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Abstract: Measuring the magnitude of differentiation between populations based on genetic markers
is commonplace in ecology, evolution, and conservation biology. The predominant differentiation
metric used for this purpose is FST. Based on a qualitative survey, numerical analyses, simulations,
and empirical data, I here argue that FST does not express the relationship to allele frequency
differentiation between populations generally considered interpretable and desirable by researchers.
In particular, FST (1) has low sensitivity when population differentiation is weak, (2) is contingent on
the minor allele frequency across the populations, (3) can be strongly affected by asymmetry in sample
sizes, and (4) can differ greatly among the available estimators. Together, these features can complicate
pattern recognition and interpretation in population genetic and genomic analysis, as illustrated by
empirical examples, and overall compromise the comparability of population differentiation among
markers and study systems. I argue that a simple differentiation metric displaying intuitive properties,
the absolute allele frequency difference AFD, provides a valuable alternative to FST. I provide a
general definition of AFD applicable to both bi- and multi-allelic markers and conclude by making
recommendations on the sample sizes needed to achieve robust differentiation estimates using AFD.

Keywords: genetic differentiation; minor allele frequency; population genetics; sample size;
single-nucleotide polymorphism

1. Introduction

Biological studies measuring the magnitude of genetic differentiation between populations, for
example to explore levels of gene flow between populations, to discover genome regions influenced
by natural selection, or to inform decisions in conservation biology, are published on a daily basis.
A differentiation metric used frequently in such work is FST, interpreted broadly as a measure of
the proportion of the total genetic variation at a genetic locus attributable to differentiation in allele
frequencies between populations [1]. FST was conceptualized in the middle of the last century as a
descriptor of genetic structure among populations [2–4]. Over the subsequent decades, numerous
estimators were developed to allow FST to be calculated with empirical genetic data, based on
different assumptions about the sampled study populations and/or the mutation process of the genetic
markers [3,5–14]. Aside from some controversy about how to best calculate FST with multi-allelic
genetic markers such as microsatellites [14–21], the fundamental concept shared among the FST
estimators is firmly established in population genetics and genomics; FST is currently among the most
widely used statistics in these fields. In this note, I will argue that despite its popularity, FST has
shortcomings that complicate the analysis of population differentiation, and that a powerful alternative
differentiation metric is available.
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2. Features of an Appropriate Differentiation Metric

To approach the problems inherent in FST, we will start from the very beginning and ask what
properties a metric of genetic differentiation should exhibit. First, the scale of the metric should
range from zero (no genetic differentiation among populations) to one (complete fixation for different
alleles). This familiar scale greatly facilitates interpretation and allows for convenient comparisons of
differentiation among genetic markers and study systems. FST estimators satisfy this scale criterion;
they are generally designed to range from zero to one.

The second, perhaps even more crucial requirement of an appropriate differentiation metric is
that it should show an intuitive and traceable relationship to the magnitude of genetic differentiation
between populations, so a researcher can understand and interpret what they are measuring. But what
should this relationship look like? The answer to this question cannot be derived from theory but
depends on the needs and expectations of the researchers measuring differentiation among their
study populations. To develop a sense for these expectations, I performed a qualitative survey
involving a total of 15 haphazardly chosen colleague researchers (advanced postdocs and faculties)
having years of experience in population genetics and/or evolutionary genomics, including both
empiricists and theoreticians. I confronted these researchers with a graphic displaying a continuum of
symmetrically increasing genetic differentiation between samples of nucleotides (n = 40) drawn from
two hypothetical populations at a single-nucleotide polymorphism (SNP) (X-axis, ranging from no to
complete differentiation). I then asked them to specify the corresponding magnitude of population
differentiation (Y-axis) an ideal metric of differentiation should exhibit if such a metric was to be
invented from scratch. Specifically, the respondents were presented in Figure 1a, with the upper panel
of the figure left blank.

