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Abstract: Motivation: Researchers in genomics are increasingly interested in epigenetic factors such
as DNA methylation because they play an important role in regulating gene expression without
changes in the sequence of DNA. Abnormal DNA methylation is associated with many human
diseases. Results: We propose two different approaches to test for differentially methylated regions
(DMRs) associated with complex traits, while accounting for correlations among CpG sites in the
DMRs. The first approach is a nonparametric method using a kernel distance statistic and the second
one is a likelihood-based method using a binomial spatial scan statistic. The kernel distance method
uses the kernel function, while the binomial scan statistic approach uses a mixed-effects model to
incorporate correlations among CpG sites. Extensive simulations show that both approaches have
excellent control of type I error, and both have reasonable statistical power. The binomial scan
statistic approach appears to have higher power, while the kernel distance method is computationally
faster. The proposed methods are demonstrated using data from a chronic lymphocytic leukemia
(CLL) study.

Keywords: binomial scan statistic; CpG sites; DNA methylation; kernel distance statistic;
mixed-effects model

1. Introduction

Genetic variations from genome-wide association studies can explain only a small proportion of
the phenotypic variation for most diseases [1]. It has been established that most diseases are caused by
both genetic factors and non-genetic factors such as environmental factors, contributing to epigenetic
changes, especially changes in DNA methylation at CpG sites. For example, research has found that
aberrant DNA methylation of multiple promoter-associated CpG islands can suppress gene expression
by inactivating the function of tumor suppressor genes, eventually causing cancer [2].

Methylation data from next-generation sequencing (NGS) such as Methyl-seq have been used
to detect aberrant DNA methylation [3]. NGS coupled with bisulphite treatment of DNA converts
unmethylated cytosines to uracils and leaves methylated cytosines intact. This results in counts of
uracils (unmethylated) and cytosines (methylated) at each CpG site for every sample. The total counts
of uracils and cytosines are the sequencing coverage at each CpG site, which could be different for each
sample. Samples with large sequencing coverage could have undue influence in statistical analysis. In
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order to avoid that, the methylation rate at each site has been suggested for analysis, which is the ratio
of methylated alleles over the sequencing coverage at each site.

Methylation rates are treated as continuous when measured across a large number of cells [4].
The rates at nearby CpG site have been shown to be correlated with a complicated structure [5]. Recent
research focus has expanded to incorporate patterns of methylation in clusters of CpG sites, referred to
as differentially methylated regions (DMRs) in the genome.

Many statistical methods have been developed to detect DMRs, including some general approaches
for bump detection, such as bump-hunting techniques [6]. Other methods, such as BSmooth [7] and
BiSeq [8] are developed specifically for detecting DMRs based on bisulfite sequencing data. Both these
methods use functional data analysis methods, where the functional relationship between methylation
and location is modeled to estimate a subject-specific profile.

BSmooth tests the group differences via a test that is similar to a t-test at each CpG site. DMRs are
defined as adjacent CpG sites with observed values of the t-statistic above a pre-defined threshold, and
with the significance of the DMRs evaluated using permutation test. However, this method depends
on the pre-defined threshold for the t-statistic, which would hinder automated analysis and, possibly,
lead to biased conclusions.

In order to make improvements, BiSeq uses a False Discovery Rate (FDR) procedure to control
the expected proportion of incorrectly rejected regions. BiSeq also has the advantage of taking spatial
dependence into account. Besides that, BiSeq can improve power with a hierarchical procedure in
which it starts with a beta-binomial model to account for biological variation between replicates, and
then tests significance at each CpG site in all target regions for methylation differences, with a triangular
kernel to capture the step-like changes observed in their data. The resulting p-values for the CpG sites
are transformed into normalized z-scores, and then the average is calculated for a given region, and
compared to those obtained from resampling data.

Ryu et al. [9] suggested using wavelets for data smoothing in the functional data analysis for
DMRs. Their generalized integrated function test (GIFT) estimates subject-specific functional profiles
first by using wavelets, and averaging profiles within groups. An ANOVA-like test is used for testing
group differences for a region, by comparing the overall functional relationship to the average curve
within each group. This method mainly focuses on testing for differential methylation of a region,
which needs other tools to define candidate regions first.

It has been shown that methylation rates could be strongly associated with relevant predictors and
other covariates such as age [10,11] and gender [12,13]. Therefore, in addition to properly accounting
for the within and between CpG sites dependence, it is also important to adjust for these covariates in
the model, especially for methylation data, since it could bias effect size estimate.

In this paper, we propose two methods for DMR detections, one based on a kernel distance statistic
(KDM) and the other based on a binomial scan statistic method (SSM). A kernel distance statistic,
Q = r

′

Ar, where r is a vector of relative frequencies and A is a pre-defined matrix of a measure of
closeness between two points, was first introduced by Tango [14], to detect geographical clustering of
disease. A is referred to as the kernel matrix by Schaid et al. [15]. The benefit of this method is that
if the null hypothesis is rejected, showing evidence of true DMRs, the kernel matrix A can serve as
a smoother, so that smoothed fitted values can be computed and then plotted versus chromosome
positions. The peaks in smoothing plot would then be used to detect and locate DMRs.

