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Abstract: Plants are adapted to sense numerous stress stimuli and mount efficient defense responses
by directing intricate signaling pathways. They respond to undesirable circumstances to produce
stress-inducible phytochemicals that play indispensable roles in plant immunity. Extensive studies
have been made to elucidate the underpinnings of defensive molecular mechanisms in various plant
species. Transcriptional factors (TFs) are involved in plant defense regulations through acting as
mediators by perceiving stress signals and directing downstream defense gene expression. The cross
interactions of TFs and stress signaling crosstalk are decisive in determining accumulation of defense
metabolites. Here, we collected the major TFs that are efficient in stress responses through regulating
secondary metabolism for the direct cessation of stress factors. We focused on six major TF families
including AP2/ERF, WRKY, bHLH, bZIP, MYB, and NAC. This review is the compilation of studies
where researches were conducted to explore the roles of TFs in stress responses and the contribution
of secondary metabolites in combating stress influences. Modulation of these TFs at transcriptional
and post-transcriptional levels can facilitate molecular breeding and genetic improvement of crop
plants regarding stress sensitivity and response through production of defensive compounds.
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1. Introduction

Plants are surrounded by a myriad of diverse phytopathogens along with their sessile nature
under continuously fluctuating environmental conditions. During long term evolution, plants have
developed the robust and complicated innate immune systems in response to those adverse factors [1–3].
To deploy the natural immune mechanism, plants usually direct the growth and defense trade-off

when responding to limited resources or stress conditions [4]. Regarding biotic stresses, plants
mainly utilize some layers of the immune system including pathogen triggered immunity (PTI) and
effector-triggered immunity (ETI) under various phases of microbial attempted infections [1,5,6].
Microbes through pathogen-associated molecular patterns (PAMPs) or microbial associated molecular
patterns (MAMPs), are firstly perceived by pattern-recognition receptors (PRRs) [7]. Similarly, the
abiotic stress signals are sensed by active plant sensors to initiate the complex cellular and subcellular
signaling pathways as a response to environmental changes [8]. These intricate plant cellular signaling
pathways are combinatory working modules that are responsible for plant behavior variation in
response to prevailing stresses [3,9]. Furthermore, the complex signaling pathways against biotic
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and abiotic stresses involve some downstream defensive signaling such as mitogen-activated protein
kinase (MAPK) cascades [10], reactive oxygen species (ROS) [11], jasmonic acid (JA) [12], salicylic acid
(SA) [13], and ethylene [14,15]. These signaling pathways and their underlying crosstalk then activate
transcriptional factors (TFs) that regulate plant defense through binding to the promoter regions of
target genes [16].

The expression of downstream defense-related genes regulated by TFs is sometimes mediated
by MAPKs [17]. The connection of MAPKs with TFs have been reviewed including TFs possessing
DNA-binding structures such as ETS domain, MADS-box, zinc-finger, HMG box, bZIP domains
to regulate MAPK dependent gene regulation [17]. Previously, several TFs such as HSF1,
SRRA/SKN7/PRRr1, PCR1, and MYB have been associated with ROS signaling to induce a response
against oxidative stress [18]. Furthermore, SA signaling has been reported extensively to rely on NPR1
and MPK4, where loss of function of these two genes resulted in the loss of pathogenesis-related (PR)
genes expression [19–21]. In addition, the master regulator MYC2 (bHLH TF) plays a critical role in
the regulation of JA signaling [22]. Other various TFs such as ORA59 belonging to the AP2/ERF family
and two NAC proteins ANAC019 and ANAC055 activate downstream transcription of several JA
and ethylene-responsive genes, thus involved in signaling of both phytohormones [23,24], whereas
WRKY70 negatively regulated the JA responsive genes [25]. Most intriguingly, the positive or negative
regulations of defense pathways are directed by complex interactions of the transcriptional protein
with other proteins [26]. Taken together, defensive signal transduction leads a concerted regulation of
downstream stress-responsive genes.

In addition, pathogen recognition and downstream signaling by transcriptional activation of
various defense responsive genes, the mechanisms involving the direct cessation of pathogenic
colonization remain unclear. Some biological processes including cell wall reinforcement, production
of anti-microbial peptides, and biosynthesis of low molecular weight secondary metabolites have
been proven to be involved in the termination of infections in plants [27–30]. Plant secondary
metabolites are widely suggested and deciphered compounds that contribute to plant immunity [31].
These phytochemicals include phytoanticipins and stress-inducible phytoalexins [32–35], and these
antimicrobial compounds directly resist pathogenic colonization in plants [33,36]. Furthermore, these
metabolites also mediate tolerance against abiotic stresses such as drought, salinity, UV irradiation,
high light stresses, and ROS [37].

