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1 Approximate Bayesian Inference for parameter estimation in NBSBM using Expectation 

Propagation (EP) algorithm 

Considering the labeling errors 𝜀, given 𝑿 = (𝒙1,⋯ , 𝒙𝑛), 𝒚 = (𝑦1, ⋯ , 𝑦𝑛) and 𝜀, the likelihood can be 

written as (1) 

𝑝(𝒚|𝛽, 𝜀, 𝑿) =  ∏ 𝑝 (𝑦𝑖|𝛽, 𝜀, 𝑥𝑖)
𝑛
𝑖=1  = ∏ [𝜀(1 − 𝛷(𝑦𝑖𝛽

𝑇𝑥𝑖)) + (1 − 𝜀)𝛷(𝑦𝑖𝛽
𝑇𝑥𝑖)]

𝑛
𝑖=1  =

∏ [𝜀 + (1 − 2𝜀)𝛷(𝑦𝑖𝛽
𝑇𝑥𝑖)]

𝑛
𝑖=1    

(1) 

Where 𝜱 is the Heaviside step function and it is defined by equation (2) 

𝛷(𝑦𝑖𝛽
𝑇𝑥𝑖) =  𝑙𝑖𝑚

𝑘→∞

1

1+ 𝑒−2𝑘(𝑦𝑖𝛽
𝑇𝑥𝑖)

    (2) 

 If we only consider the sparse solution for 𝛽. Herein we introduce a new binary hidden variable 

𝒛 = {𝑧0, 𝑧1, 𝑧2, ⋯ , 𝑧𝑑}𝜖{0,1}
𝑑. 𝑧𝑖  takes 0 if the 𝑖𝑡ℎ component of 𝛽𝑡𝑟𝑢𝑒 is 0 and 𝑧𝑖  takes 1 otherwise. 

Assuming 𝒛 is given, the probability density of 𝛽 is shown in equation (3) 

𝑝(𝛽|𝒛) =  ∏ 𝑝 (𝛽𝑖|𝑧𝑖) =   ∏ [𝒩(𝛽𝑖, 0, 𝜎𝑖
2)
𝑧𝑖(𝛿(𝛽𝑖))

(1−𝑧𝑖)] 𝑑
𝑖=0

𝑑
𝑖=1   (3) 

where 𝑝(𝛽𝑖|𝑧𝑖) is a Spike and Slab prior. 𝒩(𝛽𝑖, 0, 𝜎𝑖
2) represents Gaussian density function with 0 mean 

and  𝜎𝑖
2 variance, 𝛿(𝛽𝑖) is an impulse function which has a probability of 1 on 𝛽𝑖  and 0 elsewhere. To 

complete the specification of the prior for 𝜷 at zero, we assume that a network that encodes the 

dependencies between the gene features are known. Given a specific cancer signaling network 𝐺 = (𝑉, 𝐸) 

whose vertices 𝑉 = {0,1,⋯ , 𝑑} correspond to the proteins and whose edges, 𝐸 Equation (4) shows the 

prior probability for 𝒛 given 𝐺 which is given by a Markov random field (MRF) model 



𝑝(𝑧|𝐺, 𝜆, 𝛾) =  
1

𝑍
𝑒𝑥𝑝 (𝑐𝑧0 +  𝜆∑ 𝑧𝑖  

𝑑
𝑖=1 +  𝛾 ∑ (

𝑧𝑢

√𝑑𝑢
− 

𝑧𝑣

√𝑑𝑣
)
2

{𝑢,𝑣}∈𝐸 𝑤(𝑢, 𝑣)) =
1

𝑍
𝑒𝑥𝑝(𝑐𝑧0 +

 𝜆∑ 𝑧𝑖  
𝑑
𝑖=1 ) 𝑒𝑥𝑝(𝛾 ∑ (

𝑧𝑢

√𝑑𝑢
− 

𝑧𝑣

√𝑑𝑣
)
2

{𝑢,𝑣}∈𝐸 𝑤(𝑢, 𝑣))  

 (4) 

In equation (2), 𝒁 is a normalization constant and 𝜆 ∈ ℝ controls the sparsity. 𝛾 ≥ 0 determines the sum 

of square difference between 𝑧𝑢  and 𝑧𝑣  that are linked in the input network G, 𝜔(𝑢, 𝑣) is the weight 

between proteins 𝑧𝑢 and 𝑧𝑣. In fact, if we assume,  

                                𝐿(𝑢, 𝑣) =

{
 
 

 
 1 −

𝑤(𝑢,𝑣)

𝑑𝑢
, 𝑖𝑓 𝑢 = 𝑣 𝑎𝑛𝑑 𝑑𝑢 ≠ 0,

−𝑤(𝑢,𝑣)

√𝑑𝑢𝑑𝑣
, 𝑖𝑓 𝑢 𝑎𝑛𝑑 𝑣 𝑎𝑟𝑒 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡,

0,                              𝑜𝑡ℎ𝑒𝑟𝑠𝑖𝑧𝑒.

                                                              (5) 

then 

                                                                  𝑝(𝒛|𝐺, 𝜆, 𝛾) =
1

𝑍
exp(𝑐𝑧0 +  𝜆|𝒛|) exp(𝛾𝒛

𝑇𝐿𝒛 )                                 (6) 

Furthermore, we assume the prior of 𝜀 as  

𝑝(𝜀) =  𝐵𝑒𝑡𝑎(𝜀, 𝑎0, 𝑏0) =  
1

𝐵(𝑎0,𝑏0)
 𝜀𝑎0−1(1 − 𝜀)𝑏0−1   (7) 

where 𝐵(𝑎0, 𝑏0) represents beta function with parameters 𝑎0 and 𝑏0. Under the assumption above, we 

can use Bayesian theorem to compute the posterior distribution of the model parameters 𝜷 and 𝜀 given 

the training data 𝑿 and 𝒚. Given the specific cancer signaling network 𝐺 and the model hyper-parameters 

