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Abstract: The cystic fibrosis transmembrane conductance regulator (CFTR) gene is an attractive target
for gene editing approaches, which may yield novel therapeutic approaches for genetic diseases such
as cystic fibrosis (CF). However, for gene editing to be effective, aspects of the three-dimensional
(3D) structure and cis-regulatory elements governing the dynamic expression of CFTR need to be
considered. In this review, we focus on the higher order chromatin organization required for normal
CFTR locus function, together with the complex mechanisms controlling expression of the gene
in different cell types impaired by CF pathology. Across all cells, the CFTR locus is organized
into an invariant topologically associated domain (TAD) established by the architectural proteins
CCCTC-binding factor (CTCF) and cohesin complex. Additional insulator elements within the TAD
also recruit these factors. Although the CFTR promoter is required for basal levels of expression,
cis-regulatory elements (CREs) in intergenic and intronic regions are crucial for cell-specific and
temporal coordination of CFTR transcription. These CREs are recruited to the promoter through
chromatin looping mechanisms and enhance cell-type-specific expression. These features of the CFTR
locus should be considered when designing gene-editing approaches, since failure to recognize their
importance may disrupt gene expression and reduce the efficacy of therapies.

Keywords: CFTR; cis-regulatory elements; enhancers; chromatin architecture; transcription factors;
gene editing; CRISPR/Cas9

1. Introduction

The cystic fibrosis transmembrane conductance regulator (CFTR) gene was one of the first genes
that was shown to be regulated by elements outside its promoter [1–4]. At the time, the concept of
critical cis-regulatory elements located in introns and intergenic regions was not widely accepted and
still challenged dogma that introns contained unimportant DNA sequence. Of course, the Encyclopedia
of DNA Elements (ENCODE) project [5–7] and many other advances, driven in large part by new
technologies based on next generation sequencing protocols, have dramatically altered understanding
of genome organization. CFTR is a large gene encompassing 189 kb at chromosome 7q31.2 [8].
Although necessary to drive basal levels of gene expression, the CFTR promoter is relatively weak and
appears to lack tissue-specific control elements. The sequence is CpG-rich, contains no TATA box, has
multiple transcription start sites (TSS) and has many binding sites for the transcription factor specificity
protein 1 (Sp1) [9–11]. Despite this, CFTR expression is tightly regulated both during development
and within different tissue types [12–15]. CFTR transcript levels are highly variable between different
cell types, suggesting that the mechanisms controlling CFTR expression may diverge between them.

Cystic fibrosis transmembrane conductance regulator expression was initially thought to be
restricted to epithelial cells, specifically epithelial cells within the organs affected by cystic fibrosis (CF)
pathology such as the lung, intestine, pancreas, and reproductive tract [13,16–19]. However, many
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studies have shown that CFTR may also be expressed in non-epithelial cells [20,21]. Additionally, CFTR
is transcribed in the central, peripheral, and enteric nervous systems [22–32]. Also, Schwann cells were
reported to express CFTR and CFTR-deficient pigs were suggested to have peripheral nervous system
(PNS) deficiencies [30]. Although CFTR is expressed in many different cell types, both epithelial and
non-epithelial, this review will focus on the regulatory mechanisms controlling expression of the gene
in epithelial cells as they are best studied. Here, we discuss both older seminal data and more recent
advances that define the chromatin architecture of the CFTR locus, reveal multiple cell-type selective
cis-regulatory elements within and adjacent to the locus, and identify key activating and repressive
transcription factors (TFs). These data have renewed importance at a time when gene editing and
replacement are being considered among novel therapeutic approaches for CF. Although CFTR is also
regulated by post-transcriptional mechanisms including microRNAs, some of which directly target
sequences in the 3′ untranslated region (UTR) of the gene, these will not be considered further here as
they are reviewed elsewhere [14].

