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Abstract: The microbial composition in the cecum of pig influences host health, immunity, nutrient
digestion, and feeding requirements significantly. Advancements in metagenome sequencing
technologies such as 16S rRNAs have made it possible to explore cecum microbial population. In this
study, we performed a comparative analysis of cecum microbiota of crossbred Korean native pigs
at two different growth stages (stage L = 10 weeks, and stage LD = 26 weeks) using 16S rRNA
sequencing technology. Our results revealed remarkable differences in microbial composition, α and
β diversity, and differential abundance between the two stages. Phylum composition analysis with
respect to SILVA132 database showed Firmicutes to be present at 51.87% and 48.76% in stages L and
LD, respectively. Similarly, Bacteroidetes were present at 37.28% and 45.98% in L and LD, respectively.
The genera Prevotella, Anaerovibrio, Succinivibrio, Megasphaera were differentially enriched in stage L,
whereas Clostridium, Terrisporobacter, Rikenellaceae were enriched in stage LD. Functional annotation
of microbiome by level-three KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis
revealed that glycine, serine, threonine, valine, leucine, isoleucine arginine, proline, and tryptophan
metabolism were differentially enriched in stage L, whereas alanine, aspartate, glutamate, cysteine,
methionine, phenylalanine, tyrosine, and tryptophan biosynthesis metabolism were differentially
enriched in stage LD. Through machine-learning approaches such as LEfSe (linear discriminant
analysis effect size), random forest, and Pearson’s correlation, we found pathways such as amino acid
metabolism, transport systems, and genetic regulation of metabolism are commonly enriched in both
stages. Our findings suggest that the bacterial compositions in cecum content of pigs are heavily
involved in their nutrient digestion process. This study may help to meet the demand of human food
and can play significant roles in medicinal application.
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1. Introduction

Pigs are principally farmed to meet the demand of human food but also useful in clothing,
cosmetics, processed food ingredients, and medicinal purposes [1]. Numerous studies have shown
that the microbial community plays a significant role in multiple functions of the host, for example
food digestion, absorption, and the immune system [2]. It was reported that around 1014 bacterial
populations encompassing 500–1000 bacterial species are present in the mammalian gastrointestinal
tract (GIT) [3,4]. Previously, the gut microbiota of mammals or pigs was studied by culture-dependent
method [5]. However, due to unknown growth requirements of various species of bacteria, the method
was not supposed to be sufficient to explore the microbial population [1]. Multiple advanced techniques
such as denaturing gradient gel electrophoresis (DGGE) [6,7], terminal-restriction fragment length
polymorphism (T-RFLP) [8], temporal temperature gradient gel electrophoresis (TTGE) [9], and Sanger
sequencing [10] have been introduced to decipher the gut microbiota. Although those techniques are
more robust than microbial culture-dependent ones, they still lack the coverage of the diverse microbial
community [11]. Recently, a 16s rRNA high-throughput next-generation sequencing technique with
high coverage diversity was introduced for microbial population study [12]. Since then, 16s rRNA
genes are well known and used to classify and identify microbes, because of their ubiquitous presence
in microbes. Apart from the NCBI (National Center for Biotechnology Information) database, secondary
databases specifically for 16s rRNA genes, such as SILVA and Greengenes are being developed [13,14].
SILVA consists of quality-checked, updated, and comprehensive datasets of aligned small 16S rRNA
sequences for Bacteria, Archaea, and Eukarya [13], whereas Greengenes is a taxonomy database based
on de novo phylogeny that provides comprehensive 16s reference datasets [14].

The GIT microbiome of pig plays essential roles, such as a pathogen barrier, and the microbial
population in cecum reveals the correlation between microbiomes and metabolites [15,16]. It has
been proven that the microbial communities of GIT are changing from childhood to adulthood, and
dominated by bacteria. Kim et al. in 2011 reported that the microbiome population changes from
neonates to adults as aerobes to anaerobes, respectively [17]. Multiple machine-learning algorithms
have been proposed for taxonomical classifications as well as functional annotation [18–21]. Most
recently, Fiannaca et al., [22] has introduced deep-learning models for microbial taxonomic classification
from 16 s shotgun and amplicon metagenomic sequencing data. Furthermore, Maltecca, Christian et
al., has also predicted the growth and carcass traits of swine through Bayesian, random forest, gradient
boosting etc. [23].

