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Abstract: Meat eating quality with a healthy composition hinges on intramuscular fat (IMF), fat
melting point (FMP), tenderness, juiciness, flavour and omega-3 long-chain polyunsaturated fatty
acids (n-3 LC-PUFA) content. These health-beneficial n-3 LC-PUFA play significant roles in optimal
cardiovascular, retinal, maternal and childhood brain functions, and include alpha linolenic (ALA),
eicosapentaenoic (EPA), docosahexaenoic (DHA) and docosapentaenoic (DPA) acids. The primary
objective of this review was to access, retrieve, synthesise and critically appraise the published
literature on the synthesis, metabolism and genetics of n-3 LC-PUFA and meat eating quality. Studies
on IMF content, FMP and fatty acid composition were reviewed to identify knowledge gaps that can
inform future research with Tattykeel Australian White (TAW) lambs. The TAW is a new sheep breed
exclusive to MARGRA brand of lamb with an outstanding low fat melting point (28–39◦C), high
n-3 LC-PUFA EPA+DHA content (33–69mg/100g), marbling (3.4–8.2%), tenderness (20.0–38.5N) and
overall consumer liking (7.9–8.5). However, correlations between n-3 LC-PUFA profile, stearoyl-CoA
desaturase (SCD), fatty acid binding protein 4 (FABP4), fatty acid synthase (FASN), other lipogenic
genes and meat quality traits present major knowledge gaps. The review also identified research
opportunities in nutrition–genetics interactions aimed at a greater understanding of the genetics of n-3
LC-PUFA, feedlot finishing performance, carcass traits and eating quality in the TAW sheep. It was
concluded that studies on IMF, FMP and n-3 LC-PUFA profiles in parental and progeny generations
of TAW sheep will be foundational for the genetic selection of healthy lamb eating qualities and
provide useful insights into their correlations with SCD, FASN and FABP4 genes.
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1. Introduction

Sheep production is an important economic activity in many countries because lamb is one
of the world’s four major meat classes along with pork, chicken and beef [1]. Sheep are produced
mainly for their meat (lamb or mutton) and wool [2]. In 2017–2018, Australia exported 532,000 tonnes
carcass weight of lamb representing 61% of total lamb production from 72.1 million head of sheep and
was the largest sheep meat exporter in the world worth A$3.28 billion [3]. Apart from sheep meat
exports, Australians were also the world’s highest consumers of lamb estimated at 7.3 kg/capita in
2018 [1]. Thus, lamb is a very significant contributor to the Australian economy and a major part of the
Australian diet.

Lamb is a very nutritious, easily digestible and highly valued food with a healthy fatty acid
composition [4]. Lamb consumers demand meat that is safe, of consistent eating quality, healthy
composition and conveniently easy to prepare [5]. Meat quality is the constitutional standard of
lean-to-fat ratio and palatability indices that include visual appearance, aroma, drip loss, colour,
texture, pH, intramuscular fat profile, tenderness, flavour and juiciness [6]. The entire processes
of feeding culminating in the finishing of animals including their genetic constitution, husbandry
practices and handling, all affect the overall quality of meat [7]. There are genuine concerns about
high fat consumption, especially fats of animal origin, as their profile has a significant influence
on human health because excessive consumption of saturated fatty acids (SFA) is associated with
high levels of low density-lipoproteins and cholesterol [8,9]. Both low density-lipoproteins and
hypercholesterolemia are predisposing risk factors for cardiovascular disease [10], prostate, mammary
and colorectal cancer [11,12], dry eye disease, [13], depression [14], obesity, diabetes [15,16] and
neuro-degenerative conditions including Schizophrenia, Alzheimer’s, Parkinson’s disease [17]. In spite
of animal lipids being criticised as health-risk factors, it is evident that they actively support many
physiological functions and provide health-beneficial omega-3 long-chain polyunsaturated fatty acids
(n-3 LC-PUFA) [5]. This is the basis for various animal production strategies aimed at enhancing
health-beneficial fatty acids in meat and meat products [18,19]. This is because intramuscular fat, fatty
acid content, water holding capacity and consistency largely influence meat organoleptic traits and
retail potential namely, juiciness, tenderness, flavour, colour, shelf life and firmness [20,21].