𝜆 and 𝛾, the posterior is given by 

                                        𝑝(𝛽, 𝜀|𝑦, 𝑋, 𝐺, 𝜆, 𝛾) =
∑ 𝑝(𝑦|𝛽,𝜀,𝑋)𝑝(𝛽|𝑧)𝑝(𝑧|𝐺,𝜆,𝛾)𝑝(𝜀)𝑍

𝑝(𝑦|𝑋,𝐺,𝜆,𝛾)
                                  (8) 

If given a new unclassified sample 𝑥𝑡𝑒𝑠𝑡, we can determine its classification labels 𝑦𝑡𝑒𝑠𝑡 by probability as 

shown in equation (9) 

                                    𝑝(𝑦𝑡𝑒𝑠𝑡|𝑋𝑡𝑒𝑠𝑡 , 𝑦, 𝑿, 𝐺, 𝜆, 𝛾) = ∬𝑝(𝑦𝑡𝑒𝑠𝑡|𝜷, 𝜀, 𝑥𝑡𝑒𝑠𝑡)𝑝(𝜷, 𝜀|𝑦, 𝑿, 𝐺, 𝜆, 𝛾)𝑑𝜷𝑑𝜀           (9) 

Then the relevance of the features can be quantified by the posterior of 𝒛, 

                                             𝑝(𝒛| 𝒚, 𝐗, 𝐺, 𝜆, 𝛾) =
∑ ∑ 𝑝(𝒚|𝛃,𝜀,𝐗)𝑝(𝛃|𝐳)𝑝(𝐳|𝐺,𝜆,𝛾)𝑝(𝜀)𝜀𝑍

𝑝(𝒚|𝐗,𝐺,𝜆,𝛾)
                                             (10) 

In specific, the relevance of the i-th feature to the classification result is a value between 0 and 1 and is 

given by the marginal probability 𝑝(𝒛| 𝒚, 𝐗, 𝐺, 𝜆, 𝛾) with 𝒛 = 1.The higher the value, the more relevant of 

this gene with respect to the classification result. The joint probability distributions of model parameters 

and hidden variables are given as follows:  

 𝑝(𝛽, 𝜀, 𝒛, 𝒚|𝐗, 𝐺, 𝜆, 𝛾)  =  𝑝(𝑦|𝛽, 𝜀, 𝐗)𝑝(𝛽|𝐳)𝑝(𝐳|𝐺, 𝜆, 𝛾)𝑝(𝜀)                         (11) 



It can be written as the product of N + | E | + 3 probabilities in equation (11) according to the 

assumption of independence.  

𝑝(𝛽, 𝜀, 𝐳, 𝐲|𝐗, 𝐺, 𝜆, 𝛾) = [∏ 𝑝(𝑦𝑖|𝛽, 𝜀, 𝐱𝑖)
𝑛
𝑖=1 ][∏ 𝑝(𝛽𝑖|𝑧𝑖)

𝑑
𝑖=0 ]𝑝(𝐳|𝐺, 𝜆, 𝛾)𝑝(𝜀) = ∏  𝑡𝑖(𝛽, 𝜀, 𝐳)

𝑛+|𝐸|+3
𝑖=1 =

 𝑞(𝛽, 𝜀, 𝐳)       (12) 

Where |E| refers to the number of edges in graph G. The first n terms of 𝑡𝑖(𝛽, 𝜀, 𝑧) denote the likelihood 

𝑝(𝑦𝑖|𝛽, 𝜀, 𝑥𝑖),  while 𝑡𝑛+1(𝛽, 𝜀, 𝑧) , ∏  𝑡𝑖(𝛽, 𝜀, 𝑧)
𝑛+|𝐸|+2
𝑖=𝑛+2  and 𝑡𝑛+|𝐸|+3(𝛽, 𝜀, 𝑧) represent p(𝛽|z), p(z|G, λ, γ) 

and p(ε) respectively. According to the expectation propagation algorithm, we use 𝑡𝑖̃ as the estimation of 

𝑡𝑖 and get (13) 

∏  𝑡𝑖(𝛽, 𝜀, 𝐳)
𝑛+|𝐸|+3
𝑖=1 ≈ ∏  𝑡𝑖̃(𝛽, 𝜀, 𝐳)

𝑛+|𝐸|+3
𝑖=1 =  𝑄(𝛽, 𝜀, 𝐳)           (13) 

It is restricted that all 𝑡𝑖̃ belong to the same exponential family of distributions, and  𝑄(𝛽, 𝜀, 𝐳) 

have the same expression with 𝑡𝑖̃(𝛽, 𝜀, 𝐳)  because the product of functions belonging to the same 

exponential family of distributions is a closure. Assume that the density function of Q after normalization 

is 𝒬 , which is also the approximation of the posterior distribution 𝑝(𝛽, 𝜀, 𝒛, 𝒚|𝐗, 𝐺, 𝜆, 𝛾) , and use 

𝒬\𝑖(𝛽, 𝜀, 𝐳) to denote the approximation of 𝒬(𝛽, 𝜀, 𝑧) without the term 𝑡𝑖 as shown in (8) 

𝒬\𝑖(𝛽, 𝜀, 𝐳) =  ∏ 𝑡𝑖̃(𝛽, 𝜀, 𝐳)𝑗≠𝑖 = 
𝒬(𝛽,𝜀,𝐳)

𝑡𝑖̃(𝛽,𝜀,𝐳)
    (14) 

a general workflow of the expectation propagation algorithm for the sparse Bayesian classifier can be 

given as follows, 

1. Initialize all 𝑡𝑖̃ and posterior distribution 𝒬; 

2. Repeat the following steps until all 𝑡𝑖̃ converge. 

 (a) Select one 𝑡𝑖̃ that needs to be changed and calculate 𝒬\𝑖: 𝒬\𝑖 =   𝒬 /𝑡𝑖̃ 

 (b) Update the value of 𝒬 to minimize the Kullback–Leibler(KL) divergence between  𝑡𝑖𝒬
\𝑖  and 

𝑡𝑖̃𝒬
\𝑖. 