In this study, we have compared the bacterial composition in the ceca of pigs at different ages
(10 weeks, L; 26 weeks, LD) through 16s rRNAs sequencing [24,25]. Pigs from weaning to 10 weeks
are termed as weaners and they experience numerous changes in their life such as changes in diet,
stress of being separated from the sow, environmental changes, etc. It has been noticed that microbial
populations of pigs of <10 weeks of age are dynamically changing and, in contrast to pigs between
10 and 26 weeks, the cecum microbiota is relatively stable. We have used 16 animals to collect the
sample, 8 from each stage. Each sequence assigned an operational taxonomy unit (OTU) based on
alignment with the databases SILVA. Furthermore, functional annotation of microbial sequences was
also done with the help of PICRUST (Phylogenetic Investigation of Communities by Reconstruction
of Unobserved States) [26] and through machine-learning approaches such as LEfSe, random forest,
and Pearson’s correlation. Multivariate analysis was also done through principal component analysis
(PCA) [27], redundancy analysis (RDA) [28], canonical correspondence analysis (CCA) [29], and
detrended correspondence analysis (DCA) [30] to explore the ecological association. We performed
a Pearson’s correlation network analysis to establish the relationship among identified functions.
Comprehensive study of microbial interactions at different time points can help to implement the
strategy to improve age-related pig farming as well as the well-being of swine [31,32].
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2. Materials and Methods

2.1. Ethics Statement, Animal Rearing, and Feeding

A total of 16 F1 crossbred pigs between Korean native and Yorkshire breed were used in this study.
The experiment was reviewed and approved by the Institutional Animal Care and Use Committee,
National Institute of Animal Science, South Korea (IACUC no. NIAS2016-848). Feed and water were
supplied ad-libitum during the experiment. These piglets were randomly allocated into two groups,
raised for 10 weeks and 26 weeks. Out of 16 piglets, 8 of them were male and 8 were female. Feeding
components as commercial formula diet for each stage is shown in Table 1.

Table 1. Feed composition for stage 1 (10 weeks) and stage 2 (26 weeks), Ca: Calcium, P: Phosphorus,
DE: Digestible energy, DCP: Digestible crude protein.

Samples Protein Crude Fat Ca P Crude Fiber Crude Ash Lysine DE DCP

Stage 1 (L) 19.0 6.7 0.4 1.5 4.0 8.0 1.40 3.6 16.0
Stage 2 (LD) 14.5 5.5 0.4 1.2 7.0 8.0 0.80 3.5 12.0

2.2. Sample Collection, Nucleic Acid Extraction, and 16s rRNA High-Throughput Sequencing

The animals were sacrificed at the end of the growth stage and samples were collected from
cecum. The experimental area was cleaned and disinfected before every sample collection to avoid
cross-contamination among samples. All collected samples were transferred to liquid nitrogen
temporarily and sent to lab for storage at −80 ◦C. The total microbial DNA of all the samples were
following the standard protocol of the DNA isolation kit (Qiagen, Germany) and quality of the
extracts were checked using NanoDrop (Thermo scientific, Waltham, MA, USA). Good-quality samples
(according to the ratio of absorbance at 260/280 nm) were used for library preparation. During all
experimental procedure, pigs were not treated with any antibiotics. V4–V5 hyper-variable regions have
been amplified by using universal primers of bacterial 16S rRNA gene. For the use of PCR, samples were
diluted as 1:10, subsequently, the universal primer was used as 515F (5′-GTGCCAGCMGCCGCGGTAA)
and 806R (5′-GGACTACHVGGGTWTCTAAT). PCR products were purified and used to construct the
library and sequenced on MiSeq platform (Illumina, San Diego, CA, USA) [33].