In the quest for a meat sheep breed with good body conformation, superior eating qualities, low fat
melting point (FMP), high intramuscular fat (IMF) and healthy n-3 LC-PUFA composition, the Gilmore
Family in Black Springs, Oberon, New South Wales, pioneered the development of the Tattykeel
Australian White (TAW) breed. This breed was developed over a 15-year period of rigorous breeding,
culling and selection of Poll Dorset, Dorper, Texel and Van Rooy rams and ewes with an extensive
utilisation of embryo transfer, artificial insemination and natural mating. Although preliminary
evidence from our data in Table 1 suggests that the TAW sheep breed exclusive to the MARGRA
brand of lamb has an outstanding low FMP, high n-3 LC-PUFA content and IMF, comprehensive
peer-reviewed publications on its eating quality attributes and n-3 LC-PUFA profile are currently
lacking. This necessitates further research into genetic factors that may determine IMF, FMP, n-3
LC-PUFA in this breed. Many genes and enzymes are responsible for fatty acid metabolism and
their correlations with meat quality traits. However, the roles of stearoyl-CoA desaturase (SCD), fatty
acid binding protein 4 (FABP4), and fatty acid synthase (FASN) are the most critical [22,23] and need
further elucidation herein. Therefore, the primary objective of this review was to critically appraise
the published literature regarding fatty acid synthesis and metabolism, IMF, FMP, and carcass quality
to identify knowledge gaps and highlight research opportunities associated with nutrition–genetics
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interactions influencing n-3 LC-PUFA that can inform future meat-eating quality investigations in
TAW lambs.

Table 1. Tattykeel Australian White carcass and meat quality characteristics (n = 217).

Trait Mean ± SE Range

Fat melting point (◦C) 34.08 ± 1.4 28.0–39.0
Intramuscular fat (%) 4.4 ± 0.2 3.4–8.2

Hot standard carcass weight (kg) 24.6 ± 2.7 19.5–30.7
Dressing percentage 50.2 ± 2.2 47.0–54.4

Fat score 4.7 ± 0.6 4–5
GR fat depth (mm) 16.4 ± 3.5 10–24

Tenderness (N) 32.3 ± 5.1 20.0–38.5
pH 5.63 ± 0.11 5.53–6.83

Overall consumer liking (9-point scale) 8.2 ± 0.9 7.9–8.5
Omega-3 long chain PUFA (mg/100g)

EPA (20:5n-3) 24.3 ± 5.2 17.8–44.8
DHA (22:6n-3) 8.3 ± 2.7 3.4–12.1
DPA (22:5n-3) 25.2 ± 8.0 14.0–80.3
EPA + DHA 32.6 ± 7.0 33.6–69.9

EPA + DHA + DPA 57.9 ± 13.6 49.1–132.5

EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; DPA, docosapentaenoic acid.

2. Fatty Acids, Classifications and Functions

Lipids are preferentially utilised as the major energy source in enteral diets owing to their high
caloric value [24]. Fats are triglycerides comprising glycerol and fatty acids. Apart from their main
biological function of energy storage, lipids are essential components of cellular membranes and
signalling molecules [25]. Thus, Patterson et al. [26] stated that fatty acids as the “building units” of
lipids, are hydrocarbon chains having a carboxyl (-COOH) group at one end and a methyl (-CH3) group
at the other. When three fatty acids are attached to a glycerol molecule, energy-storing triacylglycerols
are formed [27]. The amphiphilic structure of fatty acids arising from their hydrophilic carboxyl group
attachment to a hydrophobic hydrocarbon chain or tail provides the ideal energy storage powerhouse
that is characteristic of triacylglycerols [21]. The bonds between the carbon atoms in a hydrocarbon
chain differentiate between saturated (SFA) and unsaturated (UFA) fatty acids. However, SFA consist
of less reactive single bonds only, while UFA have one (monounsaturated, MUFA) or at least two
(polyunsaturated, PUFA) reactive double bonds. Fats containing significant levels of MUFA like oleic
acid (C18:1), contribute to high quality meat due to low melting point which leads to favourable meat
flavour, tenderness and juiciness [28]. C18:1 as the most abundant MUFA in the adipose and muscle
tissues of ruminants, and it is not easily susceptible to oxidation [29]. PUFA are further divided into
four families: omega-3 (n-3), omega-6 (n-6), omega-7 (n-7) and omega-9 (n-9), based on the position of
the initial double bond on the methyl terminal [30] or the location of the last double bond relative to
the terminal methyl end of the molecule [31].