In order to detect clustering of risk variants for case-control data, Schaid et al. [15] used Q =

(O− E)′A(O− E) as the kernel distance statistic, where O is the vector of variant counts for cases at
different SNPs and E is the vector of expected counts under the null hypothesis, which is estimated
from the total counts among cases and controls. The kernel matrix A is used to determine how
rapid similarity decreases to 0 as the distance between the variants increases, since the association
decreases as the distance of two SNPs increases. Schaid et al. [15] suggested using a tri-weight function

A jl =
(
1−

(
d jl/τ

)2
)3

, if d jl ≤ 1 and 0 otherwise, where d jl is the distance between SNPs j and l. This
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function has similar shape as a popular non-compact Gaussian function Ai j = e−
d2
i j
τ with similar

scaled distance.
SSM was first introduced by [16] to detect clusters in a point process in the one-dimensional setting.

With moving windows, the maximum number of points in the windows is recorded and compared to
its distribution under the null hypothesis of a purely random Poisson process. A reasonable method
that takes into account accurate underlying distributions of methylation counts needs to be developed.
Kulldorff et al. [17] proposed a likelihood-based SSM, which was extended to detect genetic variants
by [18] by considering the Bernoulli distribution of variants at each position for every individual. The
scan statistic is calculated from the likelihood ratio of the frequencies of variants carried among cases
and controls within a window versus outside the window, with moving windows along the whole
genome. The maximum of the scan statistics over the windows of all possible sizes is defined as the
global statistic. However, the approach considered by [18] may not be appropriate for methylation
data, since methylated counts at each CpG site for every individual, conditional on the sequencing
coverage, follow a binomial distribution instead.

Here, we propose a binomial SSM, which assumes a binomial distribution for the methylation
data. Similarly, we also propose a KDM based on [15]. In both approaches, we use logistic regression
on methylation rates to adjust for covariates, including sample-specific covariates such as batch effect,
in addition to other confounding variables and predictors.

The details for these statistical methods are presented in Materials and Methods, and the results
of our simulation studies are presented in Simulation Results. The methods are applied to a bisulfite-
sequenced data from a chronic lymphocytic leukemia (CLL) study [19], with the results presented in
Analysis of CLL Data, followed by conclusions and discussions presented in Discussion.

2. Materials and Methods

2.1. Kernel Distance Method

We modified the KDM, proposed by [15], to model methylation rates, using a tri-weight kernel
function to measure the correlation of the methylation rates at different CpG sites as a function of the
distance between the sites. This is necessary, since the correlation of methylation rates between CpG
sites decreases as the distance between the sites increases.

To facilitate the discussion of the kernel distance method, let mki j be the count of the methylated
molecules at CpG site j of individual i in group k, where k = A for cases and U for controls. We
assume that mki j ∼ Binom

(
cki j, pki j

)
, where Binom() stands for binomial distribution, cki j is a positive

integer denoting the coverage, and pki j is the methylation rate at CpG site j for individual i in group k,
k = A, U; i = 1, 2, . . . , nk; j = 1, 2, . . . , s.

To adjust for confounding factors and linear predictors such as age and gender, we first use logistic
regression to fit all data from both groups, using the model,

log
( pki j

1− pki j

)
= log

( mki j

cki j −mki j

)
= β0 + β1xki, (1)

where β0 and β1 are regression coefficients and xki represents the vector of covariates of individual i in
group k. The fitted odds are calculated for methylation at CpG site j for individual i in group k, to get
the corresponding expected methylation rates,

p̂ki j =
exp

(
β̂0 + β̂1xki

)
1 + exp

(
β̂0 + β̂1xki

) . (2)
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The difference between the observed and expected methylated counts at CpG site j for individual
i in group k is calculated as “the adjusted methylation count”,

rki j = mki j − p̂ki jcki j. (3)

Define rAj =
∑nA

i=1 rAij and rUj =
∑nU

i=1 rUij, then the group effects for cases and controls are

quantified as β̂Aj =
rAj
CAj

and β̂Uj =
rUj
CUj

, where CAj =
∑nA

i=1 cAij and CUj =
∑nU

i=1 cUij. The difference

between the two groups, δ j = β̂Aj − β̂Uj, is calculated at each CpG site, and used in the quadratic
statistic Q = δ

′

Aδ, where A is a pre-defined matrix of the correlation of methylation rates among
CpG sites.

Generally, the correlation of methylation rates decreases as the distance between the two CpG
sites increases. Therefore, the kernel matrix A should be based on a function that determines
how rapid the correlation decreases to 0 as the distance increases. We use the tri-weight function

A jl(τ) =

(
1−

(
d′jl(τ)

)2
)3

, if d′jl ≤ 1 and 0 otherwise [15], where d′jl(τ) = d jl/τ is a scaled distance based

on the unknown scaling factor τ, and d jl measures the distance between CpG sites j and l.
Since the lengths and number of DMRs are unknown and difficult to predict, and the lengths of

DMRs vary across the genome, it is difficult to determine the scaling factor that represents the cluster
size. When an appropriate size of clusters cannot be predicted and many clusters are expected, it
is common to repeat the procedure using different values of τ. Tango [20] suggests allow τ to vary
continuously from a small value near zero upwards until τ reaches about half the size of the region of
interest. In this manuscript, as proposed by Schaid et al. [15], we consider 10 values of τ, evaluate
kernel distance statistic at each value, and select the one that maximizes the statistic; that is,

max
τ

Q = max
τ

δ
′

A(τ)δ

When a single test statistic is computed based on one scaling factor, the distribution of the kernel
distance statistic can be approximated by a scaled chi-square distribution [20]. However, because of
multiple scaling factors in our case, scaled chi-square may not be a very good approximation for the
distribution of the statistic, and hence we use the permutation method, instead.

