CR) }}^{1659}$	${ }_{\text {(NCR) }}^{1674}$	${ }_{\text {NCR1 }}{ }^{16726}$	$\frac{16831-1683}{\text { NCR }}$	$\underset{\substack{17099 \\(\text { CCR) }}}{ }$	${ }_{\text {(NCR) }}$	${ }_{\text {(1786 }}$ (148)	${ }_{\text {(17512 }}$ (12)	$\stackrel{17774}{(\text { atp }}$	${ }_{\text {(17tpo) }}^{1783}$	${ }_{\substack{\text { a } \\ \text { (atpo }}}^{1818}$	${ }_{\text {(nads }}^{\text {(1941 }}$	$\underset{\substack{789 \\(c o x 1)}}{ }$	${ }_{(\text {coxi }}^{912}$	${ }_{\substack{1245 \\(\text { cox } 1)}}$		${ }_{(c o x 3)}^{4144}$	${ }_{(6728}^{67}$	${ }_{(c o b)}^{8632}$	${ }_{\text {(nad4 }}^{\text {(224 }}$	${ }_{\text {N }}^{10642}$	11809 (NCR)
$\overline{M g-N 6}$										$\mathrm{R}_{\text {R (A7\% } ; \text { (24) }}^{(a)}$													$\frac{(1 \mathrm{NCR})}{\mathrm{R}(1 \mathrm{~A} ; 19 \mathrm{i})}$
Mg-WN11																						Y (T66; C 34$)$	
Mg-N/18																R(74G, 26A)							
${ }_{\text {Mg-LI }}$		I			inversion TCC		Indel 4 ¢			兂					R(57A: 43G)				c				
Mg-L2				A																			
Mg-C21	indel AT							A	т		T							G			G		
Mg-C25							Indel 9 4R										G						
Mg-Bomeo			$\mathrm{K}_{\text {(663; }}$ T47)			K(654, T40)														Y(T58; C42)			
														c									
Mg-Brazil																							
Mg-China (KI13963.1)												IndelTA	T										
Consensus sequence		c	T	c	GGA	G		T	c	,	,		A		A			A	T	T	A	c	A
Silentnon silent mutation**	-	.	.			.	-	-	.	silent	silent	Phe->Leu2	Leu2 \rightarrow Phe	Pro-Ser 2	Asn>Asp	Ser->liy	Thr-Ala	Asn>Serl	.	Phe--Ser2	silent		

The 111R from each population was removed before to proceed to alignment. Therefore, positions 1 and 16,910 of the proposed alignment correspond respectively to the nucleotide number 15,668 and 12,449 from the mitochondrial circular reference genome (NC_024275.1 [2]). The list was established without consideration of variation in mononucleotide stretches (poly A and poly T). The percent of each nucleotide variant for a heteroplasmic position is given in parenthesis.

* in M. graminicola-NC_024275
** for protein-coding gene only

Table S5. Assessment of the assembly completeness of available Meloidogyne graminicola genome and transcriptome. This analysis was performed with BUSCO v. 3 (Benchmarking Universal SingleCopy Orthologs [4]). The BUSCO dataset "Eukaryota odb9", which includes 303 Eukaryote singlecopy orthologs, was used as the reference.

	Draft genome [5]	Transcriptome [6]
Assembly size (Mb)	38.18	61.08
Number of scaffolds/transcripts	4,304	66,396
N50 value (kb)	20.4	0.4
Complete (\%)	73.6	88.1
Complete and single-copy (\%)	72.6	35.0
Complete and duplicated (\%)	1.0	53.1
Fragmented (\%)	15.2	7.6
Missing (\%)	11.2	4.3

Table S6. Sequence identity ($1-p$-distance, in $\%$) between each type of homolog for the three nuclear regions investigated: A) nuclear ribosomal DNA (nrDNA) cluster (nucleotide alignment of 7,932 bp), C) TAA6 region (nucleotide alignment of $6,546 \mathrm{bp}$), and D) ACC6 region (nucleotide alignment of $6,473 \mathrm{bp}) . \mathrm{Mg}=$ Meloidogyne graminicola; $\mathrm{Mo}=\mathrm{M}$. oryzae. Intraspecific sequence comparisons are given in green and blue, for Mg and Mo , respectively. Interspecific comparisons are in black
A)

nrDNA	Mg Type II	Mo Type I	Mo Type III
Mg Type I	99.29%	$\mathbf{1 0 0 . 0 0 \%} \mathbf{o}^{*}$	99.25%
Mg Type II		99.38%	98.99%
Mo Type I			99.34%

B)

TAA6	Mg Type II	Mo Type I	Mo Type III
Mg Type I	98.36%	$\mathbf{9 9 . 9 8 \%}{ }^{*}$	98.06%
Mg Type II		98.38%	97.84%
Mo Type I			98.07%

C)

ACC6	Mg Type II	Mo Type I	Mo Type III	Mo Type IV
Mg Type I	97.61%	$\mathbf{9 9 . 9 5 \%}{ }^{*}$	98.12%	97.79%
Mg Type II		97.62%	97.65%	97.99%
Mo Type I			98.14%	97.81%
Mo Type III				97.91%

* Note that sequences of Type I from M. graminicola and M. oryzae are almost identical for the three genomic regions

Table S7. Sequencing depth (with standard deviation) of each type of homolog for the nuclear genomic regions TAA6 and ACC6 among 12 M. graminicola and two M. oryzae isolates. The size of each sequence type (in bp) is also given for each species.