2. Common Features of the CFTR Locus in All Cell Types

2.1. The CFTR Locus Is Organized Within a Topologically Associating Domain

The three-dimensional (3D) chromatin structure has a dynamic and essential role in the regulation
of gene expression. On a fine scale, gene regulation occurs at least in part through the physical
looping of regulatory elements, such as enhancers to their gene promoters. These looping interactions
are thought to be cell-type and locus-specific [33]. On a broader scale, chromatin is organized into
topologically associating domains (TADs). TADs are self-associating genomic regions; cis-regulatory
elements within one TAD have little to no interaction with genes in neighboring TADs. Therefore,
TAD boundaries may represent physical insulators for the genes and regulatory elements contained
between them [34–36]. These long-range chromatin interactions are measured by many techniques:
chromosome conformation capture (3C) [37], circular chromosome conformation capture (4C) and
deep sequencing [38], chromosome conformation capture carbon copy (5C) and deep sequencing [39],
HiC [40], and chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) [41]. The
3D interactions at the CFTR locus were first shown by 3C [42–45]. Building on these data, 4C-seq
demonstrated that the CFTR locus is organized into a single TAD with boundaries at −80.1 kb 5′

to the translational start site and +48.9 kb from the translational stop site [46]. These data were
confirmed independently by 5C-seq [47,48] and the TAD boundaries were shown to be invariant
between cell types [46,47]. Consistent with other TAD boundaries, significant occupancy of the
CCCTC-binding factor (CTCF) was observed at the −80.1 kb and +48.9 kb sites [49]. CTCF is an
architectural protein involved in chromatin organization that binds to insulator elements and marks
TAD boundaries [50–52].

2.2. The CFTR Locus Contains CTCF-Bound Insulator Elements

In addition to its role in the TAD structure, CTCF may occupy several insulator elements at
the CFTR locus. These elements, which can block the interactions between an enhancer and a
gene promoter, are located at −20.9 kb relative to the translational start site and at +6.8 kb and
+15.6 kb to the translational stop site. The sites containing the CFTR insulators were initially identified
using DNase I hypersensitivity mapping and DNase-seq [42–44,53]. CTCF was shown by chromatin
immunoprecipitation (ChIP) to occupy the −20.9 kb and +6.8 kb insulators, but not to bind at
+15.6 kb [42,53]. The insulator function of +15.6 kb may involve nuclear hormone receptors [53].
The cohesin complex, which occupies a subset of CTCF sites, was also seen to bind at several of the
CFTR insulator elements, using an antibody specific for the Rad21 component of the complex [42–44].
Of note, both the +6.8 kb site and other more distal 3′ elements were cell-type selective [54], consistent
with a subset of variant CTCF sites genome wide. Like CTCF, the cohesin complex is involved
in chromatin looping and organization. CTCF works in concert with cohesin at ~60%–70% of its
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sites across the genome [55–57]. To determine the significance of CTCF and/or cohesin occupancy
in the organization of the CFTR locus, small interfering RNA (siRNA)-mediated depletion of both
architectural proteins was performed in an intestinal epithelial cell line (Caco2). Loss of CTCF greatly
reduced both CTCF and cohesin complex occupancy across the CFTR locus, whereas depletion of
Rad21 had little impact on CTCF binding. These results suggest the architectural proteins may not
always function together, as is observed elsewhere in the genome. Furthermore, CTCF was shown
to have a dominant effect on mediating higher order looping of the CFTR locus, while cohesin
complex was crucial in maintaining stability of the 3D looping at the locus [49]. Interestingly, clustered
regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated deletion of −20.9 enhanced
recruitment of CTCF at adjacent sites and thus had little effect on CFTR expression [46].

3. Cell-Type-Selective CFTR Regulatory Mechanisms

The TAD encompassing the CFTR locus is seen in all cells. However, CFTR expression is tightly
regulated in a cell-type-specific manner due to the recruitment of different cis-regulatory elements
(CREs) within and nearby the locus. The interaction between these CREs and the gene promoter
generates cell-type-selective 3D conformations of the locus (Figure 1). Here, we discuss some of
the known regulatory elements and their activating TFs in different cell types and also consider the
significance of the CREs in the context of potential novel therapeutics. Of note, based on our extensive
analysis of open chromatin and histone modifications in CF-relevant epithelial cells, there are also
other CREs (Figure 2), which are not yet fully understood.
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gray rings. A) Airway-selective enhancer elements at –44 kb and –35 kb are shown by dark and light 
blue boxes, respectively. B) Intestine-selective enhancer elements at 185 + 10kb (intron 1) and 1811 + 
0.8kb (intron 11) are shown by dark and light gray boxes, respectively. Figures are not drawn to scale. 