Fatty acids can also be subdivided into essential and non-essential fatty acids. The latter can be
synthesised de novo (mainly in the liver), without the need for dietary supplementation [32] while
the former on the other hand, cannot be synthesised by mammals and need to be included in the
diet [21]. Essential fatty acids play significant roles in enzymatic regulation, eicosanoid synthesis, cell
signalling, control of neuronal migration, neuromodulatory and neurotransmitter activities [33,34].
Some deficiency symptoms of essential fatty acids have been identified in a number of nutrition-related
complications in the liver and kidneys, especially in children, to include dry and flaky skin, diarrhoea,
anaemia, stunted growth and poor wound healing as well as compromised immunity leading to
secondary infections [35]. Therefore, it is important to supply this group of fatty acids in correct
proportions right from conception, throughout pregnancy and infancy.
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2.1. Omega-3 Long-Chain Polyunsaturated Fatty Acids

The word “omega” (ω) in relation to fatty acids denotes the terminal carbon atom furthest
from the functional carboxylic acid group (-COOH). These structural differences confer unique
individual functions. Omega-3 (n-3) long-chain polyunsaturated fatty acids are a family of PUFA
made up of α-linolenic acid (ALA, C18:3n-3), a precursor for the more functionally potent longer
chain Eicosapentaenioc acid, 20:5n-3 (EPA) and Docosahexaenoic acid, 22:6n-3 (DHA) members of the
family [36–38]. Omega-3 PUFA increase the stability of cell membranes, regulate immune function,
block excessive inflammatory reaction [39], reduce systemic inflammatory response syndrome, various
organ dysfunction syndromes, infectious complications and depress tumour growth [28,40]. The most
important functional n-3 LC-PUFA related to human well-being are EPA and DHA [41]. Furthermore,
the hitherto neglected roles of docosapentaenoic acid (DPA; 22:5n-3) are currently evolving [42,43].
A number of research findings have established that n-3 LC-PUFA are potent therapeutic agents for
the suppression of inflammation, thus playing critical roles in a number of inflammatory conditions
including diabetes, artherosclerosis, asthma and arthritis [34,44].

Cardiovascular ailments and cancer are the main causes of human death globally [45–47]. Thus,
consumption of n-3 LC-PUFA decreases the danger of cardiovascular diseases by depressing systolic
resting heart rate, diastolic blood pressure [48], blood viscosity [49], plasma fibrinogen [50] and
platelet aggregation [51]. They also improve blood vessel function [52]. In adults, increased intake
of n-3 LC-PUFA has remarkable brain health benefits, reduced risk of dementia and late cognitive
malfunction [53], overall health at pregnancy [54], insulin resistance [16], depression and retarding the
progression of certain cancers [55,56]. Gould et al. [57] reported that n-3 LC-PUFA play significant
roles in neural development in embryos and at infancy. High consumption of EPA and DHA has also
proved useful in improving foetal brain, retinal development, and reducing the risks associated with
cardiovascular and Alzheimer’s diseases [53]. Welch et al. [57] proposed DHA, EPA, n-3, ALA and
LA dietary intakes of 0.16, 0.11, 1.50, 1.23 and 12.35g/d for men and 0.13, 0.09, 1.22, 0.99 and 9.42 for
women, respectively. It has been recommended that patients susceptible to coronary heart disease
should consume at least 1g of DPA and DHA daily; and good sources of these nutrients include seafood,
particularly fatty fish (for example, mackerel, herring, sardines, salmon, trout, kippers, pilchards, eels
and tuna), whales, seals and oil supplements from fish, cod liver, krill and algae [58,59]. However, the
use of marine fish oil has some drawbacks including typical fishy smell, unpleasant taste, expensive
cleansing procedure and adulteration by environmental contaminants including radioisotopes, dioxins
and heavy metals [60,61]. Western diets contain 1.5–10.0 g of n-6 fatty acids which are derived from
plant oils rich in linoleic acid. ALA is also found in canola (rapeseed) oil, flaxseed (linseed) oil, rapeseed
oil, soybean oil, pumpkin seeds and walnut oil [62–64]. However, humans lack the enzymes required
to transform n-3 from n-6 fatty acids, they also have a limited capacity to elongate and change ALA to
EPA and DHA [63].