Genes 2019, 10, x FOR PEER REVIEW 2 of 13 

 

2. Features of an Appropriate Differentiation Metric 

To approach the problems inherent in FST, we will start from the very beginning and ask what 
properties a metric of genetic differentiation should exhibit. First, the scale of the metric should 
range from zero (no genetic differentiation among populations) to one (complete fixation for 
different alleles). This familiar scale greatly facilitates interpretation and allows for convenient 
comparisons of differentiation among genetic markers and study systems. FST estimators satisfy this 
scale criterion; they are generally designed to range from zero to one. 

The second, perhaps even more crucial requirement of an appropriate differentiation metric is 
that it should show an intuitive and traceable relationship to the magnitude of genetic differentiation 
between populations, so a researcher can understand and interpret what they are measuring. But 
what should this relationship look like? The answer to this question cannot be derived from theory 
but depends on the needs and expectations of the researchers measuring differentiation among their 
study populations. To develop a sense for these expectations, I performed a qualitative survey 
involving a total of 15 haphazardly chosen colleague researchers (advanced postdocs and faculties) 
having years of experience in population genetics and/or evolutionary genomics, including both 
empiricists and theoreticians. I confronted these researchers with a graphic displaying a continuum 
of symmetrically increasing genetic differentiation between samples of nucleotides (n = 40) drawn 
from two hypothetical populations at a single-nucleotide polymorphism (SNP) (X-axis, ranging 
from no to complete differentiation). I then asked them to specify the corresponding magnitude of 
population differentiation (Y-axis) an ideal metric of differentiation should exhibit if such a metric 
was to be invented from scratch. Specifically, the respondents were presented in Figure 1a, with the 
upper panel of the figure left blank. 

 

Figure 1. Population differentiation expressed by different metrics. Magnitude of genetic 
differentiation at a bi-allelic single-nucleotide polymorphism (SNP) along the continuum of allele 
frequency differentiation between two populations (top graphs). Differentiation is quantified by the 
absolute allele frequency difference (AFD), by two popular estimators of FST (GST and Theta), by DEST, 
and by Shannon differentiation (DShannon). The X-axis specifies the underlying allele counts in 
population 1 (first row) and population 2 (second row) for two hypothetical alleles (A, C), assuming 
a draw of 40 total alleles per population at the exact allele frequencies in each population (no 
sampling stochasticity). The third row gives the frequency of the less common SNP allele across the 

Figure 1. Population differentiation expressed by different metrics. Magnitude of genetic differentiation
at a bi-allelic single-nucleotide polymorphism (SNP) along the continuum of allele frequency
differentiation between two populations (top graphs). Differentiation is quantified by the absolute allele



Genes 2019, 10, 308 3 of 13

frequency difference (AFD), by two popular estimators of FST (GST and Theta), by DEST, and by Shannon
differentiation (DShannon). The X-axis specifies the underlying allele counts in population 1 (first row)
and population 2 (second row) for two hypothetical alleles (A, C), assuming a draw of 40 total alleles
per population at the exact allele frequencies in each population (no sampling stochasticity). The third
row gives the frequency of the less common SNP allele across the pool of the two population samples
(i.e., the pooled minor allele frequency, MAF). The SNP is specified to exhibit a maximal MAF in (a) and
a minimal MAF in (b). The bar plots on the bottom illustrate the counts of the two alleles for three
levels of differentiation (none, intermediate, complete). Note that some metrics are undefined at the
endpoints of the differentiation continuum, and that in (a), DEST very closely approximates Theta and is
therefore hidden.

Although considered a qualitative rather than formal investigation, and despite a modest sample
size, this survey produced a clear result: among the 15 total researchers, 13 argued that the most
intuitive differentiation metric would exhibit a linear relationship from zero to one along this continuum
of allele frequency shifts between populations, as shown by the thin black line in Figure 1a. Exactly
this relationship is expressed by the absolute allele frequency difference, hereafter AFD. For a single
bi-allelic marker, AFD is easily obtained by arbitrarily defining one of the two alleles as the focal
allele and calculating the absolute difference in the frequency of this allele between the populations.
(‘Allele proportion’ would perhaps be a more precise term than ‘allele frequency’, but I will stick to the
latter expression used traditionally in population genetics.) More generally, the calculation of AFD
between two populations at a genetic polymorphism can be formalized as