2.3. Sequence Quality, Assembly, Preprocessing, and Clustering

FLASH 1.2.11 (Fast Length Adjustment of Short Reads) assembly program was used for assembly [34].
It is a fast and accurate tool to merge paired end reads from next-generation sequencing experiments [35,36].
Short reads were filtered out and extra-long tails were trimmed. Filtered reads were clustered at 100%
identity using CD-HIT-DUP [37] which provided an OTU. It uses three-step clustering methods, first as
raw read filtering and trimming [38], second error-free reads picking, and at the last step, it clusters at
different distance cutoffs (0.03). The rDnaTools is a Python package from the MOTHUR suit of utilities for
working with rDNA sequences data generated by PacBio SMRT sequencing technology [39]. Currently,
rDnaTools implements a single pipeline for the export, filtering, and cluster of 16S sequences [40].

By using CD-HIT-DUP and RDnaTools, chimeric reads were identified [41]. Secondary clusters
are recruited into primary clusters. Noise sequences such as ambiguous base detection, miss-matched
primer, extra-long read, etc. were removed from the cluster, and the remaining representative reads
were clustered using a greedy algorithm and assigned OTU at a user-specific OTU cutoff (e.g., 97% ID
at species level) [42].

2.4. Taxonomic Assignment and Diversity Analysis

QIIME (v1.91) is known bioinformatics pipeline to analyze the microbial samples, was used
to assemble the paired end reads into tags according to their sequence overlap relationship [43].
Preprocessing consisted of removal of primers, demultiplexing and quality filtering (Phred ≥ 20),
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chimera removal, etc. by using usearch61 module [44]. We used Silva132 database (April 2018 release)
to pick up the OTU using the open-reference analysis method, allocated the taxonomy by using the
uclust, created the phylogenetic tree by using QIIME FastTree, and checked the OTU identifier [13,41].
After filtering, an OTU table was generated in biom format [45]. The resulting sequences were clustered
into OTUs based on a similarity threshold of ≥97% by PyNAST [46]. We performed comparative OTU
assignment against the database at phylum, class, order, family, genus, and species levels. We used
α diversity.py script in QIIME to analyze the α-diversity to understand the local population of the
microbiome. Multiple algorithms such as ACE (abundance-based coverage estimator), Chao1 (richness
estimator), Observed_otus (distinct OTUs estimator), Shannon (entropy estimator), and Simpson
(Simpson’s index calculator) were used to estimate the α diversity. The rarefaction curves of α diversity
were visualized with the help of Phyloseq v1.8.2 of R Package [47].

β diversity.py of QIIME was used to calculate β diversity for estimating the correlation among other
factors and microbes. Microbial distribution was analyzed by the principal coordinate analysis (PCoA)
and 2D plots were produced with the help of make_2d_plots.py [48]. Phylogenies among identified OTUs
were calculated by unweighted pair-group method using arithmetic averages (UPGMA) clustering
techniques. To calculate the robustness of individual UPGMA clusters and PCoA plot cluster, jackknife
β diversity program was also used [49].

2.5. Bioinformatics Analysis for Functional Annotations

Multiple bioinformatics approaches such as multivariate statistical analysis, machine learning,
PICRUST, STAMP, and Pearson’s correlation were used to annotate the functions of bacterial
compositions present in the cecum of pigs. Differential abundance of microbial functions has
also been analyzed.

2.5.1. Multivariate Statistical Analysis to Explore Complex Ecological Associations

In this study, we have used multivariate statistical tools such as PCA [27], redundancy analysis
(RDA) [28], canonical correspondence analysis (CCA) [29], detrended correspondence analysis (DCA) [30],
and non-metric multidimensional scaling (NMDS) [50] to explore the microbial community composition
and other explanatory variables. Furthermore, the mixMC (mixOmics microbial community) has also
been used. It provides access to multivariate methods and is implemented in mixMC R package. It is a
multivariate framework that takes into account the sparsity and compositionality of microbiome data.
mixMC aims to identify specific associations between microbial communities and explanatory variables,
such as habitat [51]. It builds on the hypothesis that multivariate methods can help identify microbial
communities that modulate and influence biological systems as a whole.