When the null hypothesis is rejected, the scaling factor, τ∗, that corresponding to the maximum Q
value is accepted as the length of DMR, and the corresponding kernel distance statistic is calculated as,

Q(τ∗) =
m∑

j=1

m∑
l=1

(
A jl(τ

∗)δ jδl
)
,

where m is the number of CpG sites in a genomic region. The percent contribution to Q(τ∗) at each CpG
site is calculated as U j(τ

∗)/Q(τ∗), where U j(τ
∗) =

∑m
l=1

(
A jl(τ

∗)δ jδl
)
. The distribution of methylation

rates can now be plotted based on the percent contribution U j(τ
∗)/Q(τ∗) versus CpG site j, which

gives a graphical view of potential DMRs.

2.2. Binomial Scan Statistic Method

Scan statistic method can be used as an alternative to KDM for detecting DMRs associated with
the disease status. SSM is a likelihood-based approach that uses the likelihood ratio to test whether the
methylation rates are different between groups. We use moving windows along the genome, with
multiple window sizes, allowing more accurate evaluation of the location and sizes of DMRs.

Since the methylation rate at each CpG site is correlated with those at the adjacent CpG sites,
these correlations are first adjusted by using mixed-effect logistic regression model (see Appendix A
for details). Then the “adjusted methylation count” rki j for group k is calculated, using Equations (2)
and (3). The mixed-effect logistic regression model also allows us to account for relevant covariates.



Genes 2019, 10, 298 5 of 16

We also incorporate an approach proposed by [21] in our proposed SSM to adjust for the clustering
structure within each CpG site. By treating the cluster size as random, we can account for the unequal
sequencing coverage for individuals at each CpG site. Using the method proposed by [22], the design
effect due to clustering is calculated for each CpG site, and used to calculate the adjusted methylation
counts r̃kj and sequencing coverage C̃kj (See Appendix A for details).

We assume that r̃Aj ∼ Binom (C̃Aj, pA) and r̃Uj ∼ Binom (C̃Uj, pU), where pA and pU are the
methylation rates in cases and controls, respectively.

Let ηk = log
( pk

1−pk

)
be the logit transformation of methylation rates of group k within the specific

region. In order to test the hypotheses H0 : ηA = ηU versus H1 : ηA , ηU, we propose a test statistic
that uses the log of the ratio of the likelihood under H1 versus H0, which is referred to as the scan
statistic. It is given by (see Appendix A for details)Genes 2019, 10, x FOR PEER REVIEW 5 of 15 
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and, bA =

∑s
j=1 C̃Aj∑s

j=1 C̃Aj+
∑s

j=1 C̃Uj
, rA =

∑s
j=1 r̃Aj∑s

j=1 r̃Aj+
∑s

j=1 r̃Uj
, T =

∑s
j=1 r̃Aj+

∑s
j=1 r̃Uj∑s

j=1 C̃Aj+
∑s

j=1 C̃Uj
and Φ = 1∑s

j=1 C̃Aj+
∑s

j=1 C̃Uj
.

One of the advantages of SSM is that the method can easily be extended to more than two groups,
if the groups are classified based on nominal responses. Under the multinomial set up, SSM can
be used to test the overall hypotheses of no difference in methylation rates among the groups (See
Appendix A).

The scan statistic is calculated for each window using moving windows with variable window
(VW) size approach across the whole genome. DMR is defined as the window with the highest value
of the scan statistic. Thus, for each window W of size w, the binomial scan statistic is be calculated, and
the one with highest value denoted by LRw. Then the maximum of LRw over all values of w is used as
the global test statistic.

i.e., LR = max
w

LRw.

The LR calculation is unstable if the frequency of methylated counts within a given window is 0 for
either cases or controls. To overcome this issue, a pseudo-count of 1 is added to the adjusted methylated
and unmethylated counts at each CpG site, these additions implicitly assume that the null hypothesis
of no differential methylation is true at all sites. Since the distribution of scan statistic is unknown, an
approximate p-value for the window with the largest LRw is calculated using permutation method.

For case-control studies, SSM is expected to have higher power than the KDM, since SSM using
moving window with variable window sizes overcomes the difficult problem of determining the value
of scaling factor τ in the KDM. The use of moving windows can also result in more accurate regions
of DMRs.

2.3. Simulation

We conducted extensive simulation studies to evaluate the performances of both SSM and
KDM. They were compared with respect to the empirical type I error, empirical power and
computational efficiency.