AFD =
1
2

n∑
i=1

∣∣∣( fi1 − fi2)
∣∣∣

where n represents the total number of different alleles observed at the polymorphism, and the fi-terms
specify the frequency of allele i in the two populations (an analogous definition is given verbally in
Reference [22]). This formula can also be applied to multi-allelic markers like microsatellites. The focus
of this paper, however, lies on standard bi-allelic SNPs, given that this type of polymorphism has
become the predominant genetic marker. A worked example of AFD calculation for both a bi-allelic
SNP and a multi-allelic microsatellite is provided as Analysis S1 in the Supplementary Materials
(for applications of AFD in recent genomic investigations see References [23–27]).

3. Some Problems with FST

As suggested above, a substantial proportion of researchers appear to find the linear relationship to
continuous genetic differentiation exhibited by AFD particularly intuitive and interpretable. Note that
throughout this paper, (non-)linearity refers only to the immediate relationship of a given differentiation
metric to population allele frequencies, and hence does not imply any specific relationship of the
estimator to biological factors influencing allele frequencies, such as gene flow, mutation, selection,
population size, or divergence time. Now let us consider how FST behaves along the continuum of
differentiation in allele frequencies. For this, we will initially focus on the two most popular FST
estimators, GST [6] and Theta (θ) [8] (given in more accessible notation by the Formulas (8) and (6) in
Reference [28]) and consider other metrics later. I emphasize that the insights emerging from these
explorations may not be novel to researchers closely familiar with the theory underlying FST, but they
are clearly under-appreciated by empiricists.

When the populations are undifferentiated genetically, GST is zero, as one would expect (Figure 1a,
left end on the X-axis). Likewise, if the two population samples are monomorphic for alternative
alleles, differentiation is at its maximum and GST exhibits the intuitive value of one (Figure 1a,
right end on the X-axis). Between these extremes, however, the relationship between allele frequency
change and GST is non-linear. Specifically, within the domain of low population differentiation, a unit
increase in the frequency of the allele A in population 1 and a corresponding increase in the frequency
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of C in population 2 causes a negligible increase in GST. A similar unit allele frequency change,
however, drives a disproportionally large increase in GST when the populations are close to complete
differentiation (Figure 1a). Theta shows qualitatively similar properties, although the deviation from
AFD is less pronounced than for GST, except when differentiation is very weak.

The above numerical investigation assumes that the frequency of the minor (or less common) allele,
as determined based on the pool of the two populations (hereafter MAF, for minor allele frequency),
is maximal (i.e., 0.5 across the entire population differentiation range). It is instructive to also explore
the behavior of our focal differentiation metrics when the MAF is minimal (i.e., one population is
consistently monomorphic). Under this condition, the relationship between genetic differentiation
and AFD remains straightforward to interpret. For instance, an allele frequency differentiation exactly
intermediate between the absence of differentiation (i.e., both populations are monomorphic for the
same allele) and the complete fixation for alternative alleles between the populations still yields an
intuitive AFD value of 0.5 (Figure 1b). Reducing the MAF, however, has a strong influence on the FST
estimators; their deviation from AFD declines. In particular, Theta now essentially coincides with AFD
(the deviation of Theta from AFD under the full range of allele frequency combinations between the
two populations is presented in Figure S1a).