2.5.2. Comparative Functional Annotation of Cecum Content

Functional studies have been done on the basis of phylogenetic investigations of communities
by reconstructing the unobserved states using PICRUST [26]. Relative abundance of phyla, class,
order, genus, and species were estimated with the help of PICRUST and STAMP program [52,53].
Multivariate analysis between two growth stages (L vs. LD) was done with the help of PCA, whereas
univariate analysis was done with the help of an ANOVA (analysis of variance) test [54]. Random
forest [55], a robust machine-learning algorithm was used to describe the metagenome and their
involvement in metabolic processes.

2.5.3. Network Analysis through Pearson’s Correlation

Network analysis has been done to identify the co-occurring and mutually exclusive microbial
functions through pathway analysis. Pathways are represented as nodes, and its abundance as node
size, and edges represent positive and negative associations [56]. Nodes can be colored based on their
association with selected environmental variables (Pearson’s correlation) [57].
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3. Results

3.1. Sequence Analysis of Cecum Content

All 16 pigs (L = 8, LD = 8) were raised separately and their body weight and feed intake were
recorded and regulated daily. All sequences were generated by 16S rRNA sequencing technology of
F1. Crossbreed Korean native x Yorkshire pigs are shown in Table 2, as total bases, read count, GC
percentage, Q20, Q30 values, etc.

Table 2. Result summary of Assembly (by FLASH), Q20 (%): The percentage of bases in which the
phred score is above 20; Q30 (%): The percentage of bases in which the phred score is above 30.

Sample Name Sex Total Bases Read GC (%) Q20 (%) Q30 (%)

K4.4L F 86,303,564 189,866 53.08 98.54 95.24
K4.10L M 100,659,045 223,531 53.1 98.56 95.22
Y5.2L F 78,466,731 172,363 52.8 98.51 95.14
Y5.3L M 79,260,896 175,057 53.03 98.55 95.26
Y5.4L F 74,925,854 165,186 53.18 98.58 95.33
Y5.6L M 85,490,768 189,176 53.11 98.52 95.06
Y5.9L M 93,195,851 206,722 53.3 98.55 95.25

Y5.12L F 92,420,536 204,127 53.21 98.63 95.43
K4.5L.D M 70,633,514 155,507 53.32 98.62 95.35
K4.8L.D F 77,651,573 170,983 53.21 98.62 95.47
Y5.1L.D F 74,716,039 164,985 53.61 98.78 95.75
Y5.5L.D F 81,054,520 178,286 53.31 98.78 95.8
Y5.7L.D F 76,811,356 168,951 53.58 98.56 95.29
Y5.8L.D M 85,996,517 188,902 53.44 98.54 95.29

Y5.10L.D M 70,647,269 155,842 53.62 98.52 95.27
Y5.11L.D M 62,782,136 138,382 53.68 98.65 95.46

FATSQC-approved sequencing reads of each sample are assembled and shown in Table 2. The DNA
sequences of all samples were pooled to calculate the microbial diversity by Shanon–Weaver and
Simpson indices. As shown in Table 3, γ-diversity represents the diversity across an entire landscape
(α + β diversity). α-diversity corresponds to species diversity in sites/habitats at a local scale and
β-diversity comprises species diversity among sites or habitats as shown in Table 3. We used 10 iterations
for calculation ofαdiversity and kept a 39,304 sequence depth for calculation of metrices. Theαdiversity
metrics (p-value) Excel file is provided in the Supplementary Material (Supplimentary_Excel_Sheet_1).
We kept 97% sequence similarity to get an OTU, an operational definition of a species or group of
species often used when only DNA sequence data is available. Chao1 returns the richness estimate for
an OTU. The Shannon index takes into account the number and evenness of species, and the Simpson
index represents the probability that two randomly selected individuals in the habitat will belong to
the same species. Goods coverage is calculated as C = 1-(s/n), where s is the number of unique OTUs
and n is the number of individuals in the sample. This index gives a relative measure of how well the
sample represents the larger environment. As shown in Supplementary Figure S1a–c, few differences
in chao1, Shannon, and Simpson were observed between the two stages (L vs. LD). However, the
difference between the two groups—core microbiome and the group taxonomy results—can be seen.
In particular, in the case of coremicrobiomes, the core OTU is 519 and the unique OTU is 102 among 621.
Ruminobacter (0.40%), Mitsuokella (0.38%), Lactobacillus_CP000033.434247.435818 (0.12%), and Veillonella
(0.08%) are at the genus level, whereas, principle coordinate plot, based on weighed unifrac distance
matrices and β diversity analysis, was significantly clustered as L and LD, shown in Supplementary
Figure S1d.
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Table 3. Summary of community richness and diversity of all samples from both growth stages.