(c) Recalculate 𝑡𝑖̃ = 𝒬
𝑛𝑒𝑤/𝒬\𝑖. 

       3. Estimate model parameters. 

In fact, according to (1), (3), (4) and (5), we can approximate 𝑡𝑖̃ based on function (14) 

𝑡𝑖̃(𝛽, 𝜀, 𝐳) = 𝑠𝑖̃𝜀
𝑎𝑖̃(1 − 𝜀)𝑏𝑖̃ ∏ 𝑒𝑥𝑝(−

1

2𝑣𝑖𝑗̃
(𝛽𝑗 − 𝑚𝑖𝑗̃)

2
) (𝑧𝑖𝑐𝑖𝑗̃ + (1 − 𝑧𝑖)𝑑𝑖𝑗̃)

𝑑
𝑗=0    (15) 

 Where 𝒎𝒊̃ = (𝑚𝑖0̃, … 𝑚𝑖𝑑̃)
𝑇 , 𝒗𝒊̃ = (𝑣𝑖0̃, … 𝑣𝑖𝑑̃)

𝑇 ,  𝒄𝒊̃ = (𝑐𝑖0̃, … 𝑐𝑖𝑑̃)
𝑇 ,  𝒅𝒊̃ = (𝑑𝑖0̃, … 𝑑𝑖𝑑̃)

𝑇  and 

𝒄𝒊̃ = 1 − 𝒅𝒊̃. 𝒂𝒊̃ and 𝒃𝒊̃ are free parameters and 𝑠𝑖̃ is a constant to ensure that 𝑡𝑖̃𝒬
\𝑖  and  𝑡𝑖𝒬

\𝑖 get the 

same value when integrating. According to the previous assumption that all 𝑡𝑖̃  belong to the same 

exponential family of distributions, 𝒬  and 𝑡𝑖̃  have the same form and we can assume that 𝒬  can be 

expressed as shown in (15). 

𝒬(𝛽, 𝜀, 𝐳) =  𝐵𝑒𝑡𝑎(𝜀|𝑎, 𝑏)∏  𝒩(𝛽𝑗|𝑚𝑗 , 𝑣𝑗)𝐵𝑒𝑟𝑛(𝑧𝑗|𝜌𝑖)
𝑑
𝑗=0   (16) 

Formula (15) has the same form as (16), and  



𝐵𝑒𝑟𝑛(𝑧𝑖|𝜌𝑖)  =  𝑧𝑖𝜌𝑖  +  (1 − 𝑧𝑖)(1 − 𝜌𝑖)    (17) 

 Where 𝑧𝑖 ∈ {0,1} and 𝜌𝑖 is the probability of  𝑧𝑖=1. 𝐦 = (𝑚0, … ,𝑚𝑑)
𝑇, 𝐯 = (𝑣0, … , 𝑣)

𝑇, 𝝆 =

(𝜌0, … , 𝜌𝑑)
𝑇. Firstly, we initialize 𝒬 and 𝑡𝑖̃ by setting a = b = 1,𝑚𝑖 = 0, 𝑣𝑖 = +∞,𝜌𝑖 = 0.5,𝑚𝑖𝑗̃ =

0, 𝑣𝑖𝑗̃ = +∞ and 𝑐𝑖𝑗̃ = 𝑑𝑖𝑗̃ = 1 for i in range [1, n+|E|+3] and j in range [0,d]. Besides, as 𝒬 and 𝒬\𝑖 has 

the same form without approximation term 𝑡𝑖̃, we can make following assumption 

𝒬\𝑖(𝛽, 𝜀, 𝐳) = 𝐵𝑒𝑡𝑎(𝜀|𝑎\𝑖, 𝑏\𝑖)∏  𝒩(𝛽𝑗|𝑚𝑗
\𝑖, 𝑣𝑗

\𝑖)𝐵𝑒𝑟𝑛(𝑧𝑗|𝜌𝑖
\𝑖)𝑑

𝑗=0   (18) 

 𝒎\𝑖 = (𝑚0
\𝑖, …𝑚𝑑

\𝑖)𝑇, 𝒗\𝑖 = (𝑣0
\𝑖, … 𝑣𝑑

\𝑖)𝑇, 𝝆\𝑖 = (𝜌0
\𝑖, … 𝜌𝑑

\𝑖)𝑇, 𝑎\𝑖and 𝑏\𝑖 can be 

calculated based on 𝒬\𝑖 =   𝒬 /𝑡𝑖̃ and formula (15),  (16). 

𝒗\𝑖 = (𝒗−1 − 𝒗𝑖̃
−1)−1         (19) 

𝒎\𝑖 = 𝒎+ 𝒗\𝑖 ∘ 𝒗𝑖̃
−1 ∘ (𝒎 −𝒎𝒊̃)                 (20) 

𝝆\𝑖 = 𝝆 ∘ 𝒄𝒊̃
−1 ∘ (𝝆 ∘ 𝒄𝒊̃

−1 + (1 − 𝝆) ∘ 𝒅𝑖̃
−1
)−1      (21) 

     𝑎\𝑖 = 𝑎 − 𝑎𝑖̃                               (22) 

                     𝑏\𝑖 = 𝑏 − 𝑏𝑖̃        (23) 

 Where ′ ∘ ′ denotes the Hadamard production and the inverse of a vector means the inverse of 

each component of the vector. Meanwhile we have 𝑡𝑖̃ satisfying (24)-(28) which can be used to update the 

value of  𝑡𝑖̃ according to the property of the exponential family functions 

 𝔼𝑡𝑖̃𝒬\𝑖
[𝛽] =  𝔼𝑡𝑖𝒬\𝑖

[𝛽]  (24) 

 𝔼𝑡𝑖̃𝒬\𝑖
[𝛽 ∘ 𝛽] =  𝔼𝑡𝑖𝒬\𝑖

[𝛽 ∘ 𝛽]               (25) 