Various classes of secondary metabolites such as alkaloids, terpenoids, and flavonoids in plants
have been correlated with stress responses. A number of TFs are induced by stress signals in
plants, however, their roles in plant stress responses through regulating the biosynthesis of secondary
metabolites have not been reviewed together. Among 58 transcription families, only a few families have
been identified explicitly in plant stress responses through mediating secondary metabolism. Therefore,
we reviewed a thorough perspective of plant stress responses involving secondary metabolism
regulated by TFs. Following are six transcriptional families (AP2/ERF, WRKY, bHLH, bZIP, MYB,
and NAC) that are involved in biotic and abiotic stress responses through mediating biosynthesis and
accumulation of secondary metabolites. Owing to the space limitations, we have only covered the last
five years’ researches and key references are included in this review.

2. AP2/ERF TFs

The APETALA2/Ethylene Response Factor (AP2/ERF) protein family has been studied extensively
in mediating plant stress responses through involvement in the biosynthesis of secondary
metabolites [38–40]. AP2/ERFs possess the domain of almost 60 amino acids that functionally
binds to DNA sites and structurally contain three β-sheets before the α-helix motif [41] (Figure 1).
This family has been classified into four subgroups, including AP2, ERF, RAV, and DREB, depending
on various conserved additional domains [41,42].
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Figure 1. Conserved structures and domains of transcription factors in this study.

Two AP2/ERF proteins, ORCA1 and ORCA2 were reported for the first time in Catharanthus roseus
that bound to the promotersof terpenoid indole alkaloid (TIA) biosynthetic genes [16]. After that,
a jasmonic acid-inducible ORCA3 TF was found to bind to the JERE element in promoters of two
TIA biosynthesis genes encoding strictosidine synthase and tryptophan decarboxylase [43]. Recently,
one AP2/ERF gene cluster containing ORCA3, 4, and 5 was identified to regulate TIA biosynthesis
through mutual regulation in the cluster genes and acting on MAPKs in C. roseus [44,45]. These TIAs,
such as catharanthine, have been related to resistance against fungi and insects by protecting the
surface of C. roseus leaves from pathogen infections and insect infestations [46].

Steroidal glycoalkaloids (SGAs) defend against phytopathogens and insect infestation due
to their cytotoxic properties in plants [47–50]. One TF belonging to the AP2/ERF protein family,
GLYCOALKALOID METABOLISM 9 (GAME9), was reported to regulate the biosynthesis of SGAs in
tobacco and C. roseus. Overexpression and knockdown of GAME9 altered gene expression related to
SGA production and upstream mevalonate pathway [51]. GAME9 (also named as JRE4) was bound to
the promoter regions of SGA biosynthetic genes and positively regulated the gene expression of HMGR,
CAS, C5-SD, SGTs, and GAMEs [52]. GAME9/JRE4 has also been reported as a primary transcriptional
regulator of SGA biosynthesis in tomato against Spodoptera litura [47].

Nicotine, the tobacco alkaloid, has been considered as a defensive compound that facilitates plant
protection from herbivores [53]. AP2/ERF genes have been reported to take part in the biosynthesis
of nicotine and nornicotine in tobacco. NtERF189 and ORC1 were identified to upregulate nicotine
biosynthetic gene expression and subsequent accumulation, which were also mediated by other
JA-inducible factors such as NtMYC2 [54,55]. In recent years, another AP2/ERF factor NtERF32 was
found to negatively regulate NtPMT1a gene expression, which codes putrescine N-methyltransferase
to catalyze the first step of nicotine biosynthesis [56].

Saponins have been recognized to perform variable functions, most importantly as
phytoprotectants [57,58].The AP2/ERF family has also been involved in triterpenoid saponins
biosynthesis in plants. The PnERF1 of Panax notoginseng was identified as a positive regulator
of saponins biosynthesis [59]. The binding of PnERF1 to the promoters of saponin biosynthesis genes
(HMGR, FPS, DS, SS) increased the content of total saponins in PnERF1 overexpression lines [59].
In addition, lignin is another crucial defensive substance as abasic component of the plant cell wall.
In Gossypium barbadense, GbERF1 was involved in lignin biosynthesis and conferred resistance against
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Verticilium dahliae. In GbERF1 overexpression and knockout lines, lignin biosynthetic genes PAL, C4H,
C3H, HCT, CoMT, CCR, and F5H were upregulated and downregulated, respectively [60].

