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Abstract: Prognosis modeling plays an important role in cancer studies. With the development of
omics profiling, extensive research has been conducted to search for prognostic markers for various
cancer types. However, many of the existing studies share a common limitation by only focusing on
a single cancer type and suffering from a lack of sufficient information. With potential molecular
similarity across cancer types, one cancer type may contain information useful for the analysis of other
types. The integration of multiple cancer types may facilitate information borrowing so as to more
comprehensively and more accurately describe prognosis. In this study, we conduct marginal and
joint integrative analysis of multiple cancer types, effectively introducing integration in the discovery
process. For accommodating high dimensionality and identifying relevant markers, we adopt the
advanced penalization technique which has a solid statistical ground. Gene expression data on nine
cancer types from The Cancer Genome Atlas (TCGA) are analyzed, leading to biologically sensible
findings that are different from the alternatives. Overall, this study provides a novel venue for cancer
prognosis modeling by integrating multiple cancer types.
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1. Introduction

Cancer is one of the leading causes of death worldwide and has been posing extensive
public concerns. In cancer studies, prognosis modeling is a critical step that greatly contributes
to understanding cancer etiology, developing effective therapeutic methods, and improving life quality.
Significant effort has been devoted to searching for prognostic factors, among which omics markers
have important implications. For example, EGFR has been suggested as a strong prognostic indicator
in multiple cancers, such as ovarian, cervical, and bladder cancers. Nicholson, et al. [1] reviewed
over 200 studies and reported that relapse-free-interval or survival data are directly in relation to
the increased EGFR levels in breast, gastric, colorectal, and many other cancers. Petitjean, et al. [2]
found that the mutation of TP53 has an impact on the prognosis of breast and several other cancers.
Gao, et al. [3] used a Cox model to find that a high level of MMP-14 mRNA expression leads to
a significantly shorter overall survival for breast cancer. Chiu, et al. [4] characterized prognostic
alteration for melanoma with a panel of five genes, including CSMD2, CNTNAP5, NRDE2, ADAM6,
and TRPM2. Despite considerable successes, our understanding of cancer prognosis is still limited.
The limited progress in cancer analytics may be attributable to small sample sizes, high dimensionality
and low signal-to-noise ratios of omics data, as well as the underlying molecular complexity of cancers.

Most of the existing studies, including the aforementioned, focus on a single type of cancer, and
analysis often suffers from a lack of sufficient information. Cancer types have been typically classified
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according to organ- and tissue histology-based pathology criteria. This is especially true in “old” studies.
More recently, with the development of high-throughput profiling, increasing attention has been paid
to the molecular basis of cancers, providing a novel perspective on cancer types. A representative
recent work is Hoadley, et al. [5], which conducted the molecular clustering of 33 different types of
tumors in The Cancer Genome Atlas (TCGA) with data on aneuploidy, DNA methylation, mRNA,
and miRNA. Their results show that some cancers, which were treated as completely different diseases
according to traditional organ- and tissue histology-based pathology criteria, are closely related
according to their molecular characteristics. For example, squamous cell carcinoma can occur in lung,
bladder, cervix, head, and neck, and different histopathological types are often observed. However,
in Hoadley, et al. [5], these cancer types have been found to have similar molecular characteristics.

Molecular similarity across cancers has been well established in the literature. Prognosis of many
different cancer types is mediated by some common mechanisms associated with certain common
pathways. For example, the p53 pathway inhibits cell growth and stimulates cell death, which plays
an important role in a large fraction of cancers. In addition, there are other genes/pathways that have
important roles in many cancer types, such as apoptosis, hypoxia-inducible transcription factor (HIF)-1,
mitogen activated protein kinase (MAPK) phosphoinositide3-kinase (PI3K), and receptor tyrosine
kinases (RTKs) [6]. Published studies have found that different cancer types may share common
oncogenes, tumor-suppressor genes and stability genes, the alternations of which are responsible for
the genesis and prognosis of cancers. For example, BRCA1 gene mutation is often found in both breast
and ovarian cancers [7]. These two cancer types are perhaps the most common cancers in female and
often occur together [7]. Another example is lung adenocarcinoma and lung squamous cell carcinoma
which are two major lung cancer subtypes. Many genes have been reported to be associated with
both cancer subtypes, including EGFR [8], TP53 [8], AKT1, DDR2 [9], FGFR1 [10], KRAS [8], PTEN,
and others. With molecular similarity, one cancer may contain information useful for the analysis
of other cancers. Overall, it is of interest and also reasonable to conduct the integrative analysis of
molecular profiles of multiple cancer types to increase information and more accurately describe the
underlying prognosis.

More recently, much effort has been devoted to collecting omics profiles of tumor samples with
different cancer types under a unified protocol. A representative example is TCGA organized by The
National Cancer Institute (NCI) which has generated a large amount of cross-platform genomic data for
exploring the complex landscapes of human cancers. Specifically, it has collected multi-omics data from
over 20,000 primary cancer and matched normal samples spanning 33 cancer types, including breast
cancer, lung squamous cell carcinoma, lung adenocarcinoma, and others. Other examples include the
International Cancer Genome Consortium (ICGC), Therapeutically Applicable Research to Generate
Effective Treatments (TARGET), and others. With the clinical and omics data on multiple cancer types,
these databases provide a good opportunity to conduct cancer modeling through data integration.

In the literature, there are a few related studies, which can be generally classified into two families.
The first family adopts a meta-analysis strategy, which first analyzes different cancer types separately
and then compares results across cancer types to search for overlapping findings. An example is
Cava, et al. [11], which first analyzed gene expression data on 16 cancer types separately and then
identified 895 de-regulated genes with a central role in pathways. Yu, et al. [12] systematically analyzed
gene expressions across diverse cancers during the inflammatory timeline. After comparing the
differentially expressed genes among cancers, they found three novel pan-cancer gene expression
patterns, in which the gene expressions are regulated differently in the early and late phases of
inflammation. Using a cohort of 3899 samples with 10 cancer types, Sharma, et al. [13] adopted a
bottom-up approach to quantify the effects of gene expression variations and identified novel recurrent
regulatory mutations influencing known cancer genes, such as GRIN2D and NKX2-1, in multiple cancer
types. The second family of approaches stacks data from multiple cancer types together to create
a “mega” dataset, and then conducts analysis as if there is in fact just a single dataset. An example
is Martinez-Ledesma, et al. [14], which used a network-based exploration approach to identify gene
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expression biomarkers that are predictive of clinical outcomes in 12 cancer types. Using TCGA data on
3281 samples with 12 cancer types, Leiserson, et al. [15] performed a pan-cancer analysis of mutated
networks with a new algorithm, HotNet2, and found some significantly mutated subnetworks as
well as those with less characterized roles in cancers. Beyond studies on cancer omics data, similar
strategies have also been considered in other fields of biomedical research to collectively analyze
multiple datasets. For example, Xing, et al. [16] proposed two variations of a stacking algorithm
to simultaneously predict the resistance of multiple drugs using mutation information, leading to
improvement in prediction performance. As another example of drug analysis, Matlock, et al. [17]
developed stacking models built on multiple cell lines, multiple tested drugs, as well as genomic
information for drug sensitivity prediction in cancer cell lines. Medical imaging data integration has
also been conducted. For example, a meta-analysis based support vector machine was introduced
in [18] to collectively analyze multiple types of images, such as fluorodeoxyglucose positron emission
tomography (FDG-PET) and magnetic resonance imaging (MRI), for identifying susceptible brain
regions and predicting the incidence of Alzheimer’s disease.