Figure 1 depicts the pathway where EPA is produced from simpler, plant-sourced n-3 fatty acids
like ALA (18:3n-3) [59]. The enzymes involved in n-3 fatty acid interconversion are identical with the
analogous n-6 fatty acid pathway for the transformation of linoleic acid (18:2n-6) to arachidonic acid
(20:4n-6). Majority of these processes involve the addition of a double bond between two carbon atoms
(desaturation) and addition of two carbon atoms (elongation reactions) [59,64]. While the enzymes
involved in elongation and desaturation pathways are fairly understood in monogastrics, their roles in
the interconversion of n-6 to n-3 fatty acids in ruminants is less understood, especially in Tattykeel
Australian White lambs, due to biohydrogenation. This represents a major knowledge gap.
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Figure 1. Pathway for the biosynthesis of omega-3 long-chain polyunsaturated fatty acids (n-3
LC-PUFA) from α-linolenic acid (ALA) [59].

Kris-Etherton et al. [65] reported that even though fish oil remains an excellent source of EPA
and DHA, Lum et al. [66] recommended that attention is increasingly shifting towards cheaper but
equally good substitute sources of n-3 fatty acids, including microalgae known to have high elongase
and desaturase enzyme activities necessary for the biosynthesis of EPA and DHA [67]. DPA (C22:5)
is similar to EPA with the same number of double bonds but has two more carbon chain units [68].
Its functions were in the past, poorly understood, but currently unravelled [43]. Epidemiological
trials in humans have demonstrated high levels of DPA to be favourably correlated with lesser blood
triglycerides, cholesterol, inflammation and a reduced total risk of cardiovascular diseases and acute
myocardial infarction [46,69–71]. DPA is an active and potent stimulator of endothelial cell migration,
an important part of the embryonic vascular system [72]. It also acts as a precursor for the synthesis of
resolvins which are neuroprotective in function [43]. In other studies, Phang et al. [73] demonstrated
that when applied to platelets or PC-21 human epithelial cell lines, purified DPA reduces platelet
accumulation and aggregation more efficiently than EPA and DHA [74] and leads to endothelial cell
migration [75] and inhibition of chronic inflammation [76].

Fatty Acid Profile and Nutritional Value

The fatty acid profile of meat is related to meat quality sensory attributes, nutritional value and
health benefits [18,77]. For instance, a direct relationship between the content of stearic acid in the fat
and fat hardness exists, because as the content of stearic acid increases, so does the fat hardness. This in
turn, influences marbling fat melting point and meat juiciness. The quantity and type of intramuscular
fat and fatty acids in both muscle and adipose tissues influence eating quality, juiciness, tenderness,
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flavour, colour, shelf life and firmness of meat [20,21,78]. Fat content and amount of fatty acids are
quantified in mg/100g of meat [79], whereas human nutritionists assess nutrient value of food per
100 g of serve. For food to be categorised or claimed as a source of n-3 LC-PUFA in Australia and
New Zealand, its EPA and DHA contents should be greater than 30mg per serve, and declared a good
source if it has at least 60mg of EPA and DHA for each standard serve [79–81]. In Europe, it is 40mg
per 100g [82]. The World Health Organization [83] recommended that daily fat intake should be 30%
of total energy, and of this, SFA should be reduced to 300mg per day. They also advocated that a
reasonable balance of fatty acids in food should be established where intakes of cholesterol and SFA
are decreased. The ratios between SFA and PUFA and n-6 and n-3 fatty acids determine the nutritional
value of meat [78]. However, Simopoulos et al. [84] documented that in developed and industrialised
countries, there is growth in the consumption of SFA, n-6 PUFA and trans fatty acids and a marked
reduction in n-3 PUFA intake. The diets in these parts of the world have an n-6:n-3 PUFA ratio of about
15:1, compared to an ideal recommended ratio of 4:1 [51,85]. This unbalanced consumption leads
to low tissue levels of DHA and EPA [86], resulting in higher incidences of inflammatory processes,
cardiovascular diseases, obesity, inflammatory bowel disease, rheumatoid arthritis and cancer [87].

2.2. Factors Affecting Fat Profile in Ruminant Muscle and Adipose Tissues

Fatty acid profile is influenced by biohydrogenation in the rumen, dietary concentrate
supplementation versus pasture finishing and genetics [17,88].