Taxol is the anticancer compoundand has also been functionally correlated with plant defense
against oomycete fungi Phytophthora capsici [61]. Two ERF TFs, TcERF12 and TcERF15 were identified
to act as the negative or positive regulator of taxol biosynthesis, respectively [62]. Both of TcERF12
and TcERF15 were bound to the cis-element GCC-box on the tasy gene promoter to regulate taxol
biosynthesis. Another class of anti-microbial metabolite is hydroxycinnamic acid amide (HCAA) that
confers plant defense against Alternaria brassicicola and Botrytis cinerea. The HCAA biosynthetic gene,
AtACT (agmatinecoumaryl transferase) has been reported to be regulated by ORA59 through the
bindingto two GCC boxes of AtACT promoter in MED25 dependent regulation [63], resulting in high
accumulation of HCAAs in Arabidopsis plants. It shows that transcription factor regulation is complex
and dependent on additional factors for proper accumulation of defense metabolites.

Resveratrol in grapes has been considered as an antibacterial agent that helps the plants resist
against B. cineria [64]. Stilbene synthase (STS) is the key enzyme responsible for resveratrol biosynthesis.
Most recently, VqERF114 was identified to regulate stilbene biosynthesis through binding to the STS
promoter with another TF, VqMYB35 in Vitis quinquangularis [65]. In addition, ERF TF was also
involved in maize defense. When attacked by lepidopteran larvae, maize leaves emit a complex
blend of volatiles, mainly composed of sesquiterpenes, to attract the natural enemies of the herbivores.
EREB58 is a positive regulator of sesquiterpene production by directly promoting terpene synthase
TPS10 gene expression [66]. Roles of the AP2/ERF transcriptional family have been excessively studied
against biotic stresses in the past five years that clues their less involvement in abiotic stress responses
(Table 1).

Table 1. Plant TFs mediated stress response through regulating secondary metabolite biosynthesis.

Families Transcriptional Factors Plant Species Metabolites Resistance References

AP2/ERF JRE4 (GAME9) S. lycopersicum,
S. tuberosum SGAs S. litura [47,51]

NtERF32 N. tabaccum Nicotine Toxic against herbivory [56]
GbERF1 G. barbadense Lignin V. dahliae [60]
ORA59 A. thaliana HCAAs A. brassicicola, B. cineria [63]

TcERF12/ TcERF15 T. chinensis Taxol P. capsici [62]
VqERF114 V. quinquangularis Resveratrol B. cineria [65]

EREB58 Z. mays Sesquiterpenes Defence against herbivory [66]
PnERF1 P. notoginseng Saponins Anti-microbial [59]

WRKY StWRKY1 S. tuberosum HCAAs Anti-microbial [67]
StWRKY8 S. tuberosum BIAs P. infestance [68]

ZmWRKY79 Z. mays Terpenoid phytoalexins Anti-microbial [69]
TcWRKY1 T. chinenesis Taxol Anti-microbial [70]
WsWRKY1 W. somnifera Phytosterol Bacteria, Fungi and Insect [71]
TaWRKY70 T. aestivum HCAAs Fungi [72]

SsWRKY18/ 40 S. sclarea Diterpenoids Bacteria and Fungi [73]
VviWRKY24/03/VvWRKY8 V. vinifera Resveratrol B. cineria [74,75]

HvWRKY23 H. vulgare HCAAs Fusarium head blight [76]

bHLH ILR3/bHLH104,
bHLH04/05/06 A. thaliana GLs H. schachtii [77,78]

VvbHLH1 A. thaliana Flavoniods Drought and Salt [79]

MdMYC2 M. domestica Anthocyanin Anti-pathogenic, Drought
and Salinity [80]

DPF O. sativa Diterpenoid phytoalexins Anti-Pathogenic [81]
TSAR1/TSAR2 M. falcata Saponins Anti-microbial [82]

bZIP MdHY5 M. domestica Anthocyanin Drought, Pathogen and
Salinity [83]

SlHY5 S. lycopersicum AnthocyaninMonoterpenoids Drought, Pathogen and
SalinityAnti-pathogenic [84,85]

OsTGAP1 O. sativa Diterpenoid phytoalexins Anti-pathogenic [86–88]
OsbZIP79 O. sativa Diterpenoid phytoalexins Anti-pathogenic [89]

MYB AtMYB34/51/112 A. thaliana IGS Plectospharella cucumerina [90,91]
AtMYB75 A. thaliana Anthocyanin Pieris brassicae [92]
PtMYB115 P. tomentosa Proanthocyanin Dothiorella gregaria [93]

VvMYBC2-L1 V. vinifera Proanthocyanin Wounding and Oxidative
stress [94]
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Table 1. Cont.