Despite considerable successes, both families have limitations. The former neglects integration in
the discovery process. Data on each cancer type still suffers from a lack of sufficient information resulting
from a small sample size, high noises, and other reasons. As such, the “delay” in integration may
make the analysis less effective. For the latter one, although sample size increases by stacking, subjects
with different cancer types are treated as if they were from the same population. It cannot effectively
accommodate the heterogeneity across cancer types. In addition, in some of the existing studies, “classic”
statistical techniques have been adopted, and there is a lack of utilizing state-of-the-art techniques.

Motivated by the limitations of single cancer type analysis and recent successes of integrative
analysis in other contexts, in this study our goal is to conduct more effective integrative analysis of
multiple cancer types with high dimensional omics data. By contrast with the single cancer type
analysis, omics data from multiple cancer types are jointly analyzed to effectively borrow information
across cancer types and generate more reliable findings. By contrast with the existing meta-analysis-
and stacking-based approaches, the proposed analysis integrates data on multiple cancer types in the
discovery process and effectively accommodate the heterogeneity across cancer types. By contrast
with the analysis on categorical and continuous outcomes, the more challenging prognosis analysis is
conducted. The proposed analysis is based on the penalization technique which has a solid statistical
ground and satisfactory performance in published studies. TCGA mRNA expression data on nine
cancer types are analyzed to demonstrate the proposed integrative analysis approach. Overall,
this study provides a practically useful new venue for cancer prognosis modeling with multiple
cancer types.

2. Materials and Methods

2.1. The Cancer Genome Atlas (TCGA) Data

TCGA is one of the largest cancer genomics programs that comprehensively cover multiple
cancer types with high quality omics measurements and serves as an ideal testbed. In this study,
the processed level 3 data are downloaded from cBioPortal (http://www.cbioportal.org/). For omics
data, we consider mRNA expressions which were measured using the IlluminaHiseq RNAseq V2
platform. For each subject, a total of 20,531 mRNA expression measurements are available. It is noted
that the proposed analysis can be directly applied to other types of omics data, such as copy number
variation, methylation, microRNA, and others. The prognosis outcome of interest is the overall survival
time which is subject to right censoring. Nine common cancer types are analyzed, including some
recognized as highly correlated, such as lung adenocarcinoma and lung squamous cell carcinoma.
Summary information is provided in Table 1. We acknowledge that, as the proposed analysis can well
accommodate heterogeneity across cancers, the selection of cancers for analysis does not need to follow
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a strict criterion. Beyond these nine cancers with high prevalence and mortality, others can be added to
the analysis easily.

Table 1. Summary information of the nine cancer types.

Cancer Type Abbreviation Sample
Size

Non-
Censored

Overall
Survival
(Month)

Median
Survival

Breast invasive carcinoma BRCA 802 119 0.03–282.69 29.88
Bladder Urothelial Carcinoma BLCA 409 180 0.43–165.90 17.61

Glioblastoma multiforme GBM 541 417 0.10–127.60 10.70
Head and Neck squamous

cell carcinoma HNSC 159 69 0.07–135.19 12.48

Acute Myeloid Leukemia LAML 199 132 0.10–118.10 17.00
Lung adenocarcinoma LUAD 509 183 0.13–238.11 21.62

Lung squamous cell carcinoma LUSC 497 215 0.03–173.69 21.91
Ovarian serous

cystadenocarcinoma OV 582 384 0.26–180.06 33.03

Pancreatic adenocarcinoma PAAD 184 100 0.13–90.05 15.34

It has been suggested in the literature that the number of important prognostic markers is not
expected to be large. Besides, with a relatively moderate sample size for each cancer type and a much
larger number of genes, analysis may not be reliable. To improve estimation stability and also reduce
computational cost, we conduct prescreening as follows. We consider the 1385 genes in the TruSight
RNA Pan-Cancer Panel which is produced by Illunima Company and provides a comprehensive
assessment of cancer-related RNA transcripts and fusion detection. These genes have been referred
to in public databases and implicated in multiple cancer types, including solid tumors, soft tissue
cancers, and hematological malignancies [19]. After data matching, a total of 1040 gene expression
measurements are left for downstream analysis. Note that this prescreening is not essential in our
analysis, and the proposed approach can be directly applied to a bigger set of genes.

2.2. Methods

We conduct both marginal and joint analysis, where the former analyzes one gene at a time and
the latter analyzes all genes in a single model. Both types of analysis have been extensively conducted
in existing cancer modeling studies. As they have different implications and cannot replace each
other, we conduct both analyses to generate a more comprehensive understanding of cancer prognosis.
We develop a penalized regression-based framework to collectively analyze multiple datasets and
identify markers associated with the prognosis of multiple cancer types, while effectively accounting
for the similarity across cancers. The overall flowchart of analysis is provided in Figure 1.

Assume that there are K cancer types, where the kth (k = 1, . . . , K) type has n(k) independent
subjects. For subject i with the kth cancer type, let T(k)

i be the log-transformed survival time and

X(k)
i =

(
X(k)

i1 , . . . , X(k)
ip

)
be the p-dimensional vector of gene expression measurements. In practical

analysis, right censoring is usually present. Denote C(k)
i as the log-transformed censoring time, then we

observe y(k)i = min
(
T(k)

i , C(k)
i

)
and δ(k)i = I

(
T(k)

i ≤ C(k)
i

)
with I(·) being the indicator function.
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Figure 1. Flowchart of the proposed integrative analysis of The Cancer Genome Atlas (TCGA) data.