𝔼𝑡𝑖̃𝒬\𝑖
[𝒛] =  𝔼𝑡𝑖𝒬\𝑖

[𝒛]     (26) 

  𝔼𝑡𝑖̃𝒬\𝑖
[𝑙𝑜𝑔(𝜀)] =  𝔼𝑡𝑖𝒬\𝑖

[𝑙𝑜𝑔(𝜀)]    (27) 

         𝔼𝑡𝑖̃𝒬\𝑖
[𝑙𝑜𝑔(1 − 𝜀)] =  𝔼𝑡𝑖𝒬\𝑖

[𝑙𝑜𝑔(1 − 𝜀)]       (28) 

We need to update the parameters in  𝑡𝑖̃  according to 𝑝(𝑦𝑖|𝛽, 𝜀, 𝑥𝑖)  so that 𝑡𝑖̃  match the 

constraints in (24)-(28) while minimizing the KL-divergence between  𝑡𝑖̃𝒬
\𝑖 and  𝑡𝑖𝒬

\𝑖. We can get (29) – 

(30) based on (1), (18), (24), (25) 

  𝔼𝑡𝑖𝒬\𝑖
[𝛽] =  𝒎\𝑖 + 𝒗\𝑖∇𝑚log 𝑍𝑖       (29)  

                     𝔼𝑡𝑖𝒬\𝑖
[𝛽 ∘ 𝛽] − 𝔼𝑡𝑖𝒬\𝑖

[𝛽]𝔼𝑡𝑖𝒬\𝑖
[𝛽]𝑇 = 𝒗\𝑖 − 𝒗\𝑖𝒗\𝑖(∇𝑚

𝑇∇𝑚 − 2∇𝑣log 𝑍𝑖)    (30) 

𝑍𝑖 = ∫(𝜀 + (1 −  2𝜀)𝛷(𝑦𝑖𝛽
𝑇𝒙𝑖))𝐵𝑒𝑡𝑎(𝜀|𝑎

\𝑖, 𝑏\𝑖)∏ 𝒩(𝛽𝑗|𝑚𝑗
\𝑖, 𝑣𝑗

\𝑖)𝐵𝑒𝑟𝑛(𝑧𝑗|𝜌𝑗
\𝑖)𝑑

𝑑

𝑗=1

𝛽 

 (31) 

By substituting (29), (30) and (31) into (24) and (25), we can get 



𝒎𝑛𝑒𝑤 = 𝒎\𝑖 + 𝒗\𝑖 ∘
(1−2𝜀̅\𝑖)𝒩(𝜆𝑖,0,1)

𝜀̅\𝑖+(1−𝜀̅\𝑖)𝛷(𝜆𝑖)
 

𝑦𝑖𝒙𝑖

√𝒙𝑖
𝑇𝒗\𝑖𝒙𝒊

          (32) 

𝒗𝑛𝑒𝑤 = 𝒗\𝑖 − 𝒗\𝑖𝒗\𝑖((
(1−2𝜀̅)𝒩(𝜆𝑖,0,1)

𝜀̅\𝑖+(1−2𝜀̅\𝑖)𝛷(𝜆𝑖)
 )
2
(𝑦𝑖𝒙𝑖)∘(𝑦𝑖𝒙𝑖)

𝒙𝑖
𝑇𝒗\𝑖𝒙𝑖

−  2
(1−2𝜀̅\𝑖)𝒩(𝜆𝑖,0,1)

𝜀̅\𝑖+(1−2𝜀̅\𝑖)𝛷(𝜆𝑖)
− 

𝑦𝑖(𝒎
\𝑖)𝑇𝒙𝑖

2
 

𝒙𝑖∘𝒙𝑖

𝒙𝑖
𝑇𝒗\𝑖𝒙𝑖√𝒙𝑖

𝑇𝒗\𝑖𝒙𝑖

    

(33) 

 After simplifying (33), we get (34) 

       𝒗𝑛𝑒𝑤 = 𝒗\𝑖 − (𝒗\𝑖 ∘ 𝒙𝑖)(𝒗
\𝑖 ∘ 𝒙𝑖) =  

𝑦𝑖𝛼𝑖𝒙𝑖
𝑇𝒎𝑛𝑒𝑤

𝒙𝑖
𝑇𝒗\𝑖𝒙𝑖√𝒙𝑖

𝑇𝒗\𝑖𝒙𝑖

    (34) 

 In equations (32), (33) and (34), we have the following 

𝛼𝑖 = 
(1−2𝜀̅)𝒩(𝜆𝑖,0,1)

𝜀̅\𝑖+(1−2𝜀̅\𝑖)𝛷(𝜆𝑖)
      (35) 

𝜆𝑖 = 
𝑦𝑖(𝒎

\𝑖)𝑇𝒙𝑖

√𝒙𝑖
𝑇𝒗\𝑖𝒙𝑖

            (36) 

𝜀̅\𝑖 = 
𝑎\𝑖

𝑎\𝑖+ 𝑏\𝑖
           (37) 

𝑍𝑖 = 𝜀̅
\𝑖 + (1 − 2𝜀̅\𝑖)𝛷(𝜆𝑖)       (38) 

Here 𝛷 is the cumulative distribution function of the standard normal distribution. According to 

formulas (27) and (28), we can obtain the following updating rules for a and b. 

