

Figure S1. FISH (Fluorescence in situ hybridization) of repetitive DNA probes on metaphase plates of the Siberian sturgeon. **a** Satellites (ACAT)_n (red) and *Arut802A* (green), on the right the same plate with (ACAT)_n only, arrows mark chromosomes with co-localized probes; **b** satellite *Arut19A* (red), on the right DAPI inverted plate, arrows mark chromosomes with signals; **c** satellite *Arut30A* (red) on GTG (G-banding by trypsin using Giemsa) differential stained metaphase plate (left). Scale bar is 10 µm.

Figure S2. FISH of repetitive and microdissection-derived painting probes (right) on GTG-banded metaphase plates (left) of the Siberian sturgeon (**a**–**c**). **a** *Arut434A* (green) and painting probe for sterlet chromosome 3 (R70, green) co-localized on sturgeon chromosomes 5 and 6; **b** *Arut434A* (green) and painting probe for sterlet chromosome 6 (R68, red); **c** *Arut434A* (green) and painting probe for chromosome ARUT8 (R64, red); **d** *Arut802* (red) and U2 snRNA probe (green) on a part of metaphase plate of sterlet. Chromosomes with signals are marked and numbered. Scale bar is 10 μm.

Figure S3. FISH of repetitive probes (right) on GTG-banded metaphase plates (left) of the Siberian sturgeon (**a**, **b**). **a** (AAT)_n (red); **b** 5S rDNA (green) and *Arut802A* (red), in the right corner is an inset part of the metaphase with overlapped signals. Chromosomes with signals are marked and numbered, the double arrows indicate chromosomes with co-localized probes. Scale bar is 10 μ m.

#	Molecular markers		Chromosome numbers		Characteristics	
	tandem repeats	ARUT- derived chromosome specific probe	ARUT	ABAE		
1	Arut 434A	1p	1	1	- ABAE 1 and 2: strong signals as on ARUT 1; - ABAE 1: a single signal,	
				2	ABAE 2: two signals	
		2p	2	3	 ABAE 3 and 4: weak signals as on ARUT 2; ABAE 4: weak single signal; ABAE 3: double weak signals 	
				4		
2	Arut 434A	3	3	5	- ABAE 5 and 6: signals on both arms	
		4	4	7	- one of ARUT 4 ohnologs underwent fission resulted in two acrocentrics;	
				101	- ABAE 102: strong signals	
				102		

Table S1. Chromosome localization of sterlet-derived chromosome-specific probes on orthologs of *Acipenser ruthenus* (ARUT) and *Acipenser baerii* (ABAE)

	I	I	1					
3	Arut 434A	5	5	8	- ABAE 8 and 9: multiple signals on q-arms			
				9	- ABAE 9 the distance between the blocks is less than on ABAE 8			
		6	6	10				
				11				
4	Arut 434A	7, 14	7	13	- one of the orthologs of ARUT 7 divided into 2 acrocentrics:			
					- ABAE 108;			
				23	- an arm of the submetacentric chromosome ABAE 23;			
					- reduced block on on ABAE 23 and 108			
				108				
			14	103				
					- distal end of ABAE 103;			
					- interstitial block on ABAE 104			
					- ABAE 103 is bigger than ABAE 104, ABAE 104 is close in size and morphology to			
				104	ARUT 14			
5	Arut 434A	8	8	12	- ABAE 12 labelled brighter than ABAE 14 by ARUT 8 probe;			
1	1							

				14	- missing signals of ARUT434A		
			9	15	 p-arms of the both paralogs produce bright signals by ARUT 8 probe; Arut434A repeat marks one homolog of 		
				16	ABAE 15 brighter		
6	U2	10	10cent	19p cent	- ABAE 19 and 20 are similar		
				20p cent			
			12cent	25pq cent	- ABAE 25 and 35 are different in size ar G-banding patterns		
				35pq cent			
7	285/185 rDNA	-	30	30	 ABAE 30 and 50 are different in size and G-banding pattern; ABAE 30 is bigger than ARUT30, and, probably, underwent a fusion with another element; 		
				50	- ABAE 50 are heteromorphic: one of homologs is similar to ARUT 30, while the other is smaller due to reduced p-arm		
			-				
8	285/185 rDNA,	-	31	51	- ABAE 51 and 52 are similar to ARUT 31 and 32, respectively		
	Arut 802A,				- ABAE 55 and 56 are smaller than their		
	ArutF 26A, (AAT)n			56	- ABAE 63 probably arose after AcR2;		

			32	63 52 55	- the size of <i>Arut26</i> and (<i>AAT</i>) ⁿ blocks on ABAE 51, 52 and 56 are different
9	Arut F26A, (AAT)n	-	39 40	68766480	
10	5S rDNA Arut 219A	-	41	91 93	 - 5S rDNA and Arut219A colocalized on ABAE91 and 93 - ABAE91 and 93 are different in morphology and G-banding pattern; - Arut19A, Arut40A and Arut57A colocalized with Arut219; - 5S rDNA and Arut802A co-localized on ABAE 91
11	Arut F167A	57 (R3)	57	86q 100q	 - ABAE 86q and ABAE 100q are orthologs of ARUT 57; - fusion with ABAE 86p; - fusion with ABAE 100p

-		7	2)				6 dua du	10
		12	NB - 06 13	14	15	80 48- 16	}€ 17	X 4 18	20)¦'''' 19	21 102 20
	21	4A 22	00 23	24 24	25 25	26	27 27	16 28	29 29	285/ 1185 rDNA 30
	38 31	Ж 32	33	88 34	11 ^{-U2} 35	8ä 36	9A 37	XX 38	8X 39	## 40
	41 802	42 802	35 43	34 44	2% 45	46 802	8° 47	6X 48	X# 49	1 185 50
26	285, 185 51 rDN	185 A 52 rDN/	53 802	XX 54	285/ 55 185 55 rDN/	185 56 DNA	34 57	18 58	59	60
	211 61	12 62	63 10NA	64	88 65	8×	12 67	68	22 69	1212 70
	71 81 55 55 51 219 91 40	72 82 92	73 83 55 10004 93 40	74 84 94	311 75 85 95	76 167 86 96	77 87 97	78 88 98	79 53 89 51 99	90 100
	101	102	103 103	₿ ſ ∙ 104	88 105	106	8P 107	20 108	44 109	4¢ 110
	111 66 121	112 122	113 123	114 124	115	116	117	118	119	120

Ē

Figure S4. GTG-banded chromosomes Siberian sturgeon with assigned probes: *Arut434A* (434), U2 snRNA genes (U2), ribosomal major cluster (28S/18S rDNA), *Arut26A* (26), *Arut802A* (802), (AAT)_n, 5S ribosomal DNA (5S rDNA), *Arut40A* (40), *Arut167A* (167), *Arut219A* (219), chromosome specific probe ARUT 57 (R3).