Families Transcriptional Factors Plant Species Metabolites Resistance References

VvMYB14/VviMYB14 V. vinifera Resveratrol B. cineria [74,75]

RrMYB5/ RrMYB10 R. rugosa Proanthocyanin Wounding and Oxidative
stress [95]

CsMYBF1 Citrus sinensis Flavonoids and HCAAs Antimicrobial [96]
AtMYB11/12/111 A. thaliana Flavonoids Antimicrobial, Salinity [97–102]

SbMYB8 S. baicalensis Flavonoids Drought [103]
CsMYB2/26 C. sinensis Flavonoids Blister Blight [104]

OsMYB30/55/110 O. sativa HCAAs Fungi and Bacteria [105]
NAC PtrNAC72 P. trifoliata Putriscene Drought [106]

PaNAC03 P. abies Flavonoid H. annosum [107]
ANACO32 A. thaliana Anthocyanin Drought and Salinity [108]
HbNAC1 H. brasiliensis Latex Drought [109]
MfNACsa M. falcata Glutathione Drought [110]

3. WRKY TFs

The WRKY transcription protein family has been studied excessively in plant defense regulations
under biotic stresses. These WRKY TFs regulate gene expression through a conserved 60 amino-acid
WRKY domain that precisely prevails the interaction with W-boxes of targeted gene promoters [111].
Specifically, a WRKYGQK motif locates in the N-terminus of WRKY proteins, whereas the C-terminus
possesses a zinc-finger-like motif (Figure 1). The WRKY TFs are usually involved in stress responses
through regulating plant secondary metabolites such as HCAAs, alkaloids, terpenoids, and other
subclasses, anddiscussed in this section.

HCAAs have been revealed to functionally reinforce plant cell wall to resist the Phytophthora
infestans colonization [67]. A potato (Solanum tuberosum) StWRKY1 protein was studied to be involved
in HCAAs biosynthesis through regulating thephenylpropanoid pathway. StWRKY1 was directly
bound to the HCAAs biosynthetic genes at their promoter regions upon infection of late blight in
potatoes [67]. In wheat and barley, HCAAs were also identified to defend fungus pathogens and
WRKY TFs regulated their biosynthesis. TaWRKY70 activated HCAAs related genes such as the ACT,
DGK, and GL1 to result in reduced fungal biomass on wheat plants [72]. HvWRKY23 was governing
resistance against Fusarium head blight by increasing the biosynthesis of HCAAs and flavonoids
through upregulating the expression of PAL, CHS, and HCT genes [76]. Moreover, the biosynthesis
of resveratrol, the phytoalexin of Vitis vinifera, was regulated by VviWRKY24 through activating the
expression of VviSTS29, thereby conferring antimicrobial resistance [74].

In potato, StWRKY8 positively regulated the production of benzylisoquinoline alkaloids (BIAs)
through increasing the transcript levels of TyDC, NCS, and COR-2 genes. BIAs as antimicrobial
agents and cell wall enforcement agents were validated to eventually forbid the pathogen colonization
in the late blight infestation [68]. Moreover, the maize TF ZmWRKY79 regulates the biosynthesis
of phytoalexins in response to various stress conditions. Expression of several genes related to
zealexins and kauralexins biosynthesis was elevated in the ZmWRKY79 transient overexpression maize
protoplasts [69]. TcWRKY1 has also been studied to play roles in taxol biosynthesis in Taxus chinenesis
to upregulate dbat gene, resulting in higher accumulation of taxol [70]. Production of abietane-type
diterpenoids was studied in Salvia sclarea to be regulated by SsWRKY18, SsWRKY40, and SsMYC2.
The overexpression lines of these TFs significantly accumulated higher abietane-type diterpenoids
that were responsible for resistance against various bacterial and fungal species [73]. In addition,
the silencing of WsWRKY1 in Withania somnifera decreased phytosterol accumulation and consequently
increased the susceptibility to bacteria, fungi, and insect infestation [71]. Taken together, WRKY TFs
have been studied mostly in biotic stress responses through regulating secondary metabolism.

