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Today, new technologies, such as microarrays or high-performance sequencing, are producing
more and more genomic data. This fact has brought new opportunities and challenges in the fields
of computational biology and bioinformatics, since this huge number of data need to be analysed in
order to be exploited.

In this context, new computational methods and tools, such as machine learning approaches or
gene expression analysis tools, could provide the solution to such issues.

The overall aim of this Special Issue is to compile the latest research and developments in the
field of computational methods for the analysis of gene expression data and, in particular, with the
modelling of biological processes.

Among all the submissions, eleven papers were accepted and published in this Special Issue.
In this sense, machine learning-based approaches have received particular attention, such as the
work presented by Vanhaeren et al. [1]. In this work, the authors used 1D sequencing signals to
model cohesin-mediated chromatin interactions in two human cell lines and evaluate the prediction
models obtained. To this end, they tested the performance of six popular machine learning algorithms:
decision trees, random forests, gradient boosting, support vector machines, multi-layer perceptron and
deep learning. The results obtained showed that gradient boost outperformed the other five methods,
yielding accuracies of about 95%. Despite these results, the authors established that it was necessary to
examine other cell lines and tissues to confirm the obtained observations.

In another article, Rehman and Chong [2] presented work where the authors propose a Convolution
Neural Network (CNN) and Long Short-Term Memory (LSTM)-based tool named DNA6mA-MINT
for DNA-6mA modification identification. The tool uses the CNN for feature extraction, while LSTM
provides optimal interpretation for those features. The authors showed that the performance of their
tool is superior to that achieved with existing state-of-the-art techniques on the “combined-species”,
Mus musculus genome, and rice genome datasets. Moreover, the authors carried out a performance
analysis on 5- and 10-fold cross-validation in order to obtain a better comparative analysis. The tool is
provided by a user-friendly web server, publicly available.

Another example of the use of CNN is the work by Mahmoudi et al. [3], where a new computational
model for identifying N6-methyladenosine (m6A) post-transcriptional modification in RNAs is
proposed. The technique, called iMethyl-deep, provides a novel computational method for identifying
m6A Saccharomyces cerevisiae sites by using single-nucleotide resolution to convert RNA sequences into
high-quality feature representations in the CNN. The model is able to extract the relevant features
from the input samples. The results obtained show that iMethyl-deep outperforms state-of-the-art
methods and achieves accuracies of 89.19% and 87.44% on the M6A2614 and M6A6540 benchmark
datasets, respectively.

In the context of machine learning, Delgado-Chaves et al. [4] presented an analysis of the effects of
the gene Ly6E in the immune response against the coronavirus responsible for murine hepatitis (MHV).
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With this aim, the work used different datasets from mice, with and without the ablation of the gene
Ly6E, to reconstruct computational gene co-expression networks, by using a machine learning-based
algorithm called EnGNet. The authors carried out an integration of differential expression analyses
and reconstructed network exploration, and significant differences in the immune response to the
virus were observed in Ly6E compared to in wild-type animals. The obtained results show that Ly6E
ablation in hematopoietic stem cells (HSCs) leads to a progressive impaired immune response in both
the liver and spleen.

Zahoor and Zafar [5] propose a novel optimization algorithm inspired by the “infiltration tactics”
of the war zone (ITO) for the task of classifying microarray datasets. The algorithm integrates
parameter-free and parameter-based classifiers to provide a highly accurate and reliable binary
classifier. The results are generated in two steps: (a) the Lightweight Infantry Group converges quickly
to find non-local maxima and produces comparable results, and (b) the Follow-up Team (FT) applies
advanced tuning to enhance the baseline performance. Each soldier is considered as a base model with
its own independently chosen subset selection method (pre-processing, and validation methods and
classifier). Therefore, successful soldiers are combined for optimal results. The performance of the
algorithm was successfully tested using three mouse livers and a rat liver.

In this Special Issue, some tools are presented as well, such as in the work by Zeng et al. [6]. In this
article, the authors present a new meta-analytic integration tool, called the Comparative Pathway
Integrator (CPI), which is able to deal with multiples studies of different conditions. To do so, the tool
uses an adaptive weighted Fisher’s method to discover consensual and differential enrichment patterns,
a tight clustering algorithm to reduce pathway redundancy, and a text-mining algorithm to assist the
interpretation of the pathway clusters. The authors demonstrate its effectiveness by applying CPI to
jointly analyse six psychiatric disorder transcriptomic studies. The results described show functions
confirmed by previous biological studies as well as novel enrichment patterns. The tool is publicly
available as a CPI R package.

Another interesting tool provided as an R package, named metaRE, was presented by
Novikova et al. [7]. MetaRE is able to perform a systematic search for cis-regulatory elements
enriched in the promoters of the genes significantly changed in their transcription in a reaction. metaRE
extracts datasets of multiple expression profiles generated to test the response of the same organism
and identifies simple and composite cis-regulatory elements that are systematically associated with the
differential expression of genes. The authors tested metaRE’s performance for the identification of
low-temperature-responsive cis-regulatory code in Arabidopsis thaliana and Danio rerio. MetaRE was
able to identify potential binding sites for known as well as unknown cold response regulators.

Computationally based analyses of biological processes are also included in this Special Issue.
For example, the work by Agioutantis et al. [8] analysed 21 human hepatocellular carcinoma (HCC)
cell lines (HCC lines) to explore intertumoral molecular diversity and pertinent drug sensitivity.
This article proposes an integrative computational approach based on an exploratory and single-sample
gene-set enrichment analysis of transcriptome and proteome data, and then a correlation analysis of
drug-screening data. The presented results classified HCC lines into two groups. In particular, the lines
were classified as poorly differentiated and well-differentiated, displaying lower/higher enrichment
scores in a “Specifically Upregulated in Liver” gene set, respectively. It is worth mentioning that the
analysis of correlation showed a differential effectiveness of specific drugs against poorly differentiated
compared to well-differentiated HCC lines, which is possibly applicable in clinical research with
patients with analogous features. As a result, this study may expand the knowledge of HCC lines and
proposes a cost-effective computational approach to precision anti-HCC therapies.

The work by Tian et al. [9] addresses the effect that deleting single-nucleotide polymorphisms
(SNPs) of genes affected by large-effect expression Quantitative Trait Loci (eQTL) may have on gene
expression. To this end, CRISPR-Cas9 mutagenesis was used to delete SNPs, obtaining single-cell
clones. The bottlenecks for the fine mapping of such SNPs were suggested to be the impossibility of
targeting many SNPs and the clonal variability of single-cell clones, among others.
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An analysis of the hypoxia inducible domain family member 2A (HIGD2A) was presented in
Salazar et al. [10]. The protein HIG2A is produced by the HIGD2A gene, found in mitochondria and
the nucleus, promoting cell survival in hypoxic conditions. The main objective of this study was to
carry out a biosystem analysis of HIGD2A with the aim of discovering its implications in cancer biology.
The authors used different public databases such Gene Expression Omnibus to evaluate some gene
expression datasets. The results presented suggested that the gene’s alterations are present in the
different cancers studied.

Finally, Ghanemi et al. [11] presented a review about the therapeutic alternatives to exercise in
obesity. The review focuses on a functional genomics perspective, in particular, finding potential
therapeutic targets for obesity. The authors point out various approaches, identifying differential
gene expression-based studies that aimed at finding genes that are differentially expressed under
diverse conditions depending on physical activity and diet (mainly high-fat). The authors suggested
that this area of functional genomics-related exploration will lead to novel mechanisms and also new
applications and implications along with a new generation of treatments for obesity and the related
metabolic disorders.
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