Sample Name OTUs Chao1 Shannon Simpson Goods Coverage

K4.5LD 349 399.833 5.999 0.961 0.995
K4.8LD 279 303.117 4.707 0.891 0.997
K4.4L 454 509.122 6.214 0.966 0.997

K4.10L 476 509.552 6.298 0.973 0.998
Y5.1LD 360 405.217 5.941 0.967 0.996
Y5.5LD 381 422.576 6.108 0.973 0.999
Y5.7LD 362 399.631 5.827 0.960 0.996
Y5.8LD 326 355.684 5.355 0.935 0.998
Y5.10LD 373 419.941 6.284 0.975 0.996
Y5.11LD 370 406.875 6.031 0.965 0.995

Y5.2L 418 456.478 5.756 0.958 0.997
Y5.3L 367 410.807 4.938 0.907 0.997
Y5.4L 382 429.275 6.051 0.973 0.997
Y5.6L 397 458.386 5.664 0.954 0.996
Y5.9L 310 351.437 4.998 0.923 0.998
Y5.12L 453 498.122 6.045 0.963 0.997

3.2. Taxonomic Assignment

We conducted stage wise taxonomy analysis of microbial composition by using RDP (Ribosomal
Database Project) classifier, phylum, class, and family-level taxonomic annotations. Out of a total of
47 family, 158 genus, and 287 species sequences, unclassified reads were 7, 30, and 239, respectively;
a complete list of taxonomic abundance percentages are provided in the Supplementary Material
(Supplimentary_Excel_Sheet_2). Overall, a major portion (>90%) of the bacterial composition belongs
to Bacteroidetes and Firmicutes. Interestingly, the composition of Bacteroidetes increases from 37.28% to
45.98% with the age of pigs (L vs. LD), whereas the composition of Firmicutes decreases from 51.87%
to 48.76% as shown in Figure 1. Furthermore, we investigated the changes among other microbial
taxonomy distributions, such as the composition of Spirochaetes, which decreases from 9.13% to 1.19%.
However, composition of Protobacteria increases from 0.71% to 3.78%. Genus-level comparison shows
that Anaerovibrio is present as the highest population at LD stage as 7.53%, as compared to L as 0.94%.
AlloPrevotella is present as 2.79% in L and 0.92% in LD. A Venn diagram of unique and shared OTUs
between L and LD stages has been shown in Figure 1. A total of 519 OTUs were common in both
growth stages. However, 60 and 43 OTUs are unique in L and LD, respectively. A complete Excel sheet
containing the phylum-, class-, order-, family-, genus-, and species-wise population has been provided
in the Supplementary Data (Supplimentary_Excel_Sheet_3). The overall composition of microbiota
has been shown in Figure 2.

Figure 1. Venn diagram of unique and shared OTUs between L and LD stages.
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Figure 2. Pie chart presentation of taxonomic proportions (A) phylum- (B) class- (C) family-level classification.