4. bHLH TFs

The TFs belonging to the bHLH (basic helix-loop-helix) family have been studied as potential
regulators of stress-responsive mechanisms in plants. The bHLH proteins specifically comprise
60 amino-acids of bipartite conserved domains, where the basic residues at theN-terminus allow
the binding of bHLH protein to DNA sites, and two alpha-helices mediate the interaction of HLH
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with proteins to construct homo- or heterodimeric complexes [112] (Figure 1). bHLH TFs have been
characterized as efficient regulators of stress responses through regulating secondary metabolite
biosynthesis, such as, flavonoids, anthocyanin, glucosinolates (GLs), diterpenoid phytoalexins,
and saponins (Table 1).

bHLH TFs have been widely involved in the biosynthesis of flavonoids and anthocyanins through
regulating the phenylpropanoid pathway. The master regulator of JA signaling, MYC2 belongs to the
bHLH protein family [113]. Recently, MdMYC2 in apple was identified to exhibit inducible expression
upon wounding and JA application, and its overexpression enhanced anthocyanin accumulation. The
anthocyanin biosynthetic genes such as DFR, UF3GT, F3H, and CHS were prominently upregulated by
MdMYC2 [80]. Moreover, VvbHLH1 increased accumulation of flavonoids in transgenic Arabidopsis
and conferred the tolerance against drought and salinity. The expression of flavonoid biosynthesis
genes PAL, CHS, F3H, and DFR was significantly upregulated in VvbHLH1 overexpression lines [79].

Accumulation of anthocyaninin was also reported to be regulated by regulator complexes involving
bHLH TFs. A bipartite complex through interaction between a bHLH TF, Delila, and a MYB TF, Rosea1
controlled the anthocyanin accumulation in tomato and tobacco [114]. Later, it was revealed that a
tripartite MYB-bHLH-WDR (MBW) complex mediated anthocyanin and proanthocyanin biosynthesis
in the Arabidopsis [115,116]. These findings suggest that the biosynthesis of plant defensive metabolites
is often regulated by complexes of proteins belonging to diverse families.

Other classes of plant defensive metabolites such as GLs, diterpenoid phytoalexins, and saponins
have also been reported to regulate bHLHs. A bHLH TF, IAA-LEUCINE RESISTANT3 (ILR3), played
a role in the biosynthesis of aliphatic GLs that in turn conferred the resistance against nematode
attack [77]. Three bHLH TFs including bHLH04, bHLH05, and bHLH06/MYC2 were also identified
to regulate GLs biosynthesis through interaction with MYB51 in Arabidopsis. The triple bhlh04/05/06
mutant lost the capability of GLs production [78]. In rice, a bHLH factor, DPF was identified as a master
regulator of diterpenoid phytoalexin biosynthesis. All biosynthetic genes of diterpenoid phytoalexins
exhibited higher expression in DPF overexpression lines, whereas lower expression in knockdown
lines in comparison to the wild type rice plants [81]. Moreover, the susceptibility to Gaeumannomyces
graminis var. tritici and other invaders was increased in avenacin deficient mutants of Avena strigose
that emphasizes the role of saponins in plant resistance against invaders [57]. Recently, two bHLH TFs,
TSAR1 and TSAR2 have been reported to regulate the biosynthesis of triterpene saponins through
modulatingthe expression of HMGR gene in Medicago truncatula [82]. Taken together, bHLH TFs solely
or interacting with other proteins regulate the biosynthesis of several secondary metabolites and play
roles in both biotic and abiotic stress responses.

5. bZIP TFs

bZIP TFs comprise a conserved leucine zipper dimerization domain and a positively charged
DNA binding interface that function in transcriptional regulation of plant biological processes
(Figure 1). In plants, many secondary metabolites harboring important pharmaceutical properties
such as tanshinone and artemisinin were found to be regulated by bZIP proteins including SmbZIP7,
SmbZIP20 in Salvia miltiorrhiza, and AabZIP1 in Artemisia annua [117,118]. However, only a few of
these medicinally important compounds were identified to be involved in plant stress response such
as catharanthine [46].

In addition, regulating pharmaceutically important metabolites, bZIP TFs have also been
extensively studied in plant defense responses through mediating biosynthesis of antipathogenic
secondary metabolites. HY5, the light-responsive bZIP TF has been identified to regulate anthocyanin
biosynthesis under biotic and abiotic stresses. In apple, MdHY5 is responsible for anthocyanin
accumulation solely or interacting with MdMYB10 [83]. In tomato (Solanum lycopersicum), SlHY5
recognized the G-box and ACGT element in promoters of anthocyanin biosynthetic genes including
CHS (chalcone synthase) and DFR (dihydroflavonol 4-reductase). Silencing of SlHY5 resulted in less
accumulation of anthocyanin, highlighting the essential regulatory role of SlHY5 [84]. In addition,



Genes 2020, 11, 346 7 of 18

HY5 was also observed to bind to the promoter of monoterpene synthase gene QH6 and modulated its
expression [85].