3.3. Pancreas and Liver 

CFTR expression is perhaps more abundant in the pancreatic duct epithelium than in any other 
cell type, consistent with loss of CFTR being associated with profound pancreatic dysfunction.  
However, very few pancreatic adenocarcinoma cell lines express the CFTR gene and so detailed 
analysis of CREs in this cell type has lagged behind the airway and intestinal epithelium. Earlier work 
in Capan 1 cells identified DHS in introns 16, 17a, 18, and 20 [4]. In vitro experiments (DNase I 
footprinting and EMSAs) suggested HNF1, CDX2, and PBX1 bound to the CREs in intron 16 and 17a, 
however, only PBX1 was shown by ChIP to occupy these sites in Capan 1 cells in vivo [73]. Pancreatic 
duct cell-specific regulatory mechanisms for CFTR are currently being re-examined using functional 
genomics protocols. Cystic fibrosis liver disease (CFLD) is the third leading cause of mortality in CF 
patients. In the liver, CFTR is expressed at the apical membrane of cholangiocytes within the bile 
ducts [74] and defective CFTR results in impaired biliary secretion and ductal cholestasis [75]. To 
date, cholangiocyte-selective CREs for CFTR expression have not been investigated. 

3.4. Male Reproductive Tract 

Nearly all (~97%) men with CF are infertile, though not sterile. Loss of CFTR is associated with 
absence of intact genital ducts, which may be due to early duct obstruction, or a developmental defect 
impairing duct formation. Congenital bilateral absence of the vas deferens (CVAD) is a common CF-
associated diagnosis. The epithelial lining of the epididymis maintains an appropriate luminal 
environment that is crucial for sperm maturation [76] and CFTR is integral to its function. To 
determine CREs for CFTR in epididymis epithelial cells, we performed DNase-chip on immature 

Figure 1. Schematic of cystic fibrosis transmembrane conductance regulator (CFTR) topologically
associated domain (TAD) in airway and intestinal cell types. CFTR promoter (blue arrow) and
gene are shown. TAD boundaries are denoted as “I” (−80.1 kb) and “II” (+48.9 kb). Occupancy of
CCCTC-binding factor (CTCF) at the TAD boundaries is shown as red circles. Cohesin complex is
shown as gray rings. (A) Airway-selective enhancer elements at −44 kb and −35 kb are shown by dark
and light blue boxes, respectively. (B) Intestine-selective enhancer elements at 185 + 10kb (intron 1) and
1811 + 0.8kb (intron 11) are shown by dark and light gray boxes, respectively. Figures are not drawn
to scale.



Genes 2019, 10, 235 4 of 11

Genes 2019, 10, x FOR PEER REVIEW 6 of 11 

 

human epididymis epithelial cells [44] and subsequently DNase-seq of adult primary human 
epididymis epithelial (HEE) cells [46] and immortalized, immature epididymis epithelial (REP) cells 
[77]. These data showed peaks of open chromatin at the CFTR locus at a subset of both intestinal and 
airway CREs, together with novel sites. CFTR transcripts are abundant in epididymis epithelial cells 
[44,78,79] and possibly multiple enhancers are being recruited to drive these high expression levels. 
Of note, the TFs driving these enhancers may also be different in epididymis cells from the same 
elements in the intestinal and airway cells. For example, the main form of hepatocyte nuclear factor 
1 in intestinal epithelial cells is HNF1α, which enhances CFTR expression through multiple cis-
elements. In HEE cells, HNF1β is the dominant form and HNF1β ChIP-seq data showed its 
occupancy at multiple CFTR CREs [80]. CFTR expression in HEE cells may also be under the control 
of the androgen receptor [81]. Hormonal control of the CFTR locus is not extensively studied to date 
[82,83]. 

 

 
Figure 2. CFTR locus and important functional elements. University of California Santa Cruz 
(UCSC) genome browser displaying CFTR and nearby genes. Airway-selective enhancer elements at 
– 35 kb and – 44 kb are shown in dark purple. Intestinal-selective enhancer elements 185 + 10kb (intron 
1) and 1811 + 0.8kb (intron 11) are shown in medium purple. Insulator elements at – 20.9 kb and + 15.6 
kb are shown in dark blue. TAD boundaries at – 80.1 kb and + 48.9 kb are shown in medium blue. 
CFTR promoter is shown in light purple. Other key DNase I hypersensitive sites (DHS) are shown in 
black. 