2.2.1. Marginal Analysis

We adopt the accelerated failure time (AFT) model for describing prognosis. It has been one of
the most popular choices in high-dimensional survival analysis due to its lucid interpretation and,
more importantly, computational simplicity [20]. For a specific cancer type, consider the marginal AFT
model for the jth measurement as:

T(k)
i = α

(k)
j + X(k)

i j η
(k)
j + ε

(k)
i j , (1)

where α(k)j and η(k)j are the unknown intercept and coefficient, and ε(k)i j is the random error. Assume

that for each cancer type, data
{{

X{k}i , y{k}i , δ{k}i

}
, i = 1, . . . , n{k}

}
have been sorted according to y(k)i in an

ascending order. Then, the following weighted penalized objective function is proposed to collectively
analyze multiple cancer types,

K∑
k=1

[
1

2n[k]

∑
i
w[k]

i

[
y[k]i − α

[k]
j − x[k]i j η

[k]
j

]2
]
+

K∑
k=1

ρMCP

(
η
(k)
j ,λ1,γ

)
+
λ2

2

K∑
k′,k

ρ
(
η
(k)
j , η(k

′)
j

)
(2)
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Here, w(k)
i ’s are the Kaplan–Meier (KM) weights for accommodating censoring and defined as

w(k)
1 =

δ1
(k)

n(k)
, w(k)

i =
δi
(k)

n(k) − i + 1

i−1∏
l=1

(
n(k)
− l

n(k) − l + 1

)δi
(k)

, i = 2, . . . , n(k)

ρMCP(|v|,λ1,γ) = λ1
∫
|v|

0

(
1− x

λ1γ

)
+

dx is the minimax concave penalty (MCP) with tuning

parameter λ1 and regularization parameter γ. We consider two types of ρ
(
η
(k)
j , η(k

′)
j

)
with tuning

parameter λ2. The first is the magnitude-based shrinkage penalty with

ρ
(
η
(k)
j , η(k

′)
j

)
=

(
η
(k)
j − s(kk′)

j η
(k′)
j

)2
, (3)

where s(kk′)
j = I

(
Sgn

(
η
(k)
j

)
= Sgn

(
η
(k′)
j

))
with Sgn(·) being the sign function. The second is the

sign-based shrinkage penalty with

ρ
(
η
(k)
j , η(k

′)
j

)
=

(
Sgn

(
η
(k)
j

)
− Sgn

(
η
(k′)
j

))2
(4)

Based on (2), a total of p objective functions are developed, and the estimates are defined as the
minimizers of these objective functions. With penalization, some values of η(k)j ’s can be shrunk to

exactly zero, and variables with nonzero η(k)j ’s are identified as important prognostic markers and

associated with the kth cancer type. The magnitudes and signs of η(k)j ’s describe the strengths and
directions of associations. Following the literature, the coordinate descent (CD) technique is adopted
for effectively optimizing the objective functions. Details are provided in Appendix A.

The objective function (2) analyzes one gene at a time, and enjoys stable estimation and simple
optimization. It may be limited by a lack of attention to the interconnections among genes and their
joint effects on cancer prognosis. Our brief literature search suggests that marginal analysis is still
highly popular in high-dimensional omics studies [21]. For marginal analysis, a two-stage method
is often adopted for marker identification, where multiple tests are first performed and a multiple
comparison adjustment is then conducted on p values using, for example, the false discovery rate
approach. By contrast with this strategy, we adopt the penalization technique, which can generate
more stable results and, more importantly, effectively accommodate the similarity across cancer types.
Specifically, MCP is used for regularized estimation and marker identification, which has been shown
to have satisfactory theoretical and numerical properties. The most significant advancement is the

ρ
(
η
(k)
j , η(k

′)
j

)
penalty term which promotes similarity between the estimated coefficients of each cancer

pair. Data integration is conducted in the discovery process to facilitate early information borrowing.
With the magnitude-based shrinkage penalty (3), the magnitudes of gene effects across cancer types
are promoted to be similar if they have the same signs, while with the sign-based shrinkage penalty

(4), the signs of gene effects are promoted to be similar. Thus, the proposed two types of ρ
(
η
(k)
j , η(k

′)
j

)
promote different types of similarity, with the former for quantitative similarity and the latter for
qualitative similarity. As in practice the relatedness of cancer types may be not accurately known, both
penalties can be useful. λ1 and λ2 are two tuning parameters which control the sparsity and similarity
of coefficients, respectively. For the p objective functions, we impose the same values of λ1 and λ2 on
different η(k)j to be concordant with joint analysis. If λ2 = 0, the proposed approach goes back to the
unintegrated strategy that analyzes each cancer type separately with MCP.

2.2.2. Joint Analysis

For k = 1, . . . , K, consider the AFT model with the joint effects of all omics measurements,
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T(k)
i = α(k) + X(k)

i β
(k) + ε

(k)
i , (5)

where α(k) is the intercept, β(k) =
(
β
(k)
1 , . . . , β(k)p

)′
is the p-dimensional unknown coefficient vector, and

ε
(k)
i is the random error. With the same notations as in the marginal analysis, for estimation, consider

the following weighted penalized objective function

K∑
k=1

[
1

2n[k]

∑
i
w[k]

i

[
y[k]i − α

[k]
−X[k]

i β
[k]

]2
]
+

K∑
k=1

p∑
j=1

ρMCP

(
β
(k)
j ,λ3,γ

)
+
λ4

2

∑
k′,k

p∑
j=1

ρ
(
β
(k)
j , β(k

′)
j

)
, (6)

where λ3 and λ4 are the tuning parameters. The KM weights, MCP, and two proposals for ρ
(
β
(k)
j , β(k

′)
j

)
are also adopted in (6). The proposed estimate is defined as the minimizer of (6). Variables with
nonzero estimates are identified as associated with prognosis. For optimization, the CD algorithm is
adopted (Appendix A).

Different from (2), objective function (6) jointly analyzes a large number of genes in a single
model and thus accommodates a high dimensionality. Compared to marginal analysis, it advances by
taking the combined effects of multiple genes into consideration and better describing the underlying
disease biology. However, it involves more complex computation and may lead to less stable results.
Penalization is adopted to accommodate high dimensionality and identify important genes. It is
perhaps the most popular technique in high dimensional data analysis. Different from the existing
studies, the magnitude- and sign-based shrinkage penalty terms are also introduced similarly to that
in Section 2.2.1. This can effectively accommodate the similarity across cancer types and facilitate
information borrowing.