Beside the MAF, the influence of sample size on metrics of differentiation also deserves attention.
The formulas underlying the calculation of AFD and GST rely exclusively on allele frequencies and
thus ignore the sample sizes used to estimate these frequencies. Therefore, the expected (parametric)
value of these differentiation metrics is not dependent on sample size. (Empirical values derived
from stochastic real-world samples, however, will be influenced by the precision underlying the
estimation of allele frequencies, and hence by sample size, as elaborated in a separate section below).
By contrast, the expected value of Theta at a given marker does depend on sample size. As long as
sample sizes are similar between the two focal populations, the absolute size of these samples has a
relatively minor influence on Theta, at least for typical (not very small) sample sizes used by empiricists
(details not presented). However, imbalance in the size of the samples from the populations can have
a dramatic influence on Theta. To appreciate this point, we assume that we sample nucleotides at a
genetic marker from two populations exhibiting intermediate differentiation in allele frequencies (AFD
= 0.5). Sample size for the first population is always constant (n = 40 nucleotides, as in Figure 1),
whereas sample size for the second population is variable, ranging from 20 to 160 nucleotides. If the
MAF is chosen to be minimal, we observe a dramatic decline in Theta as sample size for the second
population increases (solid line in Figure 2). For example, all else equal, Theta declines from 0.59 to 0.42
when increasing sample size for the second population from 40 to 80 (equivalent to 20 and 40 diploid
individuals). By contrast, choosing allele frequencies in the two populations such that the MAF is
maximal, we find that the influence on Theta of sample size imbalance between the populations is
reversed in direction, and weaker in magnitude (dotted line in Figure 2). Note that these effects are
unrelated to sampling stochasticity, as we assume that our samples always mirror exactly the true
population frequency (as in Figure 1).

Collectively, the above explorations allow us to draw a number of important conclusions regarding
FST. First, FST generally displays a non-linear relationship to continuous population differentiation in
allele frequencies (note that GST is sometimes claimed to display a perfectly linear relationship, and thus
to coincide with AFD, after square-root transformation. This view is incorrect, as demonstrated in
Figure S1b). This non-linearity has a more serious implication than just being unintuitive to many
scientists: in several research fields using marker-based inference, small differences in the magnitude of
genetic differentiation between population comparisons are highly relevant—and yet, this is exactly the
domain in which FST is least sensitive (Figure 1a,b). For instance, observing average AFD of 0.05 versus
0.1 in two different population comparisons may point to an interesting difference between these
population pairs in the opportunity for gene flow. However, when expressed as FST, the corresponding
difference in the average magnitude of differentiation between the two population comparisons may
appear marginal and not attract a researcher’s attention. FST thus compromises the comparability
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of differentiation among markers and among studies in the differentiation range most interesting to
many empiricists. This point is reinforced by two investigators involved in the above survey having
argued that although a linear increase in a differentiation metric along the range of continuous genetic
differentiation appears ideal, one could also imagine a non-linear relationship with elevated sensitivity
across the lower population differentiation range. FST behaves exactly opposite to this suggestion.
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Figure 2. Influence of sample size imbalance between populations on the magnitude of the FST

estimator Theta at a single SNP. Sample size for population 1 is always 40 nucleotides, as in Figure 1,
but sample size for population 2 varies from 20 to 160 nucleotides (X-axis). Two different MAF levels
are considered (minimal, solid line; maximal, dotted line). Sampling occurs deterministically at the
exact population allele frequencies illustrated by the bar plots. For both MAF levels and across the full
parameter range considered, the magnitude of allele frequency differentiation between the populations
is therefore invariably perfectly intermediate (AFD is 0.5 throughout).

Our second conclusion is that genetic differentiation values expressed by FST are contingent on the
MAF of the population system (see also References [29–31]). While there may be reasons justifying this
behavior in specific analytical contexts, it will appear unintuitive (and often be unknown) to empiricists
that a given magnitude of allele frequency differentiation yields different FST values depending on
how balanced the two alleles are in the population pool.

The third conclusion is that at least some FST estimators, like Theta, are sensitive to the balance
between populations in the number of nucleotides sampled at a given SNP. This property must
be considered a serious nuisance to empiricists, especially those working with high-throughput
sequencing data from population pools [32,33]. Even when controlling the number of study individuals
in a population genomic experiment tightly, high-throughput sequencers inevitably generate variation
in read depth among genomic positions, which will systematically inflate the variance in FST among
markers and among studies when using Theta as estimator. Moreover, that the expected value of
differentiation at a marker should shift when the samples drawn from the focal populations differ in
size—even when the allele frequency estimates remain exactly the same—and that this influence of
sample size imbalance on FST is itself contingent on the MAF, can hardly be considered intuitive.