4. Regulation of CFTR Expression and its Impact on Gene Editing 

Recent advances in the field of gene editing have suggested these protocols as potential 
treatments for cystic fibrosis, among other diseases. The CRISPR/Cas9 system, which can make 
targeted double-stranded cuts in DNA, allows for the modification or deletion of any site in the 
genome [84–86]. More recently, the use of base editors is rapidly expanding the field [87–93]. 
However, it is not yet known which aspects of the critical 3D structure and interactions at the CFTR 
locus could be disrupted by direct therapeutic modification of the locus. CRISPR/Cas9 protocols have 
already provided important insights into the functions of CREs and CTCF sites at the locus [46]. The 
potential to use gene editing to target the CFTR gene, CF modifier genes [94–98], or their regulatory 
elements opens new therapeutic avenues [99]. These may be targeted to accessible sites and specific 
cell types primarily in the airway and perhaps in the future to other organs affected by CF. Once 
safety and ethical concerns are overcome, gene editing approaches may also need to account for 
higher order chromatin structure and the cell-type-selective regulatory networks of CFTR, so 
therapeutic efficacy is not impaired. 
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Figure 2. CFTR locus and important functional elements. University of California Santa Cruz (UCSC)
genome browser displaying CFTR and nearby genes. Airway-selective enhancer elements at −35 kb
and −44 kb are shown in dark purple. Intestinal-selective enhancer elements 185 + 10kb (intron 1) and
1811 + 0.8kb (intron 11) are shown in medium purple. Insulator elements at −20.9 kb and + 15.6 kb
are shown in dark blue. TAD boundaries at −80.1 kb and + 48.9 kb are shown in medium blue. CFTR
promoter is shown in light purple. Other key DNase I hypersensitive sites (DHS) are shown in black.

3.1. Airway

The major cause of reduced lifespan in CF patients is lung disease, hence the gene-editing
protocols that are currently in development are likely to be targeted primarily at this tissue. In this
context, understanding the regulation of CFTR expression in the airway epithelium, and how this
might be disrupted by gene editing protocols, may be critical. Using DNase-chip and subsequently
DNase-seq, many airway-selective DNase I hypersensitive sites (DHS) were discovered in lung cell
lines that were also seen in primary human airway epithelial cells. These include: DHS at −44 kb,
−35 kb, −3.4 kb, in intron 18, 19 and 23, and at +21.5 kb and +36.6 kb (3′ to last exon) [43,44,54].
The DHS at −44 kb and −35 kb were studied in detail to reveal the functions of the CREs they
contain. Both have enhancer activity on the CFTR promoter in luciferase reporter gene assays and they
appear to function cooperatively [43,44,54,58,59], but their enhancer activities are driven by different
mechanisms. The core of the −35 kb DHS was mapped using DNase I footprinting and subsequently
shown by ChIP to bind the immune mediators interferon regulatory factor 1 and 2 (IRF1/2) and the
nuclear factor Y (NF-Y) TF [58]. Additionally, ChIP-seq revealed that this cis-element is enriched
for the active histone mark histone 3 lysine 4 monomethylation (H3K4me1) [60]. NF-Y occupancy is
required for maintenance of the H3K4me1 modification and so is likely necessary for the enhancer
activity of the −35 kb CRE [58]. In contrast, the −44 kb enhancer element was uniquely activated by
oxidative stress. It contains an antioxidant response element (ARE), which under normal conditions
is occupied by the repressor BTB and CNC homology 1, basic leucine zipper TF (Bach1), and v-Maf
avian musculoaponeurotic fibrosarcoma oncogene homolog K (MafK) heterodimers. However, upon
exposure to oxidative stress, these repressive factors were displaced by the nuclear factor erythroid
2-like 2 (Nrf2) and CFTR expression was activated [59]. This is particularly relevant to CF, as oxidative
stress is a hallmark of lung disease pathology [61].