Since we used logistic regression for both methods to adjust for covariates, for simplicity, we did
not include any covariates in the simulation. Although there are many DMRs along the genome, for
the power comparisons for various alternate hypotheses at various significant levels, we assumed
that there was only one DMR, so that we only simulated a small genome region around the DMR. We
simulated two different scenarios with respect to number of CpG sites in the region, 24 and 30, and all
CpG sites within the region were equally spaced.
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Simulation Parameters

We considered N1 cases and N2 controls and assumed every individual had equally spaced m
CpG sites in the simulated region, of which r consecutive CpG sites in the middle were in the DMR.

Methylation counts at each CpG site for every individual were assumed to be distributed as
B
(
cki j, pki j

)
, k = A, U, i = 1, 2, . . . , N, j = 1, 2, . . . , m. The sequencing coverage cki j were allowed to vary

by sampling the value of it from N(30, 13) and then rounding it to the nearest integer, with a minimum
of 5 based on the real data analysis by [20]. The correlated methylation rates pki j were simulated using
a two-step procedure proposed by [23] in order to model the spatial dependence of the methylation
rates among nearby CpG sites.

First, independent random samples Xki j were generated from Beta-distribution for CpG site j
of individual i in group k. Under the null hypothesis, Xki j were generated as Xki j ∼ Beta(αU, βU),
k = A, U. Under the alternative hypothesis, for CpG sites outside the DMR, Xki j were generated
under the same distribution. Within the DMR under the alternate hypothesis, Xki j were generated
as XAij ∼ Beta(αA, βA), where αA , αU or βA , βU for all CpG sites within the DMR, so that the
methylation rates were different between cases and controls within DMR. Based on the property of
the Beta distribution, with fixed αU, βA and βU, only the values of αA were changed, with effect size
defined as d = αA

αA+βA
−

αU
αU+βU

.
For each individual in each group, the vector of independent random variables Xki was

transformed into a vector of correlated random variables with correlated methylation rates
pki = 1−Φ

(
CΦ−1(1−Xki)

)
, where Φ(·) denoted the cumulative distribution function of the standard

normal distribution function with Cholesky decomposition C of the correlation matrix Σ = CC′. All
diagonal elements of the correlation matrix Σ were 1, and the (i, j)th off-diagonal element was defined
as the correlation coefficient ρ divided by the distance between CpG sites i and j, in order to account for
the fact that the correlation of methylation rates for two CpG sites decreases as the distance increases.

3. Results

3.1. Simulation Results

Simulations were conducted at significance levels of 0.05 and 0.01, total sample sizes of 48 and 60
with equal sample sizes in each group, and regions of 24 and 30 CpG sites with 6 sites in the middle
constituting the DMR. We assumed correlation coefficients of ρ = 0.7 and ρ = 0.5 for methylation rates
between adjacent CpG sites, and those among non-adjacent sites were scaled down by dividing ρ by
the distances between sites. We set αU = 0.1, βA = βU = 0.9, and used different values of αA to get
different effect sizes. Since we simulated DMRs with length of 6 CpG sites, we used τ = 6 in KDM,
and moving window of size 6 in SSM.

First of all, we generated 10,000 simulated samples using αA = 0.1 and computed the p-values
and the empirical type I errors at significant levels 0.05 and 0.01, in order to evaluate the statistical
validity of the two approaches. The results are presented in Table 1, and the histogram plots of p-values
for SSM and KDM in Figure 1a,b, respectively. For a statistical test to be valid, the p-values must
be uniformly distributed between 0 and 1 under the null hypothesis. As evident from Figure 1, the
p-value distributions are very close to uniform in both the cases, thus asserting the statistical validity
of both our proposed methods. Also, the empirical type I errors are very close to the significant levels,
confirming that both methods have excellent control of type I errors.
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Table 1. Type I errors for both kernel distance method (KDM) and scan statistic method (SSM) based
on 10,000 simulations.

Significance Level 0.05 0.01

Total Sample Sizes Total Number
of Sites αA ρ KDM SSM KDM SSM

48 24 0.1 0.5 0.053 0.056 0.013 0.014
48 24 0.1 0.7 0.0514 0.0518 0.0116 0.0125
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Because of the massive computing time needed for simulations under the alternate hypotheses,
only 1000 simulations were conducted to evaluate the power of SSM and KDM under various alternate
scenarios. The plots of power versus different values of effect sizes and correlations at 5% significance
level are presented in Figures 2 and 3, corresponding to the 24-site and 30-site regions, respectively.
The plots show that values of the power for both SSM and KDM increase as the effect sizes increase,
and as well as the sample sizes increase. It is also evident from the plots that SSM has uniformly higher
power than KDM.

The conclusions on power at 1% significant level are very similar to and consistent with that at 5%
significance level, showing consistently higher power for SSM compared to KDM.

3.2. Analysis of Chronic Lymphocytic Leukemia Data

We applied our proposed methods to the methylation data from a genome-wide study of chronic
lymphocytic leukemia (CLL), which manifests as a result of clonal expansion of malignant B cells.
Research in CLL has identified several molecular alternations that are associated with prognostic
values. These include specific cytogenetic patterns [24], mutational status of the immunoglobulin
heavy chain variable gene (IgVH) [25] and expression of CD38 [26]. It has been observed that patients
with lower levels of CD38 have slower disease progression [25,27].