The proposed analysis can be effectively realized. To facilitate data analysis within and beyond
this study, we have developed R code and made it publicly available at www.github.com/shuanggema/

IntePanCancer.

3. Results

3.1. Marginal Analysis

We analyze the TCGA data using the approach described in Section 2.2.1 with penalties (3) (referred
to as A1) and (4) (referred to as A2), as well as an alternative marginal approach A3 which analyzes each
cancer type separately with MCP for identifying relevant markers. Comparing with the benchmark A3
can straightforwardly establish the merit of the proposed integrative analysis. Detailed estimation
results are provided in the Supplementary Excel file. Different approaches are observed to generate
different findings. Specifically, a total of 910 genes with 482 unique ones and 1160 genes with 275
unique ones are identified with A1 and A2, respectively, compared to 2655 genes with 999 unique ones
with A3.

In Table 2, we present the top five genes with the largest numbers of associated cancer types and
refer to the Supplementary Excel file for more detailed results. It is observed that the numbers of
multiple cancer types-related genes identified with A1 and A2 are slightly larger than those with A3.
For example, both A1 and A2 identify gene APH1A as associated with all nine cancer types, but this gene
is missed by A3. Literature search suggests that the identified genes with the proposed A1 and A2 may
have important biological implications. For example, the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis of gene APH1A suggests that it is a member of the notch signaling pathway
which has an important impact on developmental and cell fate decisions and is deregulated in human
solid tumors [22]. APH1A is one of the four essential components of γ-secretase [23]. γ-secretase is a
multiprotein intramembrane-cleaving protease, which can cleave ligand-activated endogenous Notch
receptors and is a potential drug target for cancer [24]. Gene MAPK1, identified as associated with eight

www.github.com/shuanggema/IntePanCancer
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cancer types by both A1 and A2, has been reported to be involved in many cancer related pathways.
MAPK1 is one of the MAP kinases in the MAPK pathway. It can phosphorylate transcription factors,
which regulate the expressions of genes involved in cell proliferation and differentiation. Besides,
MAPK1 is involved in EGFR tyrosine kinase inhibitor resistance [25], which importantly contributes to
the etiology of various types of cancer, such as pancreatic cancer [26], paediatric acute lymphoblastic
leukemia [27], and others. In this process, MAPK1 acts as a serine/threonine kinase upstream of FRS2,
which plays a role in epidermal growth factor (EGF) signaling [28]. MAPK1 has also been reported to
have an impact on the malignant behavior of breast cancer cells. Published studies show that gene
ETV6, identified as associated with eight and seven cancer types by A1 and A2, respectively, is involved
in the transcriptional dysregulation of cancer pathways. The dysregulation of transcription factors
can alter the expressions of target genes and lead to the tumorigenic process. For example, ETV6 is
a negative regulator of transcription 3 (Stat3) transcription factor activity, which has the ability to
mediate the inhabitation of the proliferation of tumor cells [29]. Gene ETV6 is relevant to multiple
cancer types, including breast cancer [30], leukemia [31], non-small cell lung cancer [32], and others.
These biological findings provide support to the validity of the proposed integrative analysis.

Table 2. Marginal analysis: top five genes with the largest numbers of associated cancer types.

Approach Gene Number of Associated Cancer Types

A1

APH1A 9
ETV6 8

MAPK1 8
MDS2 8
AKT2 7

A2

APH1A 9
CXCR4 8
MAPK1 8

ACVR2A 7
ETV6 7

A3

LAMA1 8
IGF1 7

NAPA 7
TCTA 7

TNFRSF10D 7

To gain a deeper insight into the identification results, we further calculate the relative overlapping
between gene sets associated with different cancer types. Specifically, for two gene sets A and B,
their relative overlapping is defined as ROL(A, B) = A∩B

A∪B , with a larger value indicating a stronger
similarity. Results for different approaches are shown in Table 3. The average ROL values are 0.143 (A1),
0.308 (A2), and 0.147 (A3), respectively, suggesting that A2 leads to gene sets with a higher level of
relative overlapping and A1 and A3 have comparable performance. Take breast invasive carcinoma
(BRCA) and ovarian serous cystadenocarcinoma (OV), which are established as related, as an example.
The ROL values for A1, A2, and A3 are 0.150, 0.265, and 0.146, respectively. The proposed A2 can
improve the qualitative similarity of genes selected for multiple cancer types to a certain extent.

Table 3. Marginal analysis: relative overlapping between different cancer types.

Approach BRCA GBM HNSC LAML LUAD LUSC OV PAAD

A1

BLCA 0.134 0.145 0.135 0.147 0.189 0.070 0.145 0.191
BRCA 0.167 0.120 0.145 0.148 0.072 0.150 0.119
GBM 0.149 0.169 0.215 0.089 0.208 0.119

HNSC 0.202 0.199 0.108 0.154 0.160
LAML 0.144 0.140 0.134 0.165
LUAD 0.102 0.141 0.173
LUSC 0.114 0.058

OV 0.117
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Table 3. Cont.

Approach BRCA GBM HNSC LAML LUAD LUSC OV PAAD

A2

BLCA 0.314 0.267 0.320 0.295 0.351 0.161 0.185 0.337
BRCA 0.272 0.330 0.306 0.234 0.262 0.265 0.341
GBM 0.416 0.443 0.271 0.310 0.364 0.237

HNSC 0.346 0.380 0.253 0.366 0.430
LAML 0.337 0.398 0.302 0.338
LUAD 0.241 0.298 0.339
LUSC 0.292 0.201

OV 0.286

A3

BLCA 0.252 0.082 0.168 0.102 0.196 0.252 0.124 0.162
BRCA 0.091 0.245 0.101 0.255 0.364 0.146 0.191
GBM 0.052 0.055 0.065 0.069 0.060 0.071

HNSC 0.116 0.198 0.251 0.096 0.162
LAML 0.105 0.108 0.135 0.074
LUAD 0.227 0.115 0.176
LUSC 0.134 0.197

OV 0.081

Beyond identification, we also take a closer look at the estimation results. Specifically, we compute
the difference of the estimated coefficient matrices for each cancer pair. Consider the relative Euclidean

distance defined as
∑p

j=1

(
η
(k)
j − η

(k′)
j

)2
/

√∑p
j=1

(
η
(k)
j

)2 ∑p
j=1

(
η
(k′)
j

)2
for k , k′, with a smaller value

indicating a stronger similarity. Results for the three approaches are provided in Table 4, with the
average values being 1.606 (A1), 1.534 (A2), and 2.254 (A3). The relative Euclidean distances with A1
and A2 are observed to be smaller than those with A3. For example, the distance values between BRCA
and OV are 1.443 with A1 and 1.220 with A2, which are much smaller than 3.230 with A3. As another
example, for the two squamous cell carcinomas, lung squamous cell carcinoma (LUSC) and head and
neck squamous cell carcinoma (HNSC), the relative Euclidean distances are 1.644 (A1), 1.855 (A2),
and 2.577 (A3), respectively. To more intuitively describe similarity, we conduct the hierarchical
clustering analysis based on the relative Euclidean distances and present the results in Figure A1
(Appendix B). Biologically sensible findings are made, for example, the distance between BRCA and
OV decreases after integration.