3.3. Genus-Level Univariate Analysis

We conducted univariate analysis by ANOVA for identifying genus-level abundance.
The significantly different genus is shown in a bar chart, and standard error is represented by
error bars. The t-test was done for pairwise comparison as shown in Figure 3. The p-value threshold for
significance was than 0.05 and found that some of the genera such as Clostridium, uncultured bacterium,
rikenellaceae, Prevotellaceae, etc. are highly abundant in stage L, whereas in stage LD Prevotella_1,
Succinivibrio, Roseburla, Anaerovirio, etc. are differentially abundant. The ANOVA plots for phylum,
class, family, order, and species levels are shown in Supplimentary Figure S2a–d.

Figure 3. Genus-level univariate analysis through ANOVA test, Red color indicates the stage L, and
blue is stage LD. X-axis representing the samples and Y-axis representing the relative OTU counts.
* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001.
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3.4. Statistical Analysis for Functional Annotation

We have used mixMC for this study, as mixMC is being used extensively for microbial biomarker
discovery [51]. It is a multivariate framework which can take into account sparsity and composition
of the metagenomic data and establish associations between microbial populations and their habitat.
The mixMC uses principal component analysis (PCA), and sparse partial least discriminant analysis
(sPLS-DA). To predict the most prominent functional pathway that can describe best functional
behavior of microbes present in the two different age groups of swine, we used sparse partial least
discriminant analysis. We conducted analysis of the top 100 most abundant pathways present at
≥2 time points. As shown in Figure 4 (blue color indicates stage LD, and red color indicates stage L),
the contribution plot shows the OTUs associated with both stages. The most consistently abundant
pathways were compared with the metagenome sequence and shown as a violin plot. Amino acid
metabolic pathways (glycine, serine, threonine, arginie, and proline) are highly abundant in stage L,
whereas glycan biosynthesis, carbon fixation, sulfur metabolism, nitrogen metabolism, and genetic
information are highly abundant in stage LD. Other associated plots such as PCA, CCA, NMDS, and
RDA are shown in Supplementary Figure S3a–d. Functional profiling of a microbial community has
been inferred on the basis of marker genes present in one or more samples. The OTU table represented
the gene sequences of the marker gene with its relative abundance in each of the samples. Some of the
stage-specific abundant metabolic pathways are shown in Figure 4.

Figure 4. Sparse partial least discriminant analysis, association contribution plot showing pathway
association between two stages.

We have used linear discriminant analysis (LDA) effect size (LEfSe) algorithm and standard
statistical tests to determine the functions of the OTUs. Based on LDA score, functional abundance has
been inferred for both stages (Supplimentary_Excel_Sheet_4). LDA is similar to ANOVA and regression
analysis, which attempts to produce one dependent variable as a linear combination. Differential
abundances of selected metabolic activity and their associations with stages L and LD through ANOVA
analysis is shown in Supplementary Figure S4. Comparative analysis of functional profiles through
LEfSe shown in Figure 5, in stage LD, porphyrine and chlorophyll metabolism, lipopolysaccharide
biosynthesis, photosynthesis etc. are highly enriched, while in stage L, lysosome, two-component
systems, and amino acid metabolism are highly enriched. Furthermore, random forest (RF) method
was used for functional profiling through feature selection. RF is an ensemble classification algorithm,
which can combine the regression, by averaging the results of all trees and predicted the class as a
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reflection of all class output. RF predicts that the pathways such as secretion system, DNA replication,
two-component systems, bifolate metabolism, fructose and mannose metabolism, ABC (ATP-binding
cassette) transporter systems, etc., are highly enriched (Supplementary Figure S5).

Figure 5. Comparative functional analysis through linear discriminant analysis (LDA) effect size
(LEfSe) of microbiota of both stages. Histogram representation of LDA scores ((log10) > 2) have been
computed for differentially abundant pathways between the L and LD stage.

Comparative functional metagenome profiling through KEGG ontology between two stages
of cecum content has also been established through STAMP software. As shown in Figure 6,
purine metabolism is differentially enriched in stage L, whereas ABC-2-type transport systems, HPr
kinase/phosphorylase, and glycolytic pathways are differentially enriched in stage LD at 95% confidence
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intervals. Some other metabolic pathways such as HPr kinase, glucokinase, β-glucosidase, etc. were
differentially enriched in LD stage, as shown in a yellow color bar in Figure 6.