CD19+ B cells from peripheral blood were collected from 40 subjects [19]. Based on CD38 levels,
the samples were categorized as low- vs. high-risk, with 23 samples having CD38 levels ≤ 20 (low risk)
and 17 samples having CD38 levels > 20 (high risk).

Illumina reduced representation bisulfate sequencing [28] was used to generate sequencing reads
for each sample, with average sequencing depth per CpG between 32x and 43x, which provided counts
of DNA molecules that were methylated and unmethylated at each CpG site [19]. Tango [20] pointed
out that aberrant DNA methylation associated with CLL were located more frequently on chromosome



Genes 2019, 10, 298 8 of 16

19. So, we analyzed genome-wide methylation data on 17, 917 CpG sites on Chromosome 19 using
both SSM and KDM to identify DMRs between high-risk and low-risk CLL subjects.
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The percentage contribution of each CpG site to the kernel distance statistic is plotted at the top
of Figure 4. The middle and bottom parts of Figure 4 give the plots of the absolute differences of
methylation rates at each CpG site versus the percentage contribution of each CpG site to the kernel
distance statistic, based on the CLL data and the simulation data. The absolute value of differences in
methylation rates between cases and controls were calculated based on the ratio of adjusted methylation
counts and sequencing coverage based on [20] at each CpG site for cases and controls.
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Figure 4. Results of kernel distance method for of chronic lymphocytic leukemia (CLL) data.

The wedge shapes in both middle and bottom of Figure 4 show that, a large number of CpG sites
with small differences in methylation rates have very small contributions to the kernel distance statistic
and are possibly not differentially methylated, while the CpG sites with large contributions to the
kernel distance statistic show evidence of differential methylation. This indicates the ability of KDM in
detecting DMRs, especially using the tri-weight kernel function to incorporate the correlation structure
of methylation rates between CpG sites.

The SSM approach detected a total of 66 DMRs with varying window sizes, that containing
different number of CpG sites, with a total of 1355 CpG sites (about 7.5% of all CpG sites in Chromosome
19). The top 20 DMRs with highest scan statistic are presented in Table 2, which matches well with the
peaks in Figure 4, indicating consistency between SSM and KDM.
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Table 2. Results of SSM for CLL data on Chromosome 19; (Start: the starting nucleotide position of the
SSM; End: the ending nucleotide position of the SSM).

Start End Window Size p-Value Start End Window Size p-Value

951,756 960,480 15 0.001 40,495,154 40,706,271 40 0.033
5,748,848 5,855,704 35 0.024 40,958,295 40,995,281 15 0.028
5,949,493 6,059,920 15 0.037 41,323,151 41,345,137 5 0.027
6,222,967 6,325,326 40 0.042 42,400,872 42,516,823 25 0.023
6,695,897 6,704,448 5 0.039 42,631,539 42,651,999 10 0.022
7,049,880 7,149,391 20 0.042 43,411,447 43,472,750 70 0.023
8,306,311 8,416,558 105 0.02 44,099,619 44,158,078 10 0.003

10,078,223 10,091,192 15 0.049 45,388,832 45,464,209 30 0.007
10,261,108 10,336,402 75 0.048 45,812,107 45,821,840 5 0.005
10,366,854 10,374,990 5 0.011 46,555,659 46,595,121 5 0.007
10,529,295 10,537,824 5 0.033 47,040,515 47,078,316 5 0.008
11,311,211 11,369,166 35 0.046 50,778,928 50,793,474 5 0.021
11,852,835 11,937,174 15 0.012 51,010,992 51,058,089 10 0.029
12,036,638 12,128,243 10 0.019 51,059,619 51,079,866 15 0.026
13,780,707 13,818,691 30 0.035 51,409,109 51,427,742 5 0.027
15,871,811 15,874,720 5 0.033 53,821,358 53,829,676 15 0.001
16,211,533 16,298,141 10 0.008 53,914,126 53,934,314 20 0.011
16,779,596 16,818,698 5 0.049 53,946,213 53,983,289 5 0.033
17,181,376 17,207,209 20 0.032 54,819,984 54,835,037 5 0.035
17,483,944 17,492,848 5 0.027 54,872,826 54,884,388 10 0.033
18,358,107 18,358,200 5 0.018 55,714,472 55,760,862 15 0.047
18,839,769 18,849,925 40 0.037 55,853,400 55,911,789 30 0.046
19,196,863 19,220,558 10 0.001 56,884,684 56,887,726 5 0.002
20,751,241 20,751,405 10 0.016 58,388,434 58,388,478 5 0.006
21,443,528 21,449,542 5 0.042 58,980,127 59,064,230 15 0.007
35,558,112 35,558,143 5 0.014 59,643,525 59,652,071 5 0.002
37,528,315 37,528,707 10 0.035 59,652,664 59,666,539 15 0.011
37,808,618 37,858,100 10 0.019 60,109,922 60,545,979 205 0.04
38,315,030 38,359,639 10 0.012 60,790,219 60,808,074 15 0.015
38,576,223 38,632,218 20 0.001 61,304,533 61,424,810 55 0.013
38,980,210 39,003,767 20 0.043 61,741,700 61,798,595 20 0.048
39,760,398 39,760,441 5 0.022 62,277,420 62,310,019 5 0.019
40,193,224 40,214,045 25 0.046 63,565,854 63,570,870 10 0.035