Table 4. Marginal analysis: relative Euclidean distances between estimated coefficient matrices.

Approach BRCA GBM HNSC LAML LUAD LUSC OV PAAD

A1

BLCA 1.426 1.465 1.572 1.422 1.277 2.160 1.441 1.318
BRCA 1.270 1.853 1.551 1.457 2.445 1.443 1.584
GBM 1.974 1.658 1.389 2.722 1.362 1.766

HNSC 1.205 1.424 1.644 1.530 1.382
LAML 1.403 1.591 1.471 1.373
LUAD 1.960 1.463 1.376
LUSC 1.942 1.959

OV 1.532

A2

BLCA 1.166 1.250 1.435 1.378 1.075 2.814 1.424 1.070
BRCA 1.202 1.585 1.482 1.356 2.800 1.220 1.111
GBM 1.384 1.176 1.293 2.746 1.028 1.307

HNSC 1.236 1.288 1.855 1.465 1.118
LAML 1.269 1.764 1.457 1.252
LUAD 2.347 1.337 1.160
LUSC 2.512 2.658

OV 1.205

A3

BLCA 2.354 2.162 1.896 2.029 2.217 2.752 2.203 2.099
BRCA 2.862 2.364 2.514 1.974 1.870 3.230 1.956
GBM 2.108 1.929 2.832 2.731 1.835 2.613

HNSC 1.985 2.151 2.577 2.237 1.916
LAML 2.455 2.405 2.221 2.207
LUAD 2.019 3.100 1.988
LUSC 3.154 2.206

OV 2.871
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3.2. Joint Analysis

Similar to marginal analysis, in joint analysis we adopt both the magnitude-based shrinkage
(referred to as B1) and the sign-based shrinkage (referred to as B2). We also consider an alternative joint
analysis referred to as B3, which analyzes each cancer type separately and applies MCP to accommodate
high dimensionality and select relevant markers. Detailed estimation results are provided in the
Supplementary Excel file. For the nine cancer types combined, B1, B2, and B3 identify a total of
1135 genes with 662 unique ones, 1064 genes with 598 unique ones, and 530 genes with 421 unique ones,
respectively. The two proposed approaches lead to results different from the alternative. In addition,
the joint analysis identification results also differ from those in marginal analysis.

The top five genes with the largest numbers of associated cancer types are provided in Table 5,
and more results are provided in the Supplementary Excel file. Similar patterns are observed where
the proposed two approaches identify more genes associated with multiple cancer types. For the
identified genes, a literature search provides independent evidences of their associations with multiple
cancer types. For example, the important biological implications of gene APH1A have been already
discussed in Section 3.1. In addition, gene CCAR2, identified as important for all nine cancer types
with B2, has been reported to be associated with the development of many cancer types. It plays a
pivotal role in DNA damage response and promoting apoptosis. The depletion of CCAR2 can impair
the activation of the AKT pathway, which ultimately causes the inhibition of cancer cell growth [33].
Specifically, it binds to the BRCA1 C Terminus (BRCT) domain of the tumor suppressor BRCA1 and
inhibits BRCA1 in breast cancer [34]. Cho, et al. [35] also suggested that the expression of CCAR2 is
closely related with the progression of ovarian carcinomas. In Kim, et al. [36], an increase in apoptosis
was observed in CCAR2-deficient non-small cell lung cancer cell lines. Wagle, et al. [37] demonstrated
that the expression of CCAR2 is significantly associated with a higher clinical stage and predicted
shorter survival in osteosarcoma. Gene BTLA is identified as important for eight cancer types with
B2. It is an immunoinhibitory receptor and can deliver inhibitory signals for suppressing lymphocyte
activation. The ability of BTLA to inhibit tumor-specific human CD8+ T cells suggests it as a target
for cancer immunotherapy [38]. Published studies also suggest that gene BTLA is relevant to the
occurrence and development of many cancer types [39]. For example, a case-control study conducted
by Fu, et al. [40] on women from northeast China suggested that breast cancer risk and prognosis may
be affected by BTLA gene polymorphisms. In addition, Oguro, et al. [41] showed that BTLA is closely
associated with shorter overall survival in gallbladder cancer. Gene RUNX2 is identified by B2 as
important for five cancer types. The transcription factor RUNX2 can regulate the expressions of genes
that are associated with tumor promotion, invasion, and metastasis, such as VEGF [42]. RUNX2 is also
involved in many pathways that are related to tumorigenesis, such as the WNT pathway, transforming
growth factor beta (TGFβ) signaling pathway, and p53 pathway [42].

Table 5. Joint analysis: top five genes with the largest numbers of associated cancer types.

Approach Gene Number of Associated Cancer Types

B1

ETV6 6
GOT1 6
CHIC2 5

CSNK2A1 5
RUNX2 5

B2

APH1A 9
CCAR2 9

HIST1H2AL 9
BTLA 8

LAMA1 8
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Table 5. Cont.

Approach Gene Number of Associated Cancer Types

B3

EPO 4
FASLG 4
WDR18 4
CCND2 3
CRADD 3

The relative overlapping and Euclidean distances between different cancer types are presented in
Tables A1 and A2 (Appendix B). The average values of relative overlapping are 0.103 (B1), 0.107 (B2),
and 0.030 (B3), and the average values of Euclidean distance are 2.261 (B1), 1.980 (B2), and 2.459 (B3).
Both measures indicate that the proposed joint integrative analysis can improve the identified similarity
across cancer types. Take BRCA and PAAD, the relatedness of which has been suggested in literature,
as an example. It has been demonstrated that protein annexin A1, A2, A4 and A5 play an important
role in the occurrence and development of these two cancer types [43], and BRCA1 and BRCA2 gene
mutations are commonly observed in both cancer types [44]. The values of relative overlapping are
0.074 (B1), 0.116 (B2), and 0.027 (B3), and the relative Euclidean distances are 1.949 (B1), 1.906 (B2),
and 3.829 (B3). For the two common lung cancer subtypes, lung adenocarcinoma (LUAD) and LUSC,
the relative overlapping values are 0.098 (B1), 0.119 (B2), and 0.039 (B3), and the relative Euclidean
distances are 2.250 (B1), 2.012 (B2), and 2.998 (B3). Results of hierarchical clustering analysis based on
the relative Euclidean distances are shown in Figure A2 (Appendix B). With the proposed B1 and B2,
cancer types with stronger relatedness tend to be assigned to the same clusters.