Ψ(𝑎𝑛𝑒𝑤) −  Ψ(𝑎𝑛𝑒𝑤 + 𝑏𝑛𝑒𝑤)
𝜀̅\𝑖(1−𝛷(𝜆𝑖))

𝑎\𝑖[𝜀̅\𝑖+(1−2𝜀̅\𝑖)𝛷(𝜆𝑖)]
+Ψ(𝑎\𝑖) −  Ψ(𝑎\𝑖 + 𝑏\𝑖 + 1)          (39) 

Ψ(𝑏𝑛𝑒𝑤) −  Ψ(𝑎𝑛𝑒𝑤 + 𝑏𝑛𝑒𝑤)
𝜀̅\𝑖(1−𝛷(𝜆𝑖))

𝑏\𝑖[𝜀̅\𝑖+(1−2𝜀̅\𝑖)𝛷(𝜆𝑖)]
+Ψ(𝑏\𝑖) −  Ψ(𝑎\𝑖 + 𝑏\𝑖 + 1)         (40) 

 Where  𝛹(𝑥) = 𝑑𝑙𝑜𝑔(𝛤(𝑥)) and 𝛤 is the gamma function. As for the fact that 𝛹(𝑥) is a non-

linear function, we can only use numerical solution to update 𝑎𝑛𝑒𝑤  and  𝑏𝑛𝑒𝑤 . In order to avoid the 

computational complexity, the expectation propagation of 𝜀 and 𝜀2 are used instead of the expectation 

propagation of log (𝜀) and log (1- 𝜀). Although it is not guaranteed to minimize the KL divergence, the 

results are still accurate according to (Hernández-Lobato and Hernández-Lobato, 2008) and (Miguel 

Hernández-Lobato, et al., 2011). In other words, we can use (41) and (42) to update the value of  𝑎𝑛𝑒𝑤 and 

 𝑏𝑛𝑒𝑤 

𝔼𝑡𝑖̃𝒬\𝑖
[𝜀] =  𝔼𝑡𝑖𝒬\𝑖

[𝜀]       (41) 

𝔼𝑡𝑖̃𝒬\𝑖
[𝜀 ∘ 𝜀] =  𝔼𝑡𝑖𝒬\𝑖

[𝜀 ∘ 𝜀]          (42) 

 After simplifying the equations we get 

𝑎𝑛𝑒𝑤 = 
𝔼
𝑡𝑖𝒬

\𝑖[𝜀]− 𝔼𝑡𝑖𝒬
\𝑖[𝜀

2]

𝔼
𝑡𝑖𝒬

\𝑖[𝜀
2]− 𝔼

𝑡𝑖𝒬
\𝑖[𝜀]

2 𝔼𝑡𝑖𝒬\𝑖
[𝜀]     (43) 



𝑏𝑛𝑒𝑤 = 
𝔼
𝑡𝑖𝒬

\𝑖[𝜀]− 𝔼𝑡𝑖𝒬
\𝑖[𝜀

2]

𝔼
𝑡𝑖𝒬

\𝑖[𝜀
2]− 𝔼

𝑡𝑖𝒬
\𝑖[𝜀]

2 (1 − 𝔼𝑡𝑖𝒬\𝑖
[𝜀])       (44) 

 In the above two equations, we have 

𝔼𝑡𝑖𝒬\𝑖
[𝜀] =  

1

𝑍𝑖(𝑎
\𝑖+𝑏\𝑖+1)

[𝛷(𝜆𝑖)(1 − 𝜀̅
\𝑖)𝑎\𝑖 + (1 − 𝛷(𝜆𝑖))𝜀̅

\𝑖(𝑎\𝑖 + 1)]  (45) 

𝔼𝑡𝑖𝒬\𝑖
[𝜀2] =  

𝑎\𝑖 + 1

𝑍𝑖(𝑎
\𝑖 + 𝑏\𝑖 + 1)(𝑎\𝑖 + 𝑏\𝑖 + 2)

[𝛷(𝜆𝑖)(1 − 𝜀̅
\𝑖)𝑎\𝑖 + (1 − 𝛷(𝜆𝑖))𝜀̅

\𝑖(𝑎\𝑖 + 2)] 

(46) 

As for the approximation of  𝑡𝑛+1, or namely p(𝛽|z), we have (24), (25) and (26) here according 

to the infer from the minimum KL divergence between 𝑡𝑖𝒬
\𝑖 and 𝑡̃𝑖𝒬

\𝑖 

𝔼𝑡𝑖̃𝒬\𝑖
[𝛽] =  𝔼𝑡𝑖𝒬\𝑖

[𝛽]                                                              (47) 

 𝔼𝑡𝑖̃𝒬\𝑖
[𝛽 ∘ 𝛽] =  𝔼𝑡𝑖𝒬\𝑖

[𝛽 ∘ 𝛽]               (48) 

𝔼𝑡𝑖̃𝒬\𝑖
[𝒛] =  𝔼𝑡𝑖𝒬\𝑖

[𝒛]     (49) 

Based on the above three equations, the rules for updating m, v and 𝝆 can be derived as follows. 

𝒎𝑛𝑒𝑤 = 𝒎\𝑖 + 𝑘′ ∘ 𝒗\𝑖       (50) 

𝒗𝑛𝑒𝑤 = 𝒗\𝑖 − 𝑘′′′ ∘ 𝒗\𝑖 ∘ 𝒗\𝑖      (51) 

𝝆𝑛𝑒𝑤 = 𝝆\𝑖 + 𝝆\𝑖(𝝆\𝑖)∇𝝆log 𝑍𝑖       (52) 

𝝆𝑛𝑒𝑤 = 𝝆\𝑖 +
(𝑔′′− 𝑔′′′)𝝆(1−𝝆\𝑖)

𝝆\𝑖∘𝑔′′+ (1−𝝆\𝑖)∘ 𝑔′′′
     (53) 

𝝆𝑛𝑒𝑤 = 𝝆\𝑖 ∘ 𝑔′′ ∘ (𝝆\𝑖 ∘ 𝑔′′ + (1 − 𝝆\𝑖) 𝑔′′′ )    (54) 

 𝑘′, 𝑘′′′, 𝑔′′ and 𝑔′′′ in above equations can be given as follows 

 𝑔′′ =  𝒩(0,𝒎\𝑖, 𝒗\𝑖 + 𝜎2)         (55) 

 𝑔′′′ =  𝒩(0,𝒎\𝑖, 𝒗\𝑖)      (56) 

𝑔′ = 𝝆\𝑖 ∘ 𝑔′′ + (1 − 𝝆\𝑖) ∘  𝑔′′′    (57) 