Terpenoidphytoalexins in rice defend invasions ofthe blast pathogen and bZIP TFs also regulate
their biosynthesis besides the bHLH TF, DPF as mentioned above. The bZIP TF, OsTGAP1 plays
the important rolein regulating of rice terpenoid phytoalexin biosynthesis through binding to the
promoters of OsKSL4 and OsCPS4, two essential terpene synthase encoding genes. Overexpression of
OsTGAP1 also enhanced expression of other terpenoid biosynthesis genes and elevated the upstream
MEP pathway that provides the isoprenoid precursors for terpenoid phytoalexin biosynthesis [86–88].
In contrast, OsbZIP79 played as a negative regulator of terpenoid phytoalexin biosynthesis in rice.
OsbZIP79 overexpression lines showed downregulation for phytoalexin biosynthetic genes and some
MEP pathway genes such as DXS, with suppressed phytoalexin accumulation [89].

6. MYB TFs

MYB TFs are widely involved in plant biological processes including growth, reproduction,
and stress responses. The MYB TF family is divided into four subgroups, 1R, 2R, 3R, and 4R, depending
on the repeats of DNA binding domains. Each domain contains 50–53 amino acids that form α-helices,
whereas a helix-turn-helix is located between the second and third helices that facilitates MYB TFs
binding to target DNA sequences [119] (Figure 1).

Many secondary metabolites have also been reported to be mediated by MYB proteins, such as
GLs, flavonoids, HCAAs, and proanthocynanins. Indole glucosinolates (IGs) have been suggested as
defensive compounds especially in the case of biotic stress in plants [120]. In Arabidopsis, MYB34,
MYB51, and MYB122 distinctly took part in tryptophan-derived IGs biosynthesis by elevating the
gene expression of two cytochrome P450s, CYP79B2, and CYP79B3 that catalyze the initial step of
IG biosynthesis [90]. Further, the myb34/51/122 triple mutant exhibited significantly reduced IGs
production and increased susceptibility to Plectosphaerella cucumerina that substantially proved the role
of these MYBTFs in disease resistance through regulating IG metabolism [91].

Regarding flavonoid biosynthesis, a citrus MYB factor, CsMYBF1, positively regulates flavanol
production through acting on the CHS gene [96]. In addition, SbMYB8, a TF from Chinese medical
herb Scutellaria baicalensis, regulated CHS gene expression and increased flavonoid accumulation in
transgenic tobacco, conferring elevated tolerance against drought stress [103]. Recently, flavonoids in
tea (Camellia sinensis) were identified to mediate resistance against a crop destructive disease blister
blight caused by Exobasidium vaxans [121]. The flavonoid biosynthesis in tea plants was regulated by
CsMYB2/CsMYB26 that was directly bound to the promoters of CsF3’H and CsLAR, two flavonoid
biosynthetic genes [104]. These two MYB TFs exhibited correlated inducible gene expression with
their target genes upon pathogen infection [104]. Moreover, three MYB TFs, AtMYB11, AtMYB12, and
AtMYB111 were revealed to differentially regulate the flavonoid biosynthesis [97–99]. Heterologous
overexpression of these AtMYBs resulted in flavonoid accumulation in various plant species [100,101],
where the alteration of flavonoid metabolism subsequently modulated stress tolerance [122]. MYB TFs
were also identified to play negative roles in flavonoid metabolism. Overexpression of AtMYB75 in
Arabidopsis reduced the level of kaempferol-3,7-dirhamnoside. It resulted in increased susceptibility
to insect herbivore Pieris brassicae, whereas growth of caterpillar was reduced significantly upon
exogenous application of kaempferol-3,7-dirhamnoside [92].

In rice, HCAAs conferred resistance against invaders by regulation of three MYB TFs, MYB30,
MYB55, and MYB110 [105]. These MYB TFs acted on phenylpropanoid biosynthetic genes such as HCT,
4CL3, C4H, and PAL to regulate HCCAs accumulation [105]. MYB TFs also regulate proanthocyanins
biosynthesis. Recently, two proanthocyanin biosynthesis genes ANR1 and LAR3 in poplar have been
observed to be upregulated in PtMYB115 overexpression lines, resulting in increased proanthocyanin
accumulation. High accumulation of proanthocyanin in PtMYB115-OE lines subsequently enhanced
the resistance against fungal pathogen Dothiorella gregaria, whereas the Ptmyb115 mutant exhibited
susceptibility to this pathogen [93].
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In contrast, the grape MYB TF, VvMYBC2-L1 negatively regulated proanthocyanin biosynthesis
by downregulating the corresponding biosynthesis genes, VvDFR, VvLDOX, VvLAR1/VvLAR2,
and VvANR [94]. Moreover, accumulation of proanthocyanins also elevated the resistance against
wounding and oxidative stress in Rosa rugosa, which was regulated by RrMYB5 and RrMYB10.
Two proanthocyanin biosynthetic genes, RrANR and RrDFR were consequently upregulated or
downregulated in RrMYB5/RrMYB10 overexpression or knockout R.rugosa lines, respectively [95].