Advancing from marginal analysis, joint analysis has the capability of predicting survival time
besides marker identification. To evaluate prediction performance, a resampling procedure is adopted.
Specifically, for each of the nine cancers, we first split data randomly into a training and a testing set.
The training sets for the nine cancer types are then used to fit models and obtain parameter estimates.
Finally, we make prediction for the testing set subjects with the estimated parameters. For evaluation,
C-statistic is adopted, which is one of the most popular measures for censored survival data [45,46].
It is the integrated AUC (area under the curve) of the time-dependent ROC curve and has value
between 0.5 and 1, with a larger value indicating a better prediction performance. The average values
over 100 resamplings are shown in Table 6. Overall, B1 and B2 perform better than B3, with B1 having
a prominent superiority. For example, for LUSC, the average C-statistic values are 0.748 (B1), 0.649 (B2),
and 0.612 (B3). The improvement in prediction accuracy suggests the benefit of integrative analysis of
multiple cancer types.

Table 6. Joint analysis: prediction performance of different approaches (mean C-statistic).

BLCA BRCA GBM HNSC LAML LUAD LUSC OV PAAD

B1 0.665 0.876 0.604 0.641 0.573 0.688 0.748 0.577 0.689
B2 0.597 0.719 0.581 0.567 0.551 0.601 0.649 0.562 0.632
B3 0.587 0.693 0.558 0.604 0.558 0.594 0.612 0.547 0.589

3.3. Simulation Based on TCGA Data

To gain more insights into the performance of the proposed integrative analysis, we conduct
practical data-based simulation under various scenarios. The specific settings were as follows.
(1) The observed gene expression measurements on nine cancer types from TCGA were used as
predictors. To generate variations across simulation replicates, we adopted a resampling approach.
(2) Set p = 200, 500, or 1000. For each value of p, genes were randomly selected from the original gene
set. (3) For each cancer type, there were 10 genes associated with the cancer outcomes with nonzero
regression coefficients β(k)

(1)
, . . . , β(k)

(10)
. The rest of the coefficients were zeros. (4) For each subject,
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the event time was computed from the AFT model log
(
T(k)

i

)
=

∑5
j=1 x(k)

i( j)
β
(k)
( j)

+
∑10

j=6

(
x(k)

i( j)

)2
β
(k)
( j)

+ εi,

where the random error εi was generated from N(0, 1). Censoring times were randomly generated
from an exponential distribution, and the parameter was adjusted to make the censoring rate around
20%. It is noted that to mimic the complexity of real data, the data generating models are more
complicated than the simple AFTs with the presence of a small number of quadratic effects. We
consider various values of β(k)

(1)
, . . . , β(k)

(10)
to generate different levels of signal-to-noise ratios and cancer

similarity. Under Scenarios I and II, the nine cancer types have the same set of important genes with
the same nonzero effects. In particular, for j = 1, . . . , 10 and k = 1, . . . , 9, we set β(k)

( j)
= 5 and 2 for

Scenarios I and II, respectively. Under Scenario III, the nine cancer types have the same set of important
genes, but the magnitudes of effects vary. Specifically, β(k)

( j)
’s are randomly generated from U(1, 5).

Under Scenario IV, the nine cancer types have different sets of important genes. Specifically, the first
five important genes have the same effects for all nine cancer types with β(k)

( j)
= 2, and the other five

important genes are “randomly selected” (and hence likely to differ across datasets) and with β(k)
( j)

= 2.
There are a total of 12 simulation settings, comprehensively covering different numbers of genes, and
different levels of signal-to-noise ratios and cancer similarity.

Analysis was conducted using the proposed marginal and joint analysis approaches as well as
two alternatives. To evaluate identification performance, we computed the true positive rate (TPR) and
false positive rate (FPR). The average TPR and FPR values over 100 replicates are provided in Table A3,
together with the numbers of the identified true positives associated with all nine cancer types (NG).
Overall, the four integrative analysis approaches perform better than the two alternatives, with larger
values of TPR and smaller values of FPR. For example, under Scenario I with p = 200, the average
values of (TPR, FPR) are (0.980, 0.258) with A1, (0.951, 0.185) with A2, (0.944, 0.641) with A3, (0.838,
0.087) with B1, (0.880, 0.085) with B2, and (0.688, 0.200) with B3, respectively. The proposed approaches
also identify genes with more overlaps across cancer types. Under this specific setting, the average
values of NG are 7.0 (A1), 8.4 (A2), 3.8 (A3), 5.7 (B1), 8.8 (B2), and 1.4 (B3). Compared to Scenario I
which has a higher signal-to-noise ratio, performance of all six approaches decay under Scenarios II–IV.
Similar patterns are observed when dimensionality increases, where all approaches behave worse.
However, the proposed approaches still have favorable performance. Take Scenario IV with p = 500 as
an example, the proposed A1, A2, B1, and B2 have (TPR, FPR) = (0.822, 0.058), (0.678, 0.054), (0.864,
0.040), and (0.719, 0.046), compared to (0.617, 0.116) with A3 and (0.646, 0.038) with B3. In addition,
the average values of NG are 4.6 (A1), 2.6 (A2), 0.0 (A3), 5.0 (B1), 3.2 (B2), and 1.8 (B3). As the sign
consistency of some genes does not hold under Scenario IV, A2 and B2 have inferior performance
compared to A1 and B1, but still have superior performance compared to A3 and B3. The superiority
of the proposed integrative analysis approaches observed in data-based simulation provides certain
confidence to data analysis results.

4. Discussion

In cancer research, prognosis modeling with omics measurements plays an essential role.
The existing studies mostly conduct analysis on one single type of cancer and often suffer from
a lack of sufficient information. Integrative analysis represents an emerging trend in recent biomedical
studies, among which the most common is the integrative analysis of multiple types of omics data,
including gene expressions, copy number variations, and some others, and has led to interesting
findings beyond single type omics data-based analysis. In this study, we have taken a different
perspective and conducted integrative analysis on multiple cancer types to facilitate across-cancer
information borrowing. Similarity across cancer types has been extensively studied in the literature,
which provides a solid biological ground for our integrative analysis. Both marginal and joint analysis
have been developed with two types of similarity-based penalty, which have intuitive formulations
and solid statistical basis. We have analyzed mRNA gene expression data on nine TCGA cancer types
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with censored survival outcomes. Biologically sensible findings different from the benchmark analysis
have been made.