𝑘′ = −
𝝆\𝑖∘𝑔′′∘𝑚\𝑖

𝑔′∘(𝒗\𝑖+ 𝜎2)
− 

(1−𝝆\𝑖)∘ 𝑔′′′∘𝑚\𝑖

𝑔′∘𝒗\𝑖
    (58) 

 

 

𝑘′′ = 
𝝆\𝑖∘𝑔′′∘𝑚\𝑖∘𝑚\𝑖

𝑔′∘(𝒗\𝑖+ 𝜎2)∘(𝒗\𝑖+ 𝜎2)
− 

𝝆\𝑖∘𝑔′′

𝑔′∘(𝒗\𝑖+ 𝜎2)
+
(1−𝝆\𝑖)∘ 𝑔′′′∘𝑚\𝑖∘𝑚\𝑖

𝑔′∘𝒗\𝑖∘𝒗\𝑖
− 

(1−𝝆\𝑖)∘ 𝑔′′′

𝑔′∘𝒗\𝑖
 (59) 

𝑘′′′ = 𝑘′ ∘ 𝑘′ − 𝑘′′     (60) 



 𝑍𝑛+1 can be given as follows while 𝐵𝑒𝑡𝑎(𝜀|𝑎\𝑖, 𝑏\𝑖) does not contain 𝛽 and 𝑍𝑖  

𝑍𝑖 = ∫(𝒩(𝛽𝑖, 0, 𝜎𝑖
2)𝑧𝑖𝛿(𝛽𝑖)

(1−𝑧𝑖))∏  𝒩(𝛽𝑗|𝑚𝑗
\𝑖, 𝑣𝑗

\𝑖)𝐵𝑒𝑟𝑛(𝑧𝑗|𝜌𝑗
\𝑖)𝑑𝑑

𝑗=1 𝛽d𝐳 = ∏ 𝑔𝑗
′ 𝑑

𝑗=0  (61) 

As for the approximation of  𝑡𝑖̃ for 𝑡𝑖𝜖p(𝐳|G, λ, γ) (i = n+2 …, n+|E|+2), we have formula (4) here 

𝑝(𝒛|𝐺, 𝜆, 𝛾) =  
1

𝑍
𝑒𝑥𝑝(𝑐𝑧0)exp (𝜆∑𝑧𝑖  

𝑑

𝑖=1

+  𝛾 ∑ (
𝑧𝑢

√𝑑𝑢
− 

𝑧𝑣

√𝑑𝑣
)

2

{𝑢,𝑣}∈𝐸

𝑤(𝑢, 𝑣)) 

=
1

𝑍
𝑒𝑥𝑝(𝑐𝑧0 +  𝜆 ∑ 𝑧𝑖 

𝑑
𝑖=1 ) 𝑒𝑥𝑝(𝛾 ∑ (

𝑧𝑢

√𝑑𝑢
− 

𝑧𝑣

√𝑑𝑣
)
2

{𝑢,𝑣}∈𝐸 𝑤(𝑢, 𝑣))   (62) 

Firstly, we need to approximate the priori sparse term exp (𝑐𝑧0 +  𝜆∑ 𝑧𝑖 
𝑑
𝑖=1 ) and the following 

formula holds 

𝔼𝑡𝑖̃𝒬\𝑖
[𝒛] =  𝔼𝑡𝑖𝒬\𝑖

[𝒛]     (63) 

 And 𝑍𝑖  can be calculated by 

𝑍𝑖 = ∫(exp(ℎ𝑖𝑧𝑖) 𝐵𝑒𝑡𝑎(𝜀|𝑎
\𝑖, 𝑏\𝑖))∏  𝒩(𝛽𝑗|𝑚𝑗

\𝑖, 𝑣𝑗
\𝑖)𝐵𝑒𝑟𝑛(𝑧𝑗|𝜌𝑗

\𝑖)𝑑𝑑
𝑗=1 𝛽d𝐳      (64) 

 As in the above equation, 𝐡 = (ℎ0, ℎ1, … , ℎ𝑑)
𝑇 is a d+1-dimension vector of which the first 

component is 0 while the others are λ, we can do the simplification as follows: 

𝑍𝑖 = exp(ℎ𝑖) 𝝆
\𝑖 ∫∏  𝒩(𝛽𝑗|𝑚𝑗

\𝑖, 𝑣𝑗
\𝑖)𝐵𝑒𝑟𝑛(𝑧𝑗|𝜌𝑗

\𝑖)𝑑𝑑
𝑗=0 𝛽 + exp(−ℎ𝑖)(1 −

𝝆\𝑖) ∫∏  𝒩(𝛽𝑗|𝑚𝑗
\𝑖, 𝑣𝑗

\𝑖)𝐵𝑒𝑟𝑛(𝑧𝑗|𝜌𝑗
\𝑖)𝑑𝑑

𝑗=0 𝛽  

(65) 

𝑍𝑖 = ∏ [𝜌𝑗
\𝑖 exp(ℎ𝑖) + (1 − 𝜌𝑗

\𝑖)exp (−ℎ𝑖)]
𝑑
𝑗=0   (66) 

 According to (63), the updating rule for 𝝆 is written as follows 

𝝆𝑛𝑒𝑤 = 𝝆\𝑖 + 𝝆\𝑖(1 − 𝝆\𝑖)∇𝝆log 𝑍𝑖      (67) 

 Combined with (66), we have 

𝝆𝑛𝑒𝑤 = exp(𝒉)  ∘ 𝝆\𝑖 ∘ (exp(𝒉)  ∘ 𝝆\𝑖 + 𝑰(1 − 𝝆\𝑖))−1    (68) 

 

 As for the approximation of 𝑡𝑖̃ for i in range (n+3, n+|E|+2) 

𝑍𝑖 = ∫(exp(𝛾 (
𝑧𝑢

√𝑑𝑢
−

𝑧𝑣

√𝑑𝑣
)
2

))𝐵𝑒𝑡𝑎(𝜀|𝑎\𝑖, 𝑏\𝑖)∏  𝒩(𝛽𝑗|𝑚𝑗
\𝑖, 𝑣𝑗

\𝑖)𝐵𝑒𝑟𝑛(𝑧𝑗|𝜌𝑗
\𝑖)𝑑𝛽𝑑𝜀𝑑

𝑗=1   (69) 