2.2.1. Biohydrogenation

Sheep, like all other ruminants, harbour a diverse microbial population in their rumen that enables
the digestion of complex plant materials into more absorbable nutrients [89]. The rumen ecosystem is
composed of anaerobic bacteria, protozoa, fungi, methanogenic archaea and phages [90]. Microbes
play different, yet complimentary, roles in the rumen. Bacteria enzymatically convert sugars to volatile
fatty acids (acetic 60–70%, propionic 15–20% and butyric acids 10–15%), which are the main energy
substrates for ruminants [91,92]. Protozoa on the other hand, degrade complex carbohydrates and
nitrogen into nutrients that are made available to the host, while anaerobic fungi engage in cellulolytic
degradation activities [93]. The type and amount of fat delivered to the rumen [94], temperature of
38–39 ◦C [95] and pH range between 6.0 and 6.7 [96] dictate optimal rumen microbial function.

Ruminant diets are commonly made up of forages and concentrates with fats sometimes included,
to raise the energy level in rations for lactating females or to enlarge the amount of human-health
beneficial n-3 LC-PUFA, and bioactive conjugated linoleic acid in meat and milk [97]. Upon entry into
the rumen, ingested lipids are degraded by microbial lipases via lipolysis [93,95,98]. Lipolysis breaks
down lipids and releases free fatty acids from esters, thus facilitating biohydrogenation where the
number of double bonds is reduced on the carbon chain [95], or under ideal conditions, 85% of esterified
dietary lipids in the form of galactolipids, phospholipids and triacylglycerols are hydrolysed [95,99].
UFA get converted into SFA in the rumen due to microbial biohydrogenation activities involving
series of consecutive conversion pathways leading to an abundance of fatty acid isomers [97], and
remain a major human public health issue [100]. The bulk of the dietary fatty acids are 18-carbon
UFA (linolenic acid, 18:3n-3; linoleic acid, 18:2n-6 and oleic acid, cis-9 18:1) [101]. However, the major
biohydrogenation intermediate product in a ruminant fed forage diet is trans-vaccenic acid (trans-11
C18:1, t-VA) [102]. t-VA acts as a precursor required for the production of SFA in the rumen to yield
stearic acid (C18:0). Conversely, it is desaturated by ∆9-desaturase enzyme in the mammary gland
to yield cis-9, trans-11 C18:2 and its CLA isomer that can be easily detected in milk and meat [103].
Other end products of rumen metabolism are carbon dioxide, methane and traces of hydrogen [104]
used as energy sources for the reduction of carbon dioxide to methane [105]. Short chain fatty acids
(acetic acid (C2), propionic acid (C3), and butyric acid (C4)) produced are absorbed, transported and
metabolised by different organs in the body of the host animal while carbon dioxide and methane are
expelled from the body through different cycles of eructation or belching [106].
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2.2.2. Influence of Concentrate or Forage Finishing on Lamb Performance and Meat Quality

Lamb finishing on pasture is cheaper than grain feeding [107], but the viability of pasture-finishing
depends on a consistent supply of good quality forage [108]. This is achieved by growing a mixture
of grasses and legumes. Legumes increase the nutritional quality through higher digestibility and
protein content [109,110], healthier fatty acid composition and increased oxidative stability [111]. Meat
derived from pasture-finished animals has higher CLA and PUFA content especially of the n-3 series
in the longissimus thoracis et lumborum muscle than meat from feedlot or grain-fed ruminants and at the
same time, the proportion of fat and cholesterol in meat from grass-fed ruminants is lower [19,112,113].
Mixed pasture finishing improves growth performance and carcass traits of grazing ruminants [114].
Apart from contributing to landscape maintenance, nature preservation, pasture feeding system is
generally desired by health-conscious organic meat consumers [5]. However, pasture-finished meat
has some limitations that include lower carcass weight [115] and extended periods of feeding to
attain market weight specifications compared to their contemporaries finished on grains [114,116,117].
Furthermore, grain finishing gives higher attainment of desired weights, better meat quality with
regard to tenderness, marbling, ribeye area (REA) and backfat thickness (BFT), higher stocking rate per
land unit than their counterparts finished on pasture [116,118]. In a grain finishing system, the net
energy and glucose available for fat synthesis as muscles grow, reduce in older animals, and this leads
to a higher fat content than obtained in a grass finishing system.

The biochemical processes outlined above are influenced by genetic differences and particularly
enzymes and genes involved in fat metabolism. There are no reference materials in peer-reviewed
sources on how all these biochemical processes relate to the TAW.