The proposed analysis can be directly applied to other types of omics data and other cancer types.
In this study, we have focused on prognosis data and the AFT model. A continuous outcome can be
regarded as a special case of prognosis outcome without censoring, and thus the proposed analysis can
be applied directly. It can also be extended to accommodate categorical outcomes using, for example,
generalized linear models. With the availability of multiple types of omics data on multiple cancer
types, it can be of interest to conduct the two types of integration simultaneously. More functional
examination of the data analysis results will be needed to confirm the findings.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/10/8/604/s1:
Detailed results referred to in Section 3 are available in the Supplementary Excel file. Table S1: Detailed estimation
and identification results.
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Appendix A

For optimizing objective functions (2) and (6), a weighted normalization is first conducted as:

y(k)i =

√
w(k)

i

(
y(k)i − y(k)

)
, x(k)i j =

√
w(k)

i

(
x(k)i j − x j

(k)
)
,

where y(k) =
∑n(k)

i=1 w(k)
i y(k)i /

∑n(k)
i=1 w(k)

i and x j
(k) =

∑n(k)
i=1 w(k)

i x(k)i j /
∑n(k)

i=1 w(k)
i . Then objective functions

(2) and (6) can be rewritten as:∑K

k=1

[
1

2n[k]

∑
i

[
y[k]i − x[k]i j η

[k]
j

]2
]
+

∑K

k=1
ρMCP

(
η
(k)
j ,λ1,γ

)
+
λ2

2

∑K

k′,k
ρ
(
η
(k)
j , η(k

′)
j

)
, (A1)

and

∑K

k=1

[
1

2n[k]

∑
i

[
y[k]i −X[k]

i β
[k]

]2
]
+

∑K

k=1

∑p

j=1
ρMCP

(
β
(k)
j ,λ3,γ

)
+
λ4
2

∑
k′,k

∑p

j=1
ρ
(
β
(k)
j , β(k

′)
j

)
. (A2)

The coordinate descent (CD) technique is used to optimize objective functions (A1) and (A2).
In the CD procedure, the objective function is optimized with respect to one parameter at a time,
and the other parameters are fixed at their current values. All parameters are iteratively cycled through
until convergence.

Specifically, with fixed tuning parameters, for j = 1, . . . , p, the CD algorithm for penalized
objective function (A1) proceeds as follows.

(1). Initialize t = 0,
(
η
(k)
j

)(t)
= 0, k = 1, .., K, where

(
η
(k)
j

)(t)
denotes the estimate of η(k)j at iteration t.

(2). For k = 1, . . . , K, carry out the following steps sequentially.

http://www.mdpi.com/2073-4425/10/8/604/s1


Genes 2019, 10, 604 14 of 19

(2.1) If ρ
(
η
(k)
j , η(k

′)
j

)
is the magnitude-based shrinkage penalty (3), compute:

b =
1

n(k)

∑n(k)

i=1
x(k)i j

2 + λ2 and a =
1

n(k)

∑n(k)

i=1
x(k)i j y(k)i + λ2

∑
k′,k

s(kk′)
j

(
η
(k′)
j

)(t)
.

If ρ
(
η
(k)
j , η(k

′)
j

)
is the sign-based shrinkage penalty (4), compute:

b = 1
n(k)

∑n(k)
i=1 x(k)

2

i j + λ2((
η
(k)
j

)(t)
+χ

)2 ,

a = 1
n(k)

∑n(k)
i=1 x(k)i j y(k)i + λ2

∑
k′,k

(
η
(k′)
j

)(t)
((
η
(k)
j

)(t)
+χ

)((
η
(k′)
j

)(t)
+χ

) ,

where χ is a small positive number, which is set as 0.01 in our numerical study.

(2.2) If
∣∣∣ a
b

∣∣∣ > γλ1, update
(
η
(k)
j

)(t+1)
= a

b ;

else if |a| > λ1, update
(
η
(k)
j

)(t+1)
=

a−Sgn(a)∗λ1
(b−1)/γ ;

else, update
(
η
(k)
j

)(t+1)
= 0.

(3). Repeat Step (2) until convergence. In our numerical study, convergence is concluded if∑K
k=1

∣∣∣∣∣∣∣∣∣η|k|j ∣∣∣∣|t+1|
−

∣∣∣∣η|k|j ∣∣∣∣|t|∣∣∣∣∣ < 10−4.

With fixed tuning parameters, the CD algorithm for penalized objective function (A2) proceeds
as follows.

(1). Initialize t = 0,
(
β(k)

)(t)
= (0, . . . , 0)′, k = 1, .., K, where

(
β(k)

)(t)
denotes the estimate of β(k) at

iteration t.
(2). For j = 1, . . . , p and k = 1, . . . , K, carry out the following steps sequentially.

(2.1) If ρ
(
β
(k)
j , β(k

′)
j

)
is the magnitude-based shrinkage penalty (3), compute:

b = 1
n(k)

∑n(k)
i=1 x(k)i j

2 + λ4, and a = 1
n(k)

∑n(k)
i=1 x(k)i j

(
y(k)i −

∑p
j′, j x(k)i j′ β

(k)
j′

)
+

λ2
∑

k′,k s(kk′)
j

(
β
(k′)
j

)(t)
.

If ρ
(
β
(k)
j , β(k

′)
j

)
is the sign-based shrinkage penalty (4), compute:

b = 1
n(k)

∑n(k)
i=1 x(k)

2

i j + λ4((
β
(k)
j

)(t)
+χ

)2 ,

a = 1
n(k)

∑n(k)
i=1 x(k)i j

(
y(k)i −

∑p
j′, j x(k)i j′ β

(k)
j′

)
+ λ2

∑
k′,k

(
β
(k′)
j

)(t)
((
β
(k)
j

)(t)
+χ

)((
β
(k′)
j

)(t)
+χ

) ,

where χ is a small positive number, which is set as 0.01 in our numerical study.
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(2.2) If
∣∣∣ a
b

∣∣∣ > γλ3, update
(
β
(k)
j

)(t+1)
= a

b ;

else if |a| > λ3, update
(
β
(k)
j

)(t+1)
=

a−Sgn(a)∗λ3
(b−1)/γ ;

else, update
(
β
(k)
j

)(t+1)
= 0.