Although there are at least two airway-selective enhancers of CFTR, expression in the majority
of cells in lung epithelium is significantly lower (~1000–10,000 fold) than that in the intestinal and
pancreatic duct epithelium [43,44,62]. This limited transcript abundance in the airway makes designing
therapeutics to correct the defective protein quite challenging. A potential explanation for these low
levels of CFTR transcript in the lung is that repressive TFs are being recruited to the locus in an
airway-selective manner. In order to identify transcriptional repressors of CFTR in the lung, a siRNA
screen was used to deplete ~1500 TFs in a lung adenocarcinoma cell line (Calu-3) [63]. About 50 TFs
were, upon depletion, found to elevate CFTR transcript levels by at least 2-fold in replicate screens.
Among these, knockdown of bromodomain-containing protein 8 (BRD8), ets homologous factor (EHF),
krüppel-like factor 5 (KLF5), inhibitor of growth protein 2 (ING2), and nuclear receptor subfamily 2
group F member 2 (NR2F2) had the most robust impact on CFTR transcript and CFTR protein levels.
Moreover, several of these TFs were also shown to repress CFTR in primary human bronchial epithelial
(HBE) cells. Of note, both EHF and KLF5 were subsequently shown by ChIP to occupy the −35 kb
enhancer element and so may directly repress CFTR expression through this site [63]. Understanding
these repressive factors is essential, as potential therapeutics could also target their interactions at the
CFTR CREs.
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In contrast to the majority of cells in the airway surface epithelium discussed above, one rare
cell type expresses very high levels of CFTR. Though they were observed many years ago by mRNA
in situ hybridization and immunofluorescence [64–66], the likely function of these cells was recently
revealed by single-cell RNA sequencing (scRNA-seq). ScRNA-seq of primary human bronchial
epithelial (HBE) cells and mouse tracheal epithelial cells documented a high-CFTR expressing cell type
named “pulmonary ionocytes”. Although these cells only comprise 0.5–1.5% of the airway epithelium,
pulmonary ionocytes were shown to be responsible for the majority of CFTR activity (~54% in mouse,
~60% in human). Additionally, these cells were shown to co-express the transcription factor forkhead
box I1 (FOXI1). FOXI1 expression was suggested to be necessary for CFTR expression and loss of
FOXI1 was also associated with recognizable CF phenotypes such mucus viscosity and altered fluid
composition [67,68]. However, the regulatory mechanisms driving high CFTR expression in ionocytes
are currently unknown, though in silico predictions (unpublished) suggest they are divergent from
other airway epithelial cells. Further experimental data are required to confirm this.

3.2. Intestine

Multiple organs in the digestive system are profoundly impaired by loss of CFTR function
including the pancreas, bile duct, and intestinal epithelia, among others. As noted above, CFTR
expression in all these cell types is significantly higher than in the majority of lung epithelial cells. This
differential expression is achieved by cell-type selective cis-regulatory elements and their activating
TFs. The two best-characterized CREs controlling CFTR expression in the intestinal epithelium are
intronic: intron 1 (185 + 10 kb) and intron 11 (1811 + 0.8 kb), though other elements both within and
outside the gene are also involved.

The 185 + 10 kb intronic CRE is located in a DHS ~10 kb 3′ to end of exon 1 (185 is the last coding
base of exon 1) and was found by classical DHS mapping using Southern blots. Its enhancer activity
was shown by luciferase assays in the colon carcinoma cell line Caco2 [3]. This CRE was then assayed
in the genomic context using a yeast artificial chromosome (YAC) that contained the entire CFTR
gene [2]. When introduced into Caco2 cells, CFTR expression from a YAC lacking the 185 +10 kb DHS
(deleted by recombineering), was significantly reduced compared to a control YAC containing the
intact CFTR gene [2]. To identify the transcription factors governing the enhancer activity of this CRE,
DNase I footprinting and electromobility shift assays (EMSA) were performed [69]. These experiments
and subsequent ChIP assays showed hepatocyte nuclear factor 1α (HNF1α) binding to the intron 1 185
+ 10 kb CRE both in vitro and in vivo [43]. Furthermore, 3C analysis confirmed direct interaction of
this enhancer with the CFTR promoter [43].

Another critical intestinal-specific enhancer of CFTR expression is located in intron 11 (legacy
nomenclature) at 1811 + 0.8 kb (1811 is the last coding base in exon 11). This enhancer was first
identified by DNase-chip within a 1.5 kb DHS in intron 11 [44]. It was also shown to recruit p300,
cooperate with other intestinal enhancer elements within CFTR and interact with the gene promoter
through direct chromosomal looping [44]. Among activating TFs for the intron 11 (1811 + 0.8 kb) CRE
are forkhead box protein A1/A2 (FOXA1/A2), hepatocyte nuclear factor 1 homeobox A (HNF1α), and
caudal type homeobox 2 (CDX2) [70,71]. These factors were shown to be essential for maintaining
high levels of CFTR expression in Caco2 cells [70].