4. Other Differentiation Estimators

So far, our reflections on FST were based on the commonly used estimators GST and Theta.
A number of less widely applied alternative FST estimators have been introduced, however, hence it is
valuable to examine if these estimators share with the former the weaknesses identified above. For this,
I repeated the analysis of the magnitude of differentiation along the two continua of differentiation in
allele frequencies visualized in Figure 1 with Wright’s FST [3,5] (Formula (1) in Reference [16]) and PhiST
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(Φ) [10]. For the case of a bi-allelic SNP considered here, these metrics yielded values identical to GST.
Similarly, repeating the calculations with Hudson’s FST [11] (Formula (10) in Reference [28]) produced
results identical to Theta. Clearly, the problems identified for GST and Theta extend to the whole family
of FST estimators. Moreover, DEST (Formula (13) in Reference [14]), proposed as an alternative or
complement to FST, exhibited differentiation values qualitatively similar to the FST estimators (Figure 1;
see also References [34,35]).

Overall, the complexity inherent in FST (non-linearity, MAF- and sample size-dependence,
difference among estimators) makes clear that FST was not designed as a simple descriptor of
allele frequency differentiation. Instead, FST estimators aim at quantifying progress in population
differentiation, or at partitioning genetic variation among hierarchical levels, in the light of specific
models of mutation, gene flow, and drift [3,5,11,36–40]. Empiricists using FST, however, will rarely be
aware of the underlying assumptions, and even for those who are, real-world situations will generally
not allow evaluating what—if any—evolutionary model is meaningful for any given population
pair, genome region, and marker analyzed (for a similar view see Reference [37]). It is therefore not
surprising that the question of how FST should best be interpreted, and what constitutes the optimal
FST estimator in the first place, has been a matter of debate for decades [1,14,16,20,21,29,34,37,40–42].
To conclude, it is not generally clear what quantity FST measures in empirical contexts—a view in line
with the wide-spread sentiment of researchers that an intuitive differentiation metric should behave
differently from FST. Replacing or complementing the complex theory-laden FST differentiation metrics
by a traceable descriptor of differentiation independent from any specific population genetic model
thus promises to facilitate the identification and interpretation of patterns in population differentiation,
and to increase the comparability among studies and markers. The simple absolute allele frequency
difference AFD appears adequate for this purpose.

As a potential alternative to AFD, I further considered a metric derived from information
theory called Shannon differentiation (hereafter DShannon) that has recently been claimed to exhibit a
‘straightforward relationship to allele frequency differences’ [43] (see also References [44,45]). I explored
how this novel metric (calculated according to the instructions on the pages 4 and 5 of the Supplementary
Material to Reference [43]) behaves across the continua of allele frequency differentiation. This revealed
that when the MAF is high, DShannon exhibits even less sensitivity than FST in the domain of weak
to modest allele frequency differentiation between populations (Figure 1a). Consequently, DShannon
deviates even more strongly from the relationship to allele frequency differentiation considered
desirable by many investigators. It thus appears doubtful that DShannon will generally be considered a
valuable differentiation metric and adopted widely for empirical analysis.

The latter conclusion also applies to ad hoc differentiation metrics based on p-values derived
from statistical tests of differentiation between populations at genetic markers (e.g., References [46]).
The disadvantage of such metrics is that we generally cannot easily translate a locus-specific p-value
(i.e., the probability of an observed effect size) quantitatively into progress toward complete genetic
differentiation (the effect size itself). In addition, p-values are a direct function of sample size,
further reducing the comparability among markers and studies.

5. FST Can Complicate or Mislead the Biological Interpretation of Differentiation Data—Two
Examples

In the previous section, the drawbacks of FST (and related metrics) were exposed based on simple
numerical analyses. Given the ubiquity of FST in empirical research, I next illustrate implications of
quantifying population differentiation by FST in real-world genetic analyses based on two examples
from threespine stickleback fish (Gasterosteus aculeatus L.).