Taxa	TAA6			ACC6			
	Type I	Type II	Type III	Type I	Type II	Type III	Type IV
M. graminicola	(6,361 bp)	(6,399 bp)	-	(6,151 bp)	(6,310 bp)	-	-
- Mg-VN6	$16.4 \times \pm 5.1$	$16.5 x \pm 5.9$	-	$19.2 \times \pm 4.6$	$18.8 \times \pm 4.5$	-	-
- Mg-VN11	$18.4 \times \pm 5.7$	$18.2 x \pm 5.3$	-	$20.8 x \pm 4.1$	$20.4 \times \pm 4.9$	-	-
- Mg-VN18	$20.6 \times \pm 6.2$	$21.7 \times \pm 7.0$	-	$21.5 x \pm 5.0$	$21.9 \times \pm 4.8$	-	-
- Mg-VN27	$16.4 \times \pm 4.4$	$17.4 \times \pm 5.2$	-	$19.4 \times \pm 5.4$	$19.6 x \pm 4.9$	-	-
- Mg-L1	$22.2 \times \pm 6.7$	$21.7 \times \pm 7.7$	-	$19.9 \times \pm 5.2$	$19.9 \times \pm 5.7$	-	-
- Mg-L2	$10.2 \times \pm 4.7$	$9.5 \times \pm 4.1$	-	$11.6 x \pm 3.5$	$9.4 \times \pm 2.9$	-	-
- Mg-C21	$20.9 x \pm 6.9$	$20.8 x \pm 7.2$	-	$19.9 x \pm 4.9$	$20.3 x \pm 4.9$	-	-
- Mg-C25	$12.7 \times \pm 5.6$	$13.6 \times \pm 6.6$	-	$14.8 \times \pm 4.1$	$13.7 \times \pm 3.7$	-	-
- Mg-Java	$1.3 x \pm 1.3$	$1.7 \times \pm 1.4$	-	$0.9 \times \pm 1.0$	$0.9 \times \pm 1.0$	-	-
- Mg-Borneo	$11.6 \times \pm 4.0$	$12.0 \times \pm 4.1$	-	$9.4 \times \pm 2.9$	$10.0 \times \pm 3.2$	-	-
- Mg-P	$14.1 \times \pm 4.6$	$14.3 x \pm 4.6$	-	$15.4 \times \pm 4.2$	$14.3 \times \pm 4.0$	-	-
- Mg-Brazil	$16.6 \times \pm 4.8$	$17.3 x \pm 4.5$	-	$17.4 \times \pm 4.5$	$17.4 \times \pm 4.6$	-	-
M. oryzae	(6,357 bp)	-	(6,367 bp)	(6,153 bp)	-	(6,317 bp)*	(6,309 bp)
- Mo-M1	$11.2 \times \pm 4.3$	-	$24.2 \times \pm 5.8$	$11.6 \times \pm 3.1$	-	$22.9 \times \pm 4.5$	-
- Mo-M2	$19.2 \times \pm 6.3$	-	$11.8 \times \pm 4.0$	$10.6 \times \pm 4.1$	-	$11.0 \times \pm 3.5$	$10.1 \times \pm 3.0$

* Excluding a repeated element (1,032 bp) in Mo-M2

References

[1] Vurture, G.W.; Sedlazeck, F.J.; Nattestad, M.; Underwood, C.J.; Fang, H.; Gurtowski, J.; Schatz, M.C. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics 2017, 33, 2202-2204. doi:10.1093/bioinformatics/btx153.
[2] Besnard, G.; Jühling, F.; Chapuis, É.; Zedane, L.; Lhuillier, É.; Mateille, T.; Bellafiore, S. Fast assembly of the mitochondrial genome of a plant parasitic nematode (Meloidogyne graminicola) using next generation sequencing. C. R. Biol. 2014, 337, 295-301. doi:10.1016/j.crvi.2014.03.003.
[3] Bandelt, H.J.; Forster, P.; Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 1999, 16, 37-48. doi:10.1093/oxfordjournals.molbev.a026036.
[4] Simao, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015, 31, 3210-3212. doi:10.1093/bioinformatics/btv351.
[5] Somvanshi, V.S.; Tathode, M.; Shukla, R.N.; Rao, U. Nematode genome announcement: A draft genome for rice root-knot nematode, Meloidogyne graminicola. J. Nematol. 2018, 50, 111-116. doi:10.21307/jofnem-2018-018.
[6] Petitot, A.S.; Dereeper, A.; Agbessi, M.; da Silva, C.; Guy, J.; Ardisson, M.; Fernandez, D. Dual RNA-seq reveals Meloidogyne graminicola transcriptome and candidate effectors during the interaction with rice plants. Mol. Plant Pathol. 2016, 17, 860-874. doi: 10.1111/mpp. 12334.

[^0]: *sequencing depth for the mitogenome assembly with standard deviation