7. NAC TFs

The transcriptional proteins belonging NAC family have been widely recognized as plant biotic
and abiotic stress-responsive factors [123–125]. The word NAC is given upon previously characterized
proteins from Petunia NAM (nonapical meristem), and Arabidopsis ATAF1/2 and CUC2 (cup-shaped
cotyledon) that possessed the conserved NAC domains [125,126]. The NAC family contains a DNA
binding domain at the N-terminus and a conserved activation domain at the C-terminus (Figure 1).
Many NAC TFs have been studied and identified to play roles in biotic and abiotic stress responses.
However, only a few cases are reported about the molecular mechanism in stress response through
mediating plant secondary metabolism.

PtrNAC72 from Poncirus trifoliate was reported to regulate putrescine biosynthesis by controlling
the gene expression of arginine decarboxylase (ADC), subsequently mediating ROS homeostasis [106].
The transgenic Arabidopsis plants with PtrNAC72 overexpression accumulated relatively low
putrescine through downregulating ADC gene expression, while higher putrescine accumulation was
detected in T-DNA inserted mutant nac72, resulting in decreased and increased drought resistance,
respectively [106]. In addition, glutathione is a prototypic anti-oxidative metabolite that functionally
eliminates the harmful effects of drought produced ROS [127]. MfNACsa in Medicago falcate was
responsive for defending drought stress by regulating the gene expression of glyoxalase 1 to maintain
glutathione level [110].

In plants, flavonoids are widely involved in stress response [128]. Flavonoids accumulation
in Norway spruce (Picea abies) increased the resistance against the fungal pathogen Heterobasidion
annosum [129]). Recently, it was revealed that PaNAC03 responded against infection of H. annosum
by negatively regulating some flavonoid biosynthetic genes, such as CHS, F3’H, and LAR3 [107].
Moreover, ANACO32 has also been identified as a negative regulator of anthocyanin biosynthesis.
The overexpression lines of ANACO32 exhibited downregulation of some anthocyanin biosynthetic
genes including DFR, ANS, and LODX under diverse stress conditions [108].

In Hevea brasiliensis, latex biosynthesis has been commonly induced by tapping and wounding
strategies for rubber production, which might be correlated with different stress signals such as
dehydration, ROS, and jasmonates [130]. A H. brasiliensis NAC TF, HbNAC1 was identified to be
involved in latex biosynthesis and drought tolerance. The dehydration-induced HbNAC1 was directly
bound to the CACG motif in the promoter of SRPP (small rubber particle protein) to regulate latex
biosynthesis [109].

8. Cross Interactions of Diverse Transcription Proteins Show the Complexity of Phytoprotective
Regulation

Plant proteins usually work in homo- or heteromutimeric complexes to regulate stress
responses [116]. Multiple signals are involved in regulation of the secondary metabolism, as well
as plant stress responses, which reasonably requires complicated signaling crosstalk and regulator
interaction. In the context of TFs interactions, several heteromutimeric protein complexes are involved
in stress response through mediating secondary metabolism, such as the MYB-bHLH-WDR complex
in Arabidopsis that plays the crucial role for the biosynthesis of flavonoids [116]. Such regulation is
suppressed by the interaction of JAZs and MYBL2 protein. However, this suppression can be overcome
by DELLA proteins that sequester JAZs and MYBL2 to make an interaction with the MBW complex [131].
In Norway spruce, another MYB-bHLH-WDR complex also regulates flavonoid biosynthesis [115].
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GLs biosynthesis also undergoes multiple regulations through the physical interaction of MYBs
and bHLHs [26,78]. GAME9 acts on SGA biosynthesis through interacting with MYC2, the master
regulation of JA signaling [51].

STS, the key biosynthetic gene of resveraterol, is regulated by MYB TFs through multiple
interactions with other factors. VviMYB14 interacted with VviWRKY03 in V. vinifera to upregulate
the STS gene [74]. In Chinese wild grape V. quinquangularis, a similar mechanism was observed for
VqERF114 and VqMYB35 that positively regulated STS gene expression through physical protein
interaction [65]. In contrast, VvWRKY8 physically interacted with VvMYB14 and prevented its binding
on STS gene promoter and subsequently repressed STS gene expression and resveraterol synthesis [75].