The first example re-uses SNP data generated through individual-level RAD sequencing (based
on Sbf1 enzyme restriction) in 28 female and 26 male stickleback from a single population inhabiting
Misty Lake, Vancouver Island, Canada (the pooled lake and outlet samples from Reference [47];
for background information on this population see References [48–50]). We focus exclusively on
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SNPs (n = 200) located on chromosome 19, and we ask what distribution (visualized by a simple
histogram) the differentiation between the sexes at SNPs along this chromosome will exhibit when
quantified by the FST estimator GST, and by AFD. Our key observation is that both metrics indicate
a bi-modal distribution of differentiation values, but that the high-differentiation mode is located in
a lower differentiation range for GST (upper mode at around 0.25–0.3) than for AFD (upper mode
near 0.5) (Figure 3a). The analytical relevance of this difference in the distribution of differentiation
values becomes clear when considering that the threespine stickleback has a chromosomal XY sex
determination system, and that the focal chromosome 19 represents the sex chromosome [51]. Crossover
between the X and Y gametologs is restricted to a short segment of chromosome 19 [52,53]. Across the
rest of the chromosome, the two gametologs represent completely isolated and deeply divergent
populations. Consequently, the X and Y have reached (or are close to) fixation for distinct alleles
at numerous SNPs. These gametolog-distinctive alleles cause the high-differentiation mode in both
histograms, because the females (XX) are homozygous while the males (XY) are heterozygous at these
SNPs (confirmed by inspecting allele frequencies in females and males at ten haphazardly chosen
SNPs exhibiting AFD near 0.5; one example is presented within the box in Figure 3a). In other words,
for any SNP allele private to the X, females tend to display a 100% frequency while males display
a 50% frequency (note that SNPs with low male read coverage, indicating alignment problems for
the Y-derived sequences, were excluded). Obviously, an intuitive differentiation metric—that is,
a metric facilitating the understanding of the link between the magnitude of differentiation and the
underlying biological cause—should yield a value of 0.5 for such a marker. While AFD shows this
property, GST clearly impedes biological interpretation; to understand that the location of the upper
differentiation mode in GST indicates a high abundance of SNPs with (nearly) X- and Y-limited alleles,
one needs to be aware of the specific function linking allele frequency differences to GST (Figure 1a,b).
Note that due to the peculiar allele distribution between the sexes, causing the MAF across the pool
of the sexes to be minimal, Theta fortuitously approximates AFD in this specific empirical example
(details not presented).
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differentiation, as measured by the FST estimator GST (upper histogram) and by AFD (lower histogram),
between female and male threespine stickleback across 200 SNPs located on chromosome 19. The box
visualizes the sex-specific allele counts at one exemplary SNP representative of the upper mode of each
distribution, with GST and AFD for this marker given next to the arrows. (b) Distribution of GST and
AFD values across 7282 genome-wide SNPs in a lake and stream stickleback population comparison.

For the second example, I re-use SNP data from a young stickleback population pair inhabiting
ecologically different but adjacent lake and stream habitats in the Lake Constance basin in Central Europe.
Lake and stream stickleback in the Lake Constance basin occupy different foraging niches [54,55],
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are under divergent natural selection (as revealed by both marker-based divergence mapping and
transplant experiments [56,57]), and show partial sexually based reproductive barriers [58]. We here
perform a genetic comparison between the Lake Constance (n = 25 individuals) and the BOH stream
(n = 22) population pair from Reference [56] (see also Reference [54]) and examine the distribution of
both GST and AFD across genome-wide SNPs. For this, the original raw marker data set (generated
by RAD sequencing based on Nsi1 enzyme restriction; see Reference [56] for details) was subject to
the following filters: first, I considered only bi-allelic SNPs represented by at least 32 nucleotides in
each population. Second, a SNP was accepted only when located at least 12 nucleotide positions away
from its nearest SNP, thus effectively excluding pseudo-SNPs caused by micro-indels within a RAD
locus. Finally, only SNPs exhibiting a MAF of at least 0.45 across the population pool were considered.
This latter filter dramatically reduced the data set (7282 SNPs remaining), but ensured that only those
SNPs having the potential to span almost the full differentiation range entered analysis (i.e., markers
with nearly maximal information content sensu [59]; markers with a low MAF are constrained to
produce low differentiation values and thus bias the distribution of differentiation values, see also
Reference [60]).