(3). Repeat Step (2) until convergence. In our numerical study, convergence is concluded if∑p
j=1

∑K
k=1

∣∣∣∣∣∣(β(k)j

)(t+1)
−

(
β
(k)
j

)(t)∣∣∣∣∣∣ < 10−4.

These approaches involve tuning parameters, which are selected using cross validation.

Appendix B

Figure A1. Marginal analysis: clustering dendrogram based on the relative Euclidean distances.

Table A1. Joint analysis: relative overlapping between different cancer types.

Approach BRCA GBM HNSC LAML LUAD LUSC OV PAAD

B1

BLCA 0.075 0.087 0.114 0.124 0.116 0.126 0.087 0.105
BRCA 0.068 0.069 0.152 0.086 0.082 0.099 0.074
GBM 0.138 0.129 0.085 0.106 0.089 0.114

HNSC 0.114 0.121 0.086 0.112 0.071
LAML 0.137 0.11 0.129 0.088
LUAD 0.098 0.114 0.083
LUSC 0.127 0.097

OV 0.091

B2

BLCA 0.097 0.085 0.090 0.128 0.124 0.121 0.124 0.107
BRCA 0.095 0.088 0.104 0.091 0.102 0.133 0.116
GBM 0.101 0.113 0.071 0.109 0.124 0.127

HNSC 0.130 0.090 0.101 0.124 0.109
LAML 0.098 0.102 0.138 0.09
LUAD 0.119 0.097 0.089
LUSC 0.115 0.114

OV 0.132

B3

BLCA 0.034 0.026 0.01 0.024 0.02 0.046 0.039 0.038
BRCA 0.012 0.014 0.011 0.026 0.016 0.041 0.027
GBM 0.015 0.033 0.008 0.042 0.068 0.000

HNSC 0.000 0.000 0.038 0.018 0.017
LAML 0.084 0.015 0.03 0.063
LUAD 0.039 0.052 0.028
LUSC 0.057 0.018

OV 0.073
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Table A2. Joint analysis: relative Euclidean distances between estimated coefficient matrices.

Approach BRCA GBM HNSC LAML LUAD LUSC OV PAAD

B1

BLCA 2.108 2.090 2.503 1.943 1.994 2.104 2.122 2.081
BRCA 2.262 2.164 2.063 2.04 2.787 2.474 1.949
GBM 2.454 2.082 2.002 2.266 2.001 2.230

HNSC 2.331 2.538 3.571 2.846 1.960
LAML 2.047 2.383 2.114 2.079
LUAD 2.250 1.958 2.147
LUSC 2.093 2.878

OV 2.481

B2

BLCA 1.983 1.931 1.973 1.794 1.807 2.122 1.908 1.771
BRCA 1.928 1.891 1.963 2.063 2.423 2.093 1.906
GBM 1.838 1.890 1.921 1.986 1.967 1.875

HNSC 1.965 2.098 2.371 2.095 1.832
LAML 1.843 1.889 1.866 1.940
LUAD 2.012 1.953 1.880
LUSC 2.064 2.351

OV 2.071

B3

BLCA 3.664 2.176 1.992 2.251 2.052 3.432 2.185 2.049
BRCA 2.672 3.223 2.528 3.074 1.994 2.672 3.829
GBM 2.049 2.029 2.029 2.759 2.017 2.219

HNSC 2.124 2.004 3.088 2.099 2.040
LAML 1.994 2.455 1.978 1.907
LUAD 2.998 1.983 2.101
LUSC 2.720 3.722

OV 2.421

Figure A2. Joint analysis: clustering dendrogram based on the relative Euclidean distances.

Table A3. Data-based simulation: average true positive rates (TPRs) and false positive rates (FPRs)
of different approaches, and numbers of identified true positives associated with all nine cancer
types (NG).

p Scenario A1 A2 A3 B1 B2 B3

200

I
TPR 0.980 0.951 0.944 0.838 0.880 0.688
FPR 0.258 0.185 0.641 0.087 0.085 0.200
NG 7.0 8.4 3.8 5.7 8.8 1.4

II
TPR 0.697 0.681 0.678 0.735 0.691 0.533
FPR 0.263 0.172 0.537 0.231 0.169 0.347
NG 4.4 3.7 0.4 4.6 4.0 0.0

III
TPR 0.841 0.801 0.752 0.821 0.813 0.565
FPR 0.258 0.297 0.303 0.312 0.321 0.422
NG 7.0 6.0 5.7 5.6 6.3 1.4

IV
TPR 0.843 0.741 0.621 0.897 0.766 0.662
FPR 0.124 0.176 0.195 0.072 0.053 0.052
NG 3.3 2.3 0.0 5.0 3.0 2.1
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Table A3. Cont.

p Scenario A1 A2 A3 B1 B2 B3

500

I
TPR 0.922 0.911 0.844 0.933 0.844 0.688
FPR 0.248 0.152 0.452 0.114 0.122 0.173
NG 5.0 8.0 3.0 5.0 5.0 0.0

II
TPR 0.672 0.664 0.653 0.647 0.643 0.647
FPR 0.191 0.171 0.165 0.025 0.063 0.128
NG 4.7 2.8 0.4 3.8 3.1 0.0

III
TPR 0.774 0.723 0.445 0.811 0.784 0.644
FPR 0.173 0.160 0.107 0.173 0.053 0.181
NG 4.0 6.3 0.0 6.2 4.8 1.2

IV
TPR 0.822 0.678 0.617 0.864 0.719 0.646
FPR 0.058 0.054 0.116 0.042 0.046 0.038
NG 4.6 2.6 0.0 5.0 3.2 1.8

1000

I
TPR 0.733 0.722 0.623 0.622 0.688 0.591
FPR 0.198 0.173 0.350 0.001 0.056 0.064
NG 5.0 6.0 3.0 3.0 3.0 0.0

II
TPR 0.674 0.643 0.622 0.689 0.689 0.611
FPR 0.161 0.075 0.136 0.011 0.108 0.061
NG 2.1 4.0 0.0 2.0 3.0 0.0

III
TPR 0.664 0.667 0.624 0.692 0.677 0.564
FPR 0.038 0.069 0.297 0.096 0.043 0.076
NG 4.0 6.4 0.6 5.2 5.4 0.4

IV
TPR 0.722 0.644 0.622 0.855 0.711 0.699
FPR 0.093 0.100 0.136 0.016 0.015 0.009
NG 5.0 5.0 0.0 5.0 3.0 2.0
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