The start and end positions of base pairs for each detected DMR were used in the UCSC genome
browser (http://genome.ucsc.edu/) to find the genes in the regions. Some of the genes detected in our
study include the apolipoprotein gene cluster (APOC1, APOC2, APOE), which are shown to have
tight linkage with a chronic lymphocytic leukemia-associated translocation breakpoint [29]. We also
detected the genes CATSPERD, PRR22, RFX2, and MILT1, which have been shown to be associated
with leukemia [30]. For example, translocation and fusion of MILT1 with myeloid lymphoid leukemia
could result in potent oncogenic activity [31,32].

Several studies have suggested that the transcription factor CREB (cyclic AMP response element
binding protein) may have a role in the pathogenesis of human acute myeloid leukemia (AML)
and other cancers [33,34]. In our data, replication factor C3 is detected whose expression has been
reported to have a direct correlation with CREB in AML cell lines, as well as in the AML cells from the
patients [35]. It is suggested that C3 may have a role in neoplastic myelopoiesis by promoting the G1/S
progression. Another detected gene, LAIR1, also has been found to have a correlation with CREB [36].
A pathway starts with LAIR1, activates downstream CREB in AML cells, and sustains the survival
and self-renewal of AML stem cells. As a result, inhibition of expression of the immunoreceptor
tyrosine-based inhibition motif (ITIM)-containing receptor LAIR1 does not affect normal hematopoiesis
but abolishes leukemia development [36].

4. Discussion

Results from our simulation studies and the analysis of CLL data indicate that both methods,
SSM and KDM, are valid approaches to detect DMRs. Both methods detect DMRs, while allowing for
covariates as well as correlation between CpG sites.

http://genome.ucsc.edu/
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The tri-weight function used in KDM allows for a correlation structure in which the correlation
decreases as the distance between CpG sites increases, while SSM use a mixed effects model to
incorporate the correlation structure. Although compound symmetry assumption used in SSM may not
truly represent actual correlation structure, the sandwich estimates of the fixed effects are appropriate
even when the correlation structure is mis-specified, with some trade off of the flexibility for robustness
of inference. Our simulation results also show that the mixed effects model is able to adjust for
correlation when the simulated correlations decrease as the distances between CpG sites increase.
Since the correlation structure can be complicated for methylation data, it may not be easy to find a
statistical model that incorporates the correlation structure in its fully complex form.

Both SSM and KDM have reasonable power and good controls of type I error in detecting DMRs
between two groups, though SSM performs better in this respect compared to KDM. One reason might
be that SSM is a likelihood-based method while KDM is a non-parametric method. Another reason for
increased power for SSM could be the use of moving windows with multiple window sizes, which
eliminates the difficulty of determining the value of τ in KDM. However, the use of moving windows
with a mixed effects model for adjusting the correlation of methylation rates results in substantially
longer computation time for SSM.

In addition, SSM accounts for within cluster correlation by incorporating the method proposed
by Xu et al. [20]. SSM also has the advantage that it can be used for comparing methylation rates in
more than two groups, while KDM can only be used for comparing two groups. But SSM still has a
limitation that it cannot consider the ordering of the group responses because the maximum likelihood
estimates are very difficult to obtain when constrained space based on ordering is required.

The uncertainty of τ not only leads to disadvantages in terms of power for KDM, but also it causes
KDM to detect only DMRs of approximate lengths, since the kernel distance statistic is calculated
using only one value of τ. In reality, the lengths of DMRs range from hundreds of base pair as in
small CpG islands, to millions of base pairs in cancer aberrations. It is very difficult to know the exact
length of DMRs, a limitation very common in statistical genomics, not only for detecting DMRs but
also for detecting rare variants [15]. Use of cross-validation or bootstrapping might help improve the
estimation of the window sizes.

Another reason for the lower power for KDM compared to SSM may be that KDM is not able to
adjust for unequal sequencing coverage for all individuals at each CpG site, while SSM incorporates
the method proposed by Xu et al. [20] to adjust sequencing coverage and methylation counts. One
possible solution is to use a mixed-effect logistic model with random intercept to adjust for the within
cluster correlation, treating methylation data at each CpG site as a cluster.

We have only focused on DNA methylation data in developing both our methods. However,
large-scale cancer genomics projects such as TCGA (The Cancer Genome Atlas Research Network) are
currently generating multiple layers of genomics data for early tumor, including DNA copy number,
methylation, and mRNA expression. Statistical methods for integrated analyses and systematic
modeling of such genomics data deserve more attention.
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Appendix A

Appendix A.1. Adjusting for Correlation Between CpG sites with Mixed-Effects Model

A random slope and random intercept logistic regression model is considered for modeling
methylation counts at each CpG site for every individual, which is given by

log
( pki j

1− pki j

)
= log

( mki j

cki j −mki j

)
= β0 + β1s j + β2xki + ν0ki + ν1kis j, (A1)

where xki is the covariate, and s j represents the distance of CpG site j from the starting point.