Comparing the genome scans in the lake-stream stickleback pair performed with GST and AFD as
differentiation metrics reveals an important difference: the distribution of SNP-specific GST values
has a striking mode near zero, tapering off steeply into a thin tail of higher differentiation values
(strongly ‘L-shaped’ distribution, Figure 3b; see also Figure 3 in Reference [57]), whereas the AFD
distribution is more uniform. Likewise, summary point estimates of differentiation differ substantially
between the two metrics: genome-wide median GST is only around 0.02 whereas median AFD
reaches 0.13, and the highest-differentiation SNP scores only 0.59 with GST but 0.77 with AFD (a
scatterplot showing FST against AFD across all SNPs for this population comparisons is presented
in Figure S2). These differences in the distribution of differentiation values between the metrics
are important because they may stimulate qualitatively different biological interpretations: the FST
distribution would commonly be taken as evidence that most of the genome is homogenized by
gene flow between the adjoining populations, with substantial differentiation maintained by strong
divergent selection in a few genome regions only [61,62]. But is such a mechanistic interpretation
justified? A more cautious view is that for purely mathematical reasons (i.e., the lack of sensitivity
in the low-differentiation domain), FST estimators will return a strongly L-shaped differentiation
distribution for any population pair exhibiting weak differentiation—no matter what combination
of evolutionary processes this differentiation reflects. Indeed, the AFD distribution suggests that
appreciable lake-stream differentiation is widespread across the genome, thus questioning simple
conclusions about the homogenizing effect of gene flow.

Together, these two empirical examples illustrate that using FST as a differentiation metric can
complicate the recognition and/or interpretation of patterns in population differentiation. The examples
further serve as a general warning that in the face of real-world biological complexity, differentiation
data alone are unlikely to allow inferring underlying evolutionary processes reliably—no matter what
differentiation metric is applied. Combining differentiation data with biogeographic and demographic
evidence, and with insights from additional population genetic analyses, will generally be required.

6. AFD—Recommendations for the Application

Given the appeal of AFD emerging from both conceptual considerations and empirical analysis,
it becomes relevant to explore under what conditions this differentiation metric performs adequately.
AFD is detached from theoretical assumptions or specific population genetic models, hence the
only concerns when estimating population differentiation are that the samples represent the focal
populations reliably—an issue of study design, and that sample sizes are large enough to estimate
allele frequencies within each population reasonably precisely. To provide a point of reference for
the latter criterion, I simulated the consequences of sampling a focal population pair with different
intensities on estimates of AFD. Specifically, I modeled two populations with a precisely known allele
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frequency at a single SNP, choosing these frequencies such that the true parametric AFD value was
0, 0.05, 0.1, 0.25, or 0.5. Within each of these five scenarios of increasing population differentiation,
I further considered up to five different MAF levels (0.025, 0.05, 0.125, 0.25, and 0.5) across the pool of
the two samples, noting that with increasing differentiation, the range of possible MAFs decreases
(e.g., with AFD = 0.5, the lowest possible parametric MAF is 0.25, see also Figure 1b). For each of the
19 total differentiation-by-MAF combinations considered, I then drew 10,000 replicate samples of equal
size from each population, with sample size (i.e., the number of nucleotides) spanning the full range
from 1 to 100, and calculated AFD between the populations for each replication (an analogous analysis
based on GST is presented as Figure S3).