Figure 6. Mean proportion and their differences in predicted functional metagenomes of the cecum
microbiota. Blue color indicates stage L and yellow indicates stage LD.

Pearson’s correlation network is shown in Figure 7. Based on the top 100 functional pathways, we
analyzed the entire predicted metabolic function between the two stages. Nodes have been colored
based on their association with selected environmental variables (Pearson’s correlation). L correlations
between nodes are presented in red, LD correlations in blue. Pathways involved in the hub node of L
are environmental information, membrane transport, and ABC transport, whereas pathways involved
in LD are genetic information, DNA replication and repair, and chaperones and folding.
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Figure 7. Pearson’s correlation co-occurrence network of microbiota at both stages. Red indicates the L
and blue indicates the LD.

4. Discussion

Multiple studies have been published about the microbial composition of the pig gut through
high-throughput sequencing technologies as well as culture-based techniques [58–61]. It was suggested
that microbial compositions are directly associated with genetics and aging of swine. It has been reported
by multiple researchers that cecum bacterial population particiapates in regulation of harvesting of
energy and is associated with body weight [59,62]. To the best of our knowledge, this is the first
time there has been an attempt to uncover the microbiota of cecum contents at two different growth
stages of Korean native swine. Exploration of bacterial taxonomy composition and their functional
pattern at cecum of pig can facilitate an understanding of bacterial impact on host health as well as
improving pig production. However, Pajarillo et al. in 2014 compared fecal microbial population
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between pre-weaning and post-weaning piglets and also established the dominance of Firmiicutes and
Bacteroidetes in both stages [63]. Pigs from weaning stage to 10 weeks (Stage L) are termed as weaners,
and from 10 weeks to around 26 weeks (Stage LD) are known as rearing pigs. In this study, 16 samples
(8 from each) have been sequenced through 16s rRNA sequencing technologies, offering substantial
information regarding their functional behavior. It was observed that at the age of more than 22 weeks,
the microbial populations are relatively mature and consistent in cecum content [17]. The population
of phyla, such as Firmicutes and Bacteroidetes are abundant in cecum content in all 16 samples of pig.
Other phyla such as Spirochaetes, Protobacteria, Verrucomicrobia, etc. are also present in significant
amounts. Whereas Firmicutes and Spirochates are most abundant in stage L, in contrast Bacteroidetes and
Proteobacteria are most abundant in stage LD. Comparative assesment of OTUs between two growth
stages showed that 60 and 43 OTUs are unique in L and LD, respectively. Such relative changes in
microbial population may be due to stress or changes in the diet of pigs, as reported previously by
Konstantinov et al., 2004, Mackie et al., 1999, and Poroyko et al., 2010 [64–66].

Our results are also supported by previous findings, as Firmicutes and Bacteroidetes were the most
abundant phyla in the fecal content of pigs [1,5]. Genus-level comparison showed that Clostridium
sensu stricto 1 and Treponema 2 are highly abundant in L as compared to LD. These findings also support
the research reported by Lamendella et al., 2011 and Le Chatelier et al., 2013 that swine- and human-gut
microbiomes are abundant with Clostridium and Treponema [1,67]. Genus-level univariate analysis also
showed that Prevotella, Clostridium, and Anaerovibrio are abundant in swine metagenomes.

Functional annotations through PICRUST of the microbiota are essential to understand their
involvement on the host metabolism and disease [68,69]. Purine metabolism (K01524) is differentially
enriched in stage L microbiota, whereas ABC-2 type transport system AP-binding protein (K01990)
is differentially enriched in stage LD. Kohl et al. in 2018 also reported that purine metabolism is
differentially enriched in the cecum of small mammals [70]. Virkel et al. in 2018 [71] reviewed the
role of ABC transporters in aging livestock animals through KEGG pathways. ATP-binding cassettes
significantly influenced the bioavailability of multiple drugs. Similarly, through PICRUST and STAMP
analysis, Yang Hui et al. in 2017 reported that glycine, serine, and threonine metabolism, and valine,
leucine, and isoleucine degradation metabolism are significantly abundant [72].