3. Lipogenic Genes and Associations with Genetic Selection for Meat Quality

Routine phenotypic data collection may be an arduous task given that live-animal proxies hardly
exist for meat quality traits and the related costs of such data collection are high [119], ranging from
Au$50 to 100 per animal. Genomic data therefore is significant in the design and implementation of
animal breeding and improvement programmes to rapidly increase the frequency and potency of
desirable genes in the population [120,121]. The utilisation of genomic data can raise the accuracy
level of estimated breeding values (EBV), thus increasing the rate of genetic progress [122–124].
Progressive advancements in molecular genetics have resulted in an increased identification and
documentation of genes or markers influencing meat quality traits [125]. Casas et al. [125] reported
that DNA polymorphisms in some identified candidate genes were associated with meat tenderness.
Genomic selection involves decisions that are focused on breeding values utilising genome wide
markers such as SNP [124]. In sheep production, genomic prediction offers reliable alternatives because
many traits influence fatty acid inheritance. Accurate genomic estimated breeding values (GEBV)
for these traits would lead to greater genetic gains [122]. GEBV calculation is dependent upon the
reference population that has been determined for the trait and genotyped for the markers [122].
Hayes et al. [126] established the fact that the degree of accuracy of GEBV on selection candidates rests
on the proportion of this reference population and the level of the linkage disequilibrium between SNPs
and quantitative trait loci (QTL). Traits that are difficult or expensive to measure are quite challenging
to get large reference populations for accurate GEBV prediction [122].

SNPs in a number of genes can influence the fatty acid profile of ruminants [127], however, SNPs
in FASN, SCD and FABP4 would be considered in this review because of their critical roles in fatty acid
metabolism. Furthermore, Bhuiyan et al. [128] reported five SNPs in the FASN gene in cattle, and one
of the SNPs was correlated with the composition of lipids, and may be utilised as a marker in breeding
programs. However, in sheep, there is paucity of information on these genes. From the literature, there
are research attempts aimed at linking the lipid profile of lambs with SNP [129], but to our current
knowledge, there is no published information on any identified SNP in TAW sheep. This represents a
major knowledge gap.
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3.1. Stearoyl-CoA Desaturase (SCD)

The SCD gene encodes for delta-9 desaturase enzyme. It is an iron-containing endoplasmic
reticulum enzyme [130,131], that catalyses a rate-limiting step in the conversion of SFA into MUFA in
mammalian adipose cells [131,132]. The principal product of the desaturase enzyme is oleic acid, which
is formed by the desaturation of stearic acid [133]. In cattle, the SCD gene comprises two isoforms;
SCD1 and SCD5 [134]. The SCD1 gene, mapped on bovine chromosome 26, codes for stearoyl-CoA
desaturase [130]. The fatty acid profile of stored fat reflects the earlier action of SCD on substrates such
as palmitic or stearic acids [135]. Similarly, Smith et al. [136] reported that there are three fatty acid
desaturases in animal tissues: ∆5, ∆6, and ∆9 desaturases, and that of these, only ∆9 desaturase acts
upon SFA to convert them to their respective MUFA. It serves as a catalyst in the synthesis of UFA by
incorporating a cis-bond between the 9th and 10th carbon atoms of FA with chain lengths of 10-18
carbons in adipose tissues and mammary glands [137]. Other researchers agree that the SCD enzyme
is essential in the biosynthesis of MUFA such as oleic (C18: 1n-9) and palmitoleic (C16: 1n-9) acids,
formed after the addition of a double bond in the ∆9 position of their precursors, C18: 0 and C16: 0
fatty acids [138]. It has been documented that SCD converts C18:1 trans-11 to C18:2 cis-9, trans-11, said
to be correlated with anticarcinogenic and antiatherogenic effects [139,140]. It also increases the ratio
of MUFA to SFA [141]. In sheep milk, this gene encodes the SCD enzyme found in a locus where a
positional QTL has been identified for the CLA:VA ratio [142].

In sheep, an SCD SNP (SCD5, rs423661926) was found to be significantly associated with rib eye
area and genotypic effects ranged from 0.035 to 0.923 [143]. The SCD gene has also been reported to
harbour polymorphisms that affect milk fat content, specifically, palmitoleic acid, LA, VA, SFA and
MUFA and ratios of n-6:n-3 and palmitoleic acid:palmitic acid [144]. The expression of this gene is
controlled by the diet (particularly its content of n-6 and n-3 PUFA), environmental and hormonal
factors [145]. In sheep, as reported by Dervishi et al. [146], grazing raises the quantities of CLA, total
PUFA and n-3 PUFA in lamb, which is a favourable and desirable option in line with health-beneficial
human dietary guidelines [141].