This analysis revealed that when sample size drops below around 20 nucleotides (corresponding
to complete genotype data from 10 diploids) per population, AFD tends to become seriously biased
upward (Figure 4, ‘Simulation’). This bias is most pronounced when both the true magnitude of
population differentiation is low and the MAF is high. The reason becomes evident when we assume a
SNP (e.g., alleles A and C) completely undifferentiated between two populations (parametric AFD
= 0) and exhibiting a maximal MAF of 0.5 (i.e., both alleles occur in perfectly balanced proportion
in both populations), as in the left bar plot of Figure 1a. If we randomly draw just two nucleotides
from each population at this SNP, it is not unlikely (p = 0.125) to draw two identical alleles from one
population and two opposite alleles from the other, and hence to observe complete differentiation (AFD
= 1). Such overestimation, however, is not possible when the populations are undifferentiated but the
MAF is minimal (i.e., both populations are fixed for the same allele; left bar plot in Figure 1b), or when
differentiation is complete (populations fixed for opposite alleles; right bar plots in Figure 1a,b). As a
general recommendation, sample sizes of 40–60 nucleotides per population (20–30 diploids) should
thus suffice to achieve reasonably accurate estimates of population differentiation, irrespective of the
true magnitude and the MAF.
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Figure 4. Sample size for AFD. Sensitivity of AFD to the size of the sample (number of nucleotides)
taken from each population, explored by simulation (left) and using empirical population data (right).
The simulations consider five different magnitudes of population differentiation (the true parametric
differentiation is printed, and plotted as dashed line, inside each box), and up to five different MAF
levels for each magnitude of differentiation (indicated by the gray shades of the lines). Note that
with increasing differentiation, the possible MAF range becomes increasingly constrained. The lines
show mean AFD across 10,000 replicate simulations for each sample size level. The empirical analysis
shows mean AFD across the genome-wide SNPs from the lake-stream stickleback comparison shown
in Figure 3b.

To examine this recommendation with empirical data, I again used the SNP data set from the
lake-stream stickleback population pair described above. I here assessed how genome-wide mean AFD
(and GST; Figure S3) changes when sampling both populations with a sample size ranging from 2 to 36.
Across all sample sizes, I restricted the SNP panel to those represented by a least 36 nucleotides in each
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population, and I considered only SNPs displaying a MAF of 0.05 or greater across the population pool
(a MAF threshold of 0.2 lead to the same conclusions; details not presented). This empirical exploration
was in good agreement with the insights from the simulation analysis: the genome-wide mean AFD
value became relatively stable with sample sizes of around 20–30 nucleotides per population (Figure 4,
‘Empirical’). I emphasize that all these conclusions regarding sample size are not specific to AFD;
FST shows a very similar sensitivity to sample size and to the associated precision in population allele
frequency estimation, as presented in Figure S3a,b.

As a final methodological remark, I highlight that this article has so far considered only the
situation in which the number of populations to be compared is exactly two. Although such pairwise
population comparisons arguably represent the most common analytical situation, it should be noted
that FST statistics also permit estimating the overall genetic structure across a larger collection of
populations. With AFD as a differentiation metric, this option is not available. A straightforward ad
hoc solution, however, is to simply average multiple AFD values for SNPs or genome windows across
the multiple population contrasts of interest [27].

7. Conclusions

The purpose of this note was to show that metrics of population differentiation used routinely
in the analysis of genetic data—FST statistics and related metrics—do not necessarily measure the
quantities most meaningful in genetic and genomic research. As a point in favor of FST, one may
argue that its long tradition would promote the comparability of differentiation among studies [42].
This view, however, seems overly optimistic; FST is highly contingent on the specific estimator,
is sensitive to the MAF spectrum of the markers, and sometimes to imbalances in sample size.
Combined with the general insensitivity across the differentiation range most relevant in many
analytical situations—weak population differentiation—FST falls short of being a reliable standard
for measuring genetic differentiation. I argue that in many analytical contexts, the simple absolute
allele frequency difference AFD will provide a sufficient, meaningful, and robust differentiation metric,
thus promoting the discovery of patterns in differentiation, and their interpretation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/10/4/308/s1,
Figure S1: deviation of Theta and of the square-root of GST from AFD, Figure S2: relationship between GST and
AFD for an empirical data set, Figure S3: sample size analysis for GST, Analysis S1: worked example for the
calculation of AFD.
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