The random effect νki =

(
ν0ki
ν1ki

)
is assumed to vary independently across individuals with νki ∼

N
(
0,

(
σ2
ν0ki

σν0kiσν1ki

σν0kiσν1ki σ2
ν1ki

))
, where σ2

ν0ki
and σ2

ν1ki
are the variances of ν0ki and ν1ki, respectively, and

σν0kiσν1ki is the covariance of ν0ki and ν1ki.

Appendix A.2. Adjusting for Clustering Structure Within Each CpG Site

Within each CpG site, the design effect due to clustering is calculated using the method proposed
by Rao and Scott (1986). To calculate the design effect, we first calculate the adjusted methylation counts
rAj and rUj at CpG site j in groups A (cases) and U (controls), respectively, ignoring the clustering
within individuals. That is, rAj =

∑nA
i=1 rAij and rUj =

∑nU
i=1 rUij. Then the group effects are estimated

as, β̂Aj =
rAj
CAj

and β̂Uj =
rUj
CUj

, where CAj =
∑nA

i=1 cAij and CUj =
∑nU

i=1 cUij. The variances of the group
effects are given by

V̂
(
β̂Aj

)
=

nA
∑nA

i=1

(
rAij − cAijβ̂Aj

)2

(nA − 1)C2
Aj

and V̂
(
β̂Uj

)
=

nU
∑nU

i=1

(
rUij − cUijβ̂Uj

)2

(nU − 1)C2
Uj

.

Without clustering, the variances of the group effects under the binomial distribution are

V̂B(β̂Aj) =
β̂Aj(1− β̂Aj)

CAj
and V̂B(β̂Uj) =

β̂Uj(1− β̂Uj)

CUj
.

Then the design effects for the two groups are defined as,

dAj =
V̂(β̂Aj)

V̂B(β̂Aj)
and dUj =

V̂(β̂Uj)

V̂B(β̂Uj)
. (A2)

The design effects are then used to calculate the adjusted methylation counts and sequencing
coverage at each CpG site in cases and controls as

r̃Aj =
rAj

dAj
and r̃Uj =

rUj

dUj
(A3)

C̃Aj =
CAj

dAj
and C̃Uj =

CUj

dUj
(A4)
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Appendix A.3. Binomial Scan Statistic for Case-Control Studies

Considering r̃kj ∼ Binom
(
C̃kj, pk

)
, where pk is the methylation rate in group k, then the likelihood

of r̃kj, k = A, U, is given by,

f
(̃
rkj

)
=

(
C̃kj
r̃kj

)
p̃

rkj

k (1− pk)
C̃kj−̃rkj

=

(
C̃kj
r̃kj

)
exp

(̃
rkj log

( pk
1−pk

)
+ C̃kj log(1− pk)

)
.

Since (̃rk1, r̃k2, . . . , r̃ks) for the s consecutive CpG sites are assumed to be independent, the joint
likelihood of adjusted methylation counts over s consecutive CpG sites in the defined region for group
k is the product of the likelihoods of the s CpG sites, which can be expressed as,

f (̃rk1, r̃k2, . . . , r̃ks) =
s∏

j=1

(
C̃kj
r̃kj

)
exp

(̃
rkj log

( pk
1−pk

)
+ C̃kj log(1− pk)

)
=

s∏
j=1

(
C̃kj
r̃kj

)
exp

 s∑
j=1

C̃kj

( ∑s
j=1 r̃kj∑s
j=1 C̃kj

log
( pk

1−pk

)
+ log(1− pk)

).

From this likelihood, we can see the distribution of adjusted methylated counts follow a
one-parameter exponential family y = (̃rk1, r̃k2, . . . , r̃ks) ∼ EXP(η,φ, T, Be, a) with

T(̃rk1, r̃k2, . . . , r̃ks) =

∑s
j=1 r̃kj∑s
j=1 C̃kj

η = log
(

pk

1− pk

)
where pk =

exp(η)
1 + exp(η)

Be(η) = − log(1− pk) = log(1 + eη)

φ =
1∑s

j=1 C̃kj

a(φ) = 1

and the log-likelihood l(η; y) = (ηT(y) − Be(η))/φ after ignoring an additive constant that does not
depend on η. Based on this likelihood function, we can find the maximum likelihood estimator (MLE)
of parameter η in EXP(η,φi, T, Be, a) as η̂ = ge(T(y)), where ge = (B′e)

−1 = log(T) − log(1− T) [37].
Then the scan statistic as the ratio of the likelihood under H1 versus H0, given by

∆ = κ(TA, ΦA) + κ(TU, ΦU) − κ(T, Φ), (A5)

where κ(x, y) = (xge(x) − Be(ge(x)))/y, 1
Φ = 1

ΦA
+ 1

ΦU
, T = bATA + (1− bA)TU, and bA =

1
ΦA

/
(

1
ΦA

+ 1
ΦU

)
.