Although the enhancer elements governing intestinal-selective CFTR expression were extensively
studied in colon carcinoma cell lines, these may be somewhat influenced by the properties of cancer
cells. However, our recent studies (Yin et al., unpublished) suggest there is substantial overlap between
the cell line CREs and sites of open chromatin in intestinal organoids, which provide a robust in vitro
model of the normal intestinal epithelium [65,72].

3.3. Pancreas and Liver

CFTR expression is perhaps more abundant in the pancreatic duct epithelium than in any other cell
type, consistent with loss of CFTR being associated with profound pancreatic dysfunction. However,
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very few pancreatic adenocarcinoma cell lines express the CFTR gene and so detailed analysis of CREs
in this cell type has lagged behind the airway and intestinal epithelium. Earlier work in Capan 1 cells
identified DHS in introns 16, 17a, 18, and 20 [4]. In vitro experiments (DNase I footprinting and EMSAs)
suggested HNF1, CDX2, and PBX1 bound to the CREs in intron 16 and 17a, however, only PBX1
was shown by ChIP to occupy these sites in Capan 1 cells in vivo [73]. Pancreatic duct cell-specific
regulatory mechanisms for CFTR are currently being re-examined using functional genomics protocols.
Cystic fibrosis liver disease (CFLD) is the third leading cause of mortality in CF patients. In the liver,
CFTR is expressed at the apical membrane of cholangiocytes within the bile ducts [74] and defective
CFTR results in impaired biliary secretion and ductal cholestasis [75]. To date, cholangiocyte-selective
CREs for CFTR expression have not been investigated.

3.4. Male Reproductive Tract

Nearly all (~97%) men with CF are infertile, though not sterile. Loss of CFTR is associated with
absence of intact genital ducts, which may be due to early duct obstruction, or a developmental defect
impairing duct formation. Congenital bilateral absence of the vas deferens (CVAD) is a common
CF-associated diagnosis. The epithelial lining of the epididymis maintains an appropriate luminal
environment that is crucial for sperm maturation [76] and CFTR is integral to its function. To determine
CREs for CFTR in epididymis epithelial cells, we performed DNase-chip on immature human
epididymis epithelial cells [44] and subsequently DNase-seq of adult primary human epididymis
epithelial (HEE) cells [46] and immortalized, immature epididymis epithelial (REP) cells [77]. These
data showed peaks of open chromatin at the CFTR locus at a subset of both intestinal and airway CREs,
together with novel sites. CFTR transcripts are abundant in epididymis epithelial cells [44,78,79] and
possibly multiple enhancers are being recruited to drive these high expression levels. Of note, the
TFs driving these enhancers may also be different in epididymis cells from the same elements in the
intestinal and airway cells. For example, the main form of hepatocyte nuclear factor 1 in intestinal
epithelial cells is HNF1α, which enhances CFTR expression through multiple cis-elements. In HEE
cells, HNF1β is the dominant form and HNF1β ChIP-seq data showed its occupancy at multiple CFTR
CREs [80]. CFTR expression in HEE cells may also be under the control of the androgen receptor [81].
Hormonal control of the CFTR locus is not extensively studied to date [82,83].

4. Regulation of CFTR Expression and its Impact on Gene Editing

Recent advances in the field of gene editing have suggested these protocols as potential treatments
for cystic fibrosis, among other diseases. The CRISPR/Cas9 system, which can make targeted
double-stranded cuts in DNA, allows for the modification or deletion of any site in the genome [84–86].
More recently, the use of base editors is rapidly expanding the field [87–93]. However, it is not
yet known which aspects of the critical 3D structure and interactions at the CFTR locus could be
disrupted by direct therapeutic modification of the locus. CRISPR/Cas9 protocols have already
provided important insights into the functions of CREs and CTCF sites at the locus [46]. The potential
to use gene editing to target the CFTR gene, CF modifier genes [94–98], or their regulatory elements
opens new therapeutic avenues [99]. These may be targeted to accessible sites and specific cell types
primarily in the airway and perhaps in the future to other organs affected by CF. Once safety and
ethical concerns are overcome, gene editing approaches may also need to account for higher order
chromatin structure and the cell-type-selective regulatory networks of CFTR, so therapeutic efficacy is
not impaired.
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