 Assume the 𝐴𝑖 , 𝐵𝑖 , 𝐶𝑖 , 𝐷𝑖 can be given as follows 

𝐴𝑖 = 𝜌𝑢
\𝑖
 𝜌𝑣
\𝑖
exp (γ(

1

√𝑑𝑢
−

1

√𝑑𝑣
)2)     (70) 

𝐵𝑖 = 𝜌𝑢
\𝑖
(1 − 𝜌𝑣

\𝑖
)exp (

𝛾

𝑑𝑢
)      (71) 



Ci = (1 − ρu
\i
)ρv
\i
exp (

γ

dv
)     (72) 

  Di = (1 − ρu
\i
)(1 − ρv

\i
)      (73) 

The updating rule of 𝜌 can be obtained as follows 

𝜌𝑢
𝑛𝑒𝑤 = 

𝐴𝑖+ 𝐵𝑖

𝐴𝑖+ 𝐵𝑖+ 𝐶𝑖+ 𝐷𝑖
     (74) 

𝜌𝑣
𝑛𝑒𝑤 = 

𝐴𝑖+ 𝐶𝑖

𝐴𝑖+ 𝐵𝑖+ 𝐶𝑖+ 𝐷𝑖
     (75) 

 Lastly, as for the approximation of 𝑡𝑛+|𝐸|+3̃  

𝑍𝑖 = 𝐵(𝑎, 𝑏)𝐵(𝑎0, 𝑏0)
−1𝐵(𝑎\𝑖, 𝑏\𝑖)−1    (76) 

 According to the rules of propagating the expectation of 𝜀 and 𝜀2, we have. 

𝑎𝑛𝑒𝑤 = 𝑎0 + 𝑎
\𝑖 − 1 

𝑏𝑛𝑒𝑤 = 𝑏0 + 𝑏
\𝑖 − 1 

(77) 

 We can get the following updating rules based on the above expectation propagation algorithm. 

𝒗𝑖̃
𝑛𝑒𝑤 =  (𝒗−1 − (𝒗\𝒊)−1)−1 

𝐦𝑖̃
𝑛𝑒𝑤 = 𝒗𝑖̃

𝑛𝑒𝑤 ∘ 𝒗−1 ∘ 𝑚 − 𝒗𝑖̃
𝑛𝑒𝑤 ∘ (𝒗\𝒊)−1 ∘ 𝒎\𝑖 

𝑐𝑖̃
𝑛𝑒𝑤 =  𝜌 ∘ (𝜌\𝒊)−1 

𝑑𝑖̃
𝑛𝑒𝑤

= (1 − 𝜌) (1 − 𝜌\𝒊)−1    (78) 

𝑎𝑖̃
𝑛𝑒𝑤 =  𝑎 − 𝑎\𝑖 

𝑏𝑖̃
𝑛𝑒𝑤

=  𝑏 − 𝑏\𝑖 

 𝑠𝑖̃ is a constant and its updating rule is derived from 𝑡𝑖̃. When i = 1, 2…, n 

𝑠𝑖̃
𝑛𝑒𝑤 = 𝑍𝑖  √∏

𝑣𝑖𝑗̃
𝑛𝑒𝑤+ 𝑣𝑗

\𝑖

𝑣𝑖𝑗̃
𝑛𝑒𝑤

𝑑
𝑗=0 exp(

1

2
∑

(𝑚𝑖𝑗̃
𝑛𝑒𝑤

− 𝑚𝑗
\𝑖
)2

𝑣𝑖𝑗̃
𝑛𝑒𝑤+ 𝑣𝑗

\𝑖
𝑑
𝑗=0 )

𝐵(𝑎\𝑖,𝑏\𝑖)

𝐵(𝑎,𝑏)
     (79) 

 

When i = 𝑛 + 2,… , 𝑛 + |𝐸| + 2, the updating rule of 𝑠𝑖̃ becomes  

𝑠𝑖̃
𝑛𝑒𝑤 = 𝑍𝑖  ∏ √

𝑣𝑖𝑗̃
𝑛𝑒𝑤+ 𝑣𝑗

\𝑖

𝑣𝑖𝑗̃
𝑛𝑒𝑤

𝑑
𝑗=0 exp(

1

2

(𝑘𝑗
′)2

𝑘𝑗
′′′ )   (80) 

When i = 𝑛 + 2,… , 𝑛 + |𝐸| + 2, the updating rule of 𝑠𝑖̃ becomes  

𝑠𝑖̃
𝑛𝑒𝑤 = 𝑍𝑖                      (81) 



When i = 𝑛 + |𝐸| + 3, the updating rule becomes  

𝑠𝑖̃
𝑛𝑒𝑤 = 𝐵(𝑎0, 𝑏0)

−1     (82) 

Once the expectation propagation algorithm converges, we can approximate it according to the 

following formula 

𝑝(𝑦|𝐱, 𝐺, 𝜆, 𝛾) ≈  ∫∑ ∏ 𝑡𝑖̃(𝛽, 𝜀, 𝑧)
𝑛+|𝐸|+3
𝑖=1𝑧 𝑑𝛽𝑑𝜀 ≈ Ẑ−1C(2Π)

𝑑

2exp (
𝐷

2
)𝐵(𝐴, 𝐵)[∏ 𝑠𝑖̃

𝑛+|𝐸|+3
𝑖=1 ][∏ √𝑣𝑗

𝑑
𝑗=0 ] 

(83) 

Where as 

A = ∑ 𝑎𝑖̃ + 1
𝑛+|𝐸|+3
𝑖=1      (84) 

B = ∑ 𝑏𝑖̃ + 1
𝑛+|𝐸|+3
𝑖=1      (85) 

𝐶 = ∏ (∏ 𝑐𝑖𝑗̃
𝑛+|𝐸|+3
𝑖=1 + ∏ 𝑑𝑖𝑗̃)