Here we have, ΦA = 1∑s
j=1 C̃Aj

, ΦU = 1∑s
j=1 C̃Uj

, TA =

∑s
j=1 r̃Aj∑s
j=1 C̃Aj

, and TU =

∑s
j=1 r̃Uj∑s
j=1 C̃Uj

for cases and

controls, with
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Here the groups are assumed to be independent, and the log of the ratio of the likelihood under 𝐻ଵ versus 𝐻଴ is used as the test statistic as before, given by, 𝛥 = ෍ 𝜅(𝑇௞, 𝛷௞)௄
௞ୀଵ − 𝜅(𝑇, 𝛷),  

where 𝜅(𝑥, 𝑦) = (𝑥𝑔௘(𝑥) − 𝐵௘൫𝑔௘(𝑥)൯)/𝑦 and 𝑇௞ = ∑ ௥̃ೖೕೞೕసభ∑ ஼ሚೖೕೞೕసభ , 𝛷௞ = ଵ∑ ஼ሚೖೕೞೕసభ .  

Define 𝛷 = ଵ∑ ∑ ஼ሚೖೕೞೕసభೖ಼సభ  and 𝑇 = ∑ ∑ ௥̃ೖೕೞೕసభೖ಼సభ∑ ∑ ஼ሚೖೕೞೕసభೖ಼సభ , thus ଵః = ∑ ଵఃೖ௄௞ୀଵ , 𝑇 = ∑ 𝑏௞𝑇௞௄௞ୀଵ , where 𝑏௞ = భ೻ೖభ೻ =∑ ஼ሚೖೕೞೕసభ∑ ∑ ஼ሚೖೕೞೕసభೖ಼సభ . Then the scan statistic for more than two groups is given by,  

Δ = ෍ 𝜅(𝑇௞, Φ௞)௄
௞ୀଵ − 𝜅(𝑇, Φ) 

= ෍ 𝑇Φ ൬𝑟௞ log ൬𝑟௞𝑏௞൰ + ൬𝑏௞𝑇 − 𝑟௞൰ log ൬1 − 𝑇 𝑟௞𝑏௞൰ ൰௄
௞ୀଵ − 1 − 𝑇Φ log (1 − 𝑇) 
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and, bA =

∑s
j=1 C̃Aj∑s

j=1 C̃Aj+
∑s

j=1 C̃Uj
, rA =

∑s
j=1 r̃Aj∑s

j=1 r̃Aj+
∑s

j=1 r̃Uj
, T =

∑s
j=1 r̃Aj+

∑s
j=1 r̃Uj∑s

j=1 C̃Aj+
∑s

j=1 C̃Uj
and Φ = 1∑s

j=1 C̃Aj+
∑s

j=1 C̃Uj
.

Appendix A.4. SSM for Multinomial Responses

Before testing the differences among groups, the methylation counts and sequencing coverage
need to be adjusted. First, we use the mixed-effect logistic regression model (A1) to adjust for covariates
and the correlation of methylation rates between CpG sites. Then design effects in (A2) are calculated
based on Xu et al. [20], and used to adjust the residual r̃kj and the sequencing coverage C̃kj for group k
at CpG site j, for all k and j, as in (A3) and (A4).

Assume that all CpG sites in a DMR for group k have same methylation rate pk with adjusted
methylation count r̃kj ∼ B

(
C̃kj, pk

)
. Let ηk = log

( pk
1−pk

)
be the logit transformation of methylation rates

of group k. The hypothesis of interest is,

H0 : η1 = η2 = . . . = ηK = η vs. H1 : η1, η2, . . . , ηK not all are equal.

Here the groups are assumed to be independent, and the log of the ratio of the likelihood under
H1 versus H0 is used as the test statistic as before, given by,

∆ =
K∑

k=1

κ(Tk, Φk) − κ(T, Φ),

where κ(x, y) = (xge(x) − Be(ge(x)))/y and Tk =

∑s
j=1 r̃kj∑s
j=1 C̃kj

, Φk =
1∑s

j=1 C̃kj
.

Define Φ = 1∑K
k=1

∑s
j=1 C̃kj

and T =

∑K
k=1

∑s
j=1 r̃kj∑K

k=1
∑s

j=1 C̃kj
, thus 1

Φ =
∑K

k=1
1

Φk
, T =

∑K
k=1 bkTk, where bk =

1
Φk
1
Φ

=

∑s
j=1 C̃kj∑K

k=1
∑s

j=1 C̃kj
. Then the scan statistic for more than two groups is given by,

∆ =
K∑

k=1

κ(Tk, Φk) − κ(T, Φ)=
K∑

k=1

T
Φ

(
rk log

(
rk
bk

)
+

(
bk
T
− rk

)
log

(
1− T

rk
bk

) )
−

1− T
Φ

log(1− T)

where bk =

∑s
j=1 C̃kj∑K

k=1
∑s

j=1 C̃kj
, rk =

∑s
j=1 r̃kj∑K

k=1
∑s

j=1 r̃kj
, Φ = 1∑K

k=1
∑s

j=1 C̃kj
, and T =

∑K
k=1

∑s
j=1 r̃kj∑K

k=1
∑s

j=1 C̃kj
.
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