Some MYB TFs also form homomutimeric complexes to regulate the biosynthesis of IGs, HCAAs,
and flavonoids in plants including the MYB34-MYB51-MYB122 complex, the MYB30-MYB55-MYB110
complex, and the MYB11-MYB12-MYB111 complex, respectively [78,90,97–99,105] (Figure 2).

Figure 2. Protein interaction of transcription factors in the regulation of secondary metabolism.
Homomutimeric complexes (A) and heteromutimeric complexes (B) of transcription factors regulate
the biosynthesis of diverse secondary metabolites through protein interaction.

9. Concluding Remarks and Future Perspectives

Plants are usually exposed to multiple stresses simultaneously or continually. Cross resistance
is widely observed in plants and has been utilized in crop cultivation. In response to these diverse
biotic/abiotic stresses, plants perceive these adverse cues through different sensors/receptors, which
undergo structure transformation/modification upon acceptance of exogenous ligands, and then transfer
signals to downstream processes. Many biological molecules and processes are induced/initiated
such as plant hormones, ROS, Ca2+, and MAPK cascade. Signals are further transduced by a
number of mediators such as JAZ, MYC2, EIN3 to the downstream TFs. These TFs directly bind
to the cis-elements on the gene promoters to regulate gene expression and subsequent biosynthesis
of secondary metabolites. Some secondary metabolites may directly inhibit pathogen infection or
pest infestation. Others might participate into ROS scavenging to keep redox balance and confer
drought/salinity tolerance to plants. Signaling crosstalk is observed in the whole pathway of signal
transduction. Different stress factors might converge to activate the same signaling pathway and
induce biosynthesis of the same secondary metabolites. Some secondary metabolites are also involved
in resistance/tolerance against different stresses (Figure 3). For example, GLs usually exhibit toxicity to
pathogens and insect herbivores. It was also reported to regulate stomatal movement and be involved
in drought resistance [132]. Additionally, maize terpenoid phytoalexins, kauralexins defend fungal
pathogens and exhibit antifeedant activity against corn borer [133]. However, the kauralexin-deficient
an2 mutant is susceptible to drought stress in comparison to the wild type W22 plant, implicating
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involvement of kauralexins in abiotic stress responses [134]. Hence, more investigation should be
conducted to explore the complicated regulation of secondary metabolism involved in stress response.

Figure 3. Signal transduction and regulation of secondary metabolism in response to biotic/abiotic
stresses in Arabidopsis. Four types of secondary metabolites in Arabidopsis involved in different
resistances are exemplified to show the regulation of secondary metabolism by different transcription
factors (TFs), which are mediated by the complicated upstream signaling pathways in response to
stresses. The TFs and their corresponding regulated metabolites are labeled with the same colors.

To date, thousands of constitutive and stress-inducible secondary metabolites conferring plant
tolerance and resistance have been reported in diverse plant species, only a small part of these
metabolites has been discussed in the present review. Most importantly, the optimum accumulation
of stress-responsive metabolites is beneficial for crop productivity and resistance against both biotic
and abiotic stresses. The higher accumulation of plant defensive metabolites may create toxicity and
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compromise on the quality of plant products. On the other side, the low accumulation may influence
plant resistance or tolerance against stress conditions. The optimum accumulation would make a
balance between plant growth and defense which may stabilize the ultimate plant yield by sustaining
plant growth with defense against invasions.

Transcriptional factors can be utilized in molecular breeding to enhance the plant yield by
optimizing the level of metabolite flux. However, a single transcription factor is often insufficient
to regulate the whole biosynthetic pathway of secondary metabolite, which in most time needs the
regulatory networks consisting of multiple TFs. Co-expression analysis regarding protein–protein
interactions (interactomics) and investigations regardingprotein nucleocytoplasmic partition or
subcellular trafficking are crucial to explore the underlying mechanisms of these TFs mediating
secondary metabolism to respond diverse stresses. These researches may enhance the knowledge of
plant metabolism and would be helpful to modify the genetic architecture to get highly adaptable crop
plant varieties.

This review emphasizes the plant sensitivity and responsiveness against unfavorable conditions
and underlying regulatory mechanisms. Here, the roles of plant TFs and secondary metabolites in
diverse stress conditions have been studied together. In future, studies of TFs based mechanisms and
regulations regarding stress can proceed to elucidate the responsible metabolites that are involved
in the direct cessation of stress factors. Further, the modulation of regulatory machine for optimized
metabolite biosynthesis and accumulation would be helpful for molecular breeding of crop plants to
increase the sensitivity and responsiveness under sustainable growth conditions.
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