𝑛+|𝐸|+3
𝑖=1

𝑑
𝑗=0     (86) 

𝐷 = 𝒎𝑇(𝒗−𝟏 ∘ 𝒎) − ∑ 𝒎𝑖̃
𝑇(𝑣𝑖̃

−1 ∘ 𝒎𝑖̃)
𝑛+|𝐸|+3
𝑖=1   (87) 

Ẑ is the approximation of Z in (3). Finally, we can predict the label of new samples according to 

the following formula 

𝑝(𝑦𝑡𝑒𝑠𝑡|𝑥𝑡𝑒𝑠𝑡, 𝑦, 𝑿, 𝐺, 𝜆, 𝛾) ≈  ∫ ∫𝑝(𝑦𝑡𝑒𝑠𝑡|𝑥𝑡𝑒𝑠𝑡, 𝛽, 𝜀, 𝐺, 𝜆, 𝛾) ∑ 𝑝(𝛽, 𝜀, 𝑧|𝑦, 𝑿, 𝐺, 𝜆, 𝛾)𝑧 𝑑𝛽𝑑𝜀 =

 ∫ ∫[𝜀 + (1 − 2𝜀)𝜙(𝑦𝑡𝑒𝑠𝑡𝛽𝑥𝑡𝑒𝑠𝑡)]∑ 𝒬(𝛽, 𝜀, 𝑧)𝑧 𝑑𝛽𝑑𝜀  

(88) 

 According to (14) 

𝑝(𝑦𝑡𝑒𝑠𝑡|𝑥𝑡𝑒𝑠𝑡, 𝑦, 𝑿, 𝐺, 𝜆, 𝛾) ≈  ∫ ∫[𝜀 + (1 −

2𝜀)𝜙(𝑦𝑡𝑒𝑠𝑡𝛽𝑥𝑡𝑒𝑠𝑡)] ∑ 𝐵𝑒𝑡𝑎(𝜀|𝑎, 𝑏)∏  𝒩(𝛽𝑗|𝑚𝑗, 𝑣𝑗)𝐵𝑒𝑟𝑛(𝑧𝑗|𝜌𝑖)
𝑑
𝑗=0𝑧 𝑑𝛽𝑑𝜀  

(89) 

After simplification, we have 

𝑝(𝑦𝑡𝑒𝑠𝑡|𝑥𝑡𝑒𝑠𝑡, 𝑦, 𝑿, 𝐺, 𝜆, 𝛾) ≈ 𝜀̅ + (1 − 2𝜀)̅𝜙 (
𝑦𝑡𝑒𝑠𝑡𝒎𝑇𝒙𝑡𝑒𝑠𝑡

√(𝒗∘𝒙𝑡𝑒𝑠𝑡)𝑇𝒙𝑡𝑒𝑠𝑡
)  (90) 

 Where as 

𝜀̅ =  
𝑎

𝑎+𝑏
     (91) 

2 Feature selection in NBSBM 

A relevant score was defined by equation (10) to quantify the relevance of a feature to the classification 

results. We applied equation (10) on the first dataset to extract features that are most relevant to the 

prostate cancer cell responses to Dasatinib. Supplementary table 1 shows those top-25 relevant genes that 

ranked by the relevant score. Among the top-ranked genes, CTNNB1, FGFR4, GRK6 and PHB2 are 

oncogenes that have been reported to play important role in prostate cancer development and progression 

(FitzGerald, et al., 2009; Linch, et al., 2017; Nakai, et al., 2019; Yang, et al., 2018). Then we did canonical 



pathway enrichment analysis, those significantly enriched pathways were listed out in Supplementary 

table 2. MHC class II antigen presentation, Integration of energy metabolism, MAPK family signaling 

cascades, RAF/MAP kinase cascade, FLT3 Signaling pathways are top-enriched signaling pathways that 

correlated with the prostate cancer cell responses to Dasatinib, which was also reported by the 

literature(da Silva, et al., 2013; Mukherjee, et al., 2011; Younger, et al., 2007).   

Gene Entrez ID Gene Symbol Relevant Score 

1499 CTNNB1 0.9999 

51005 AMDHD2 0.9999 

2264 FGFR4 0.9998 

2870 GRK6 0.9913 

11331 PHB2 0.9913 

8504 PEX3 0.9913 

8851 CDK5R1 0.9913 

80700 UBXN6 0.9913 

8078 USP5 0.9913 

9409 PEX16 0.9913 

22826 DNAJC8 0.9913 

7317 UBA1 0.9913 

55968 NSFL1C 0.9913 

3053 SERPIND1 0.9913 

57591 MRTFA 0.9913 

10635 RAD51AP1 0.9913 

8541 PPFIA3 0.9913 

4601 MXI1 0.9913 

55844 PPP2R2D 0.9913 

5526 PPP2R5B 0.9913 

51400 PPME1 0.9913 

3009 H1-5 0.9913 

9989 PPP4R1 0.9913 

57718 PPP4R4 0.9913 

Supplemental Table 1 Top-25 most predictive genes for classifying prostate cancer cell responses to 

Dasatinib. Oncogenes such as CTNNB1, FGFR4, GRK6 and PHB2 are top-ranked. 

 

Enriched Pathways p-value 

MHC class II antigen presentation 2.74E-06 

Integration of energy metabolism 0.002008 

MAPK family signaling cascades 0.002191 

RAF/MAP kinase cascade 0.006537 

FLT3 Signaling 0.006955 

MAPK1/MAPK3 signaling 0.009353 

interleukin signaling 0.012823 



Rho GTPase cycle 0.015637 

Downstream TCR signaling 0.027074 

Signaling by Receptor Tyrosine Kinases 0.028316 

RHO GTPases Activate Formins 0.037878 

Supplemental Table 2 The most enriched signaling pathways in those top-100 ranked genes that are most 

relevant to prostate cancer cell response to Dasatinib. P-value was estimated using the fisher’s exact test.   
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