Machine-learning approaches such as Orphelia, MGC, MetaGUN, etc. have been reported for gene
prediction and taxonomy classification from metagenome data [73–76]. However, such approaches
are still sparsely used for functional annotations. Here, we explored ANOVA, MixMC, LEfSe, RF,
and Pearson’s correlation to establish the functional significance between the two stages of pig cecum
metagenome. Yang Hui, et al. in 2016 compared the functional pattern of microbiota of three different
gut locations of swine through an ANOVA test [77]. Our ANOVA predictions also indicate that
metagenomic functions are linked to the aging of swine. Kouchiwa, Takanori, et al. in 2012 showed
that amino acid metabolism is linked to the aging of human, similarly to what we found in the case of
the swine metagenome [78]. We used univariate as well as multivariate statistical tools to explore the
functional pattern of the microbiome, and found both tools provided similar annotations. MixMC is a
well-known multivariate microbial framework that allows annotation of the functional behavior of
cecum microbes, and found that amino acid metabolism, cellular processes, and transport systems
are abundant in stage L. Similarly in stage LD, glycan biosynthesis, energy metabolism, and nitrogen
metabolism are significantly abundant [51].

Ten Zhen et al. in 2017 established the functional capacities with feed efficiency from cecum
metagenomic data of swine through LDA effect size. Our results of LEfSe also supported their findings,
as some of the metabolic pathways such as energy metabolism are differentially enriched in two
different stages of cecum microbiome [79]. Multivariate analysis through PCA and sparse partial
least discriminant analysis (sPLS) at both stages have also shown similar metabolic pathways, such
as amino acid metabolism, human disease, and genetic information dominating in both stages. Our
random-forest classifiers predicted that genetic information, chaperone, and folding pathway, amino
acid metabolism, energy metabolism etc. are enriched. Similarly, Maltecca et al. in 2018 carried out
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random-forest classification technique to decipher the growth prediction and carcass traits by using
swine metagenome data [23]. Mach et al. in 2015 and Ramayo-Caldas et al. in 2016 reported that
porcine gut microbes are associated with porcine growth, feed efficiency, and enterotype [80,81].

Metabolic functions identified through 16s rRNA analysis are only predictive in nature, as they
are probable estimations, based on sequence similarity. Therefore, whole-metagenome analysis along
with 16s rRNA analysis is required to know the exact pathways in which the identified microbes
are involved. The network analysis may present a tendency of the predicted metabolic function
between the two groups. We observed the clear cluster between two growth stages at a functional level
through Pearson’s correlation network. Similar analysis on soil microbial communities was reported
by Barberan Albert et al., 2012 [82].

5. Conclusions

The composition of the cecum microbiome population of swine is strongly related with multiple
factors such as developmental stages, immunity, diets, and environmental microbes. We established
a critical resource of understanding for the metagenomic implications and bacterial abundance at
different times of raising pigs, and emphasize how the microbiome contributes to age-related health.
We found Firmicutes and Bacteroidetes phylum were abundant in both the stages. Interestingly, our
findings show that composition of Bacteroidetes increases from L to LD, while Firmicutes compositions
decrease from L to LD. Univariate genus analysis found Prevotella, Clostridium, and Anaerovibrio were
significantly abundant. For the first time, we have used multiple machine-learning approaches such
as multivariate mixMC, LEfSe, RF, and Pearson’s correlation to explore the functional pattern of
microbial populations, and found that amino acid metabolism and energy metabolism pathways were
differentially significant at different stages of swine. Pearson’s correlation network showed that genetic
information and DNA repair pathways are actively involved while aging in swine. Our report about
stage-specific cecum microbial profiling will also be a useful resource in pig health and pig production
management systems.

Nucleotide Sequence Availability

16s rRNA sequences of all 16 samples of this project have been submitted in NCBI SRA (Sequence
Read Archive) submission portal and can be accessed through SRA accession PRJNA540190 (https:
//www.ncbi.nlm.nih.gov/sra/PRJNA540190).
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