3.2. Fatty Acid Synthase (FASN)

FASN is the gene encoding for fatty acid synthase enzyme and is a versatile and valuable
protein complex that controls the de novo biosynthesis of long chain fatty acids [147]. According
to Chirala et al. [148], this gene plays essential roles during embryogenesis and adulthood fatty acid
synthesis. Zhang et al. [149] demonstrated associations arising from meat fatty acid profile and
FASN candidate gene polymorphisms. In bovine species, the FASN gene has been mapped on
BTA19 where many QTL influencing beef fatty acid profile, adipose and milk fat contents were
found [150,151]. The four exons (39–42) in the FASN complex which encode for the thioesterase
(TE) domain are accountable for the synthesis of fatty acids, especially C16:0, by hydrolysing the
acyl-S-phosphopantetheine thioester. Consequently, Zhang et al. [149] observed that the TE domain
dictates the product chain length of FASN and variability in the TE domain amongst individuals is said
to be a heritability candidate for variability in fatty acid profiles. Roy et al. [151] found higher bovine
FASN expressed in a number of tissues and organs especially the brain, testis and adipose tissue and
less in liver and heart and FASN assists in catalysing the reaction steps involved in the transformation
of acetyl-CoA and malonyl-CoA to palmitic acid. Similarly, FASN gene uses Malonyl CoA and Acetyl
CoA as substrates, while NADPH acts as a co-factor [152]. The FASN action in mammals largely yields
C16:0 with negligibly minute levels of C14:0.

In humans, Chakravarty et al. [153] reported that the TE domain possesses a hydrophobic groove
which contributes the fatty acyl substrate binding site with high specificity regarding C16-acyl ACP,
but not C14-acyl ACP. Oh et al. [154] demonstrated a favourable impact of FASN gene on fatty acid
profile. FASN is a versatile and important protein complex which catalyses the synthesis of long-chain
SFA. However, the differences in TE domain (that is exons 39–42, that account for fatty acid synthesis
termination of the FASN gene), would be a candidate for heritable differences in fatty acid profile [154].
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To our current knowledge, apart from the short communication of Sanz et al. [155] that identified novel
polymorphisms in the 5′UTR of FASN, PROP1, GPAM, MC4R, FADS and PLIN1 ovine candidate genes
and their relationships with gene expression and diet in a study with Spanish sheep (Rasa Aragonesa,
Roja Mallorquina and Assaf), Chinese Sunit sheep [156], and New Zealand sheep [157], there is no
literature published on FASN-FADS-PROP1 genes and their correlations with growth and meat quality
traits in TAW or any other sheep breed, thus presenting a significant knowledge gap.

3.3. Fatty Acid Binding Protein4 (FABP4)

To date, nine sub-types of fatty acid binding proteins (FABP) can be identified (FABP1–FABP9) and
are named based on the tissues they are found in highest concentration [158]. FABP4 is also known as
adipocyte fatty acid binding proteins (A-FABP or aP2). The location of FABP4 gene varies with livestock
species; for instance, in sheep and cattle, it is located on chromosomes 9 and 14, respectively [158].
FABP4 encodes for a group of fatty acid binding proteins and is abundantly expressed in the adipose
tissue where these binding proteins are important in glucose homeostasis, FA metabolism, transport
and absorption, by their association with peroxisome proliferator-activated receptors (PPAR) [159,160].
Apart from differences in two regions of ovine FABP4 in lean and fat selection lines of Coopworth [161],
Romney [162], and Rasa Aragonesa [163], breeds, published reports on the FABP4 gene in sheep are
few and scanty.

Most of the reported studies on FABP4 gene have been in beef cattle. Barendse et al. [164] reported
that a splice site SNP of the FAPB4 gene appeared to be connected with the deposition of IMF in
the Longissimus thoracis et lumborum muscle. In terms of variation in the FABP4 gene, Yan et al. [162]
found that it is linked with growth, deposition of fat and carcass traits. In Japanese black cattle,
Hoashi et al. [165] documented a relationship existing between FABP4 and fatty acid profile, while
Ardicli et al. [166] associated SNPs in bovine FABP4 with escalation in live weight, chilled carcass
weight, marbling score and back-fat thickness, but without any colour differences or carcass dimension
measurements. In Aberdeen Angus and Blonde d’Aquitaine cattle, the FABP4 SNP 7516G>C was
analysed for association with IMF composition of the Longissimus thoracis et lumborum muscle between
the 12th and 13th ribs. In Angus cattle, the CC genotype was reported to be 52% and 64% lower in
myristoleic acid, and 33% and 35% lower in LA than CG and GG genotypes, respectively. On the
other hand, in Blonde d’Aquitaine cattle, the CC genotype had elevated levels of arachidonic acid and
EPA, and comparatively less oleic acid and total SFA than CG genotype. The GG genotype was only
detected in one cow [167]. In Wagyu × Limousin crosses, the g.7516G>C SNPs were investigated for
any existing relationship between marbling score and depth of subcutaneous fat. An association was
established between CC genotype with lower marbling and fat depth. While GC genotype recorded
the highest scores, GG genotype was intermediate [160]. Furthermore, in Korean Native cattle, FABP4
SNPs had a correlation with backfat thickness [168].

In sheep, FABP4 plays an important part in glucose and lipid metabolism in adipocytes [169,170].
Therefore, FABP4 polymorphisms are believed to have a significant influence on live performance
and carcass characteristics [162,171], meat tenderness, marbling score and IMF content in sheep.
For instance, in Romney sheep, [156,157] reported five variants (A1 − E1) in region-1 (exon 2 − intron
2) and three variants (A2 − C2) in region-2 (exon 3 − intron 3) wherein A1 was associated with a
decrease in leg, loin and total meat yield, while A2 was associated with a decrease in weaning weight
and pre-weaning growth rate. Haplotype A1-A2 was found to be associated with a decrease in birth
weight, pre-weaning growth-rate, hot carcass weight, loin meat yield, shoulder meat yield and total
meat yield, while haplotype A1-B2 was associated with increased fat depth at the 12th rib (V-GR).
Taken together, their finding supports the contention that variation in FABP4 affects growth and meat
production. To our current knowledge, nothing is known about the FABP4 gene in TAW breed and this
major knowledge gap needs to be filled by researchers.
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3.4. Other Fat Related Genes

Several other genes reported to be associated with fat are cocaine- and amphetamine-regulated
transcript (CART) with Longissimus thoracis et lumborum muscle IMF content [172]. The genes encoding
leptin are associated with backfat thickness and marbling score [173], while the gene encoding
diacylglycerol O-acyltransferase (DGAT1) is associated with liveweight, fat thickness, rib-eye area
and shoulder weight in Texel lambs [143] and IMF [174]. The growth hormone 1 (GH1) gene is
weakly correlated with rump fat [175] and sterol regulatory element-binding protein 1 (SREBP1)
has been reported to be correlated with FA profile [128]. However, all these studies were in cattle.
Similar investigations in TAW have not been published and represent major research knowledge gaps.
An updated summary of candidate genes associated with meat quality in livestock [176] is shown in
Table 2:

Table 2. Candidate genes associated with meat quality traits in livestock.

Animal Candidate Genes Traits References

Sheep

CAST
MSTN

FADS2, ELOVL2, SCD, CPT1α, SREBF-1
FABP4
MYF5

Callipyge

Carcass
Carcass, meat quality

Fatty acids
Carcass yield

Leg and loin yield
Muscular hypertrophy

[177]
[178]
[179]

[161,162]
[180]
[181]

GDF8
FAD

CAST
FASN, FABP4, DGAT1, SCD

Muscular hypertrophy
Omega-3 long-chain

PUFA
Tenderness

Fat metabolism

[182]
[183]
[184]

[146,163]

Cattle
Pig

FABP4, SCD, PPAG, ACACA, LPL
CAST

Leptin/Thyroglobulin
Myostatin

DGAT1
HAL

MC4R
RN, PRKAG3

Fatty acid profile
Meat tenderness

Marbling
Growth and profile

IMF/marbling
Meat quality/stress
Growth and fatness

Meat quality

[185]
[184]
[186]
[187]
[174]
[188]
[189]
[190]

AFABP/FABP4 IMF [191]
HFABP/FABP3 IMF [192]

CAST Tenderness [193]
IGF2 Growth and fatness [194]

Chicken EX-FABP Fatness [195]
L-FABP Fatness [196]

4. Meat Eating Quality

Meat eating quality is influenced mainly by marbling, juiciness, tenderness and flavour [197].
Studies with lamb have shown that carcass intramuscular fat deposition and FA composition account
for eating quality variation [198,199]. Consumption of lamb IMF is important to humans since it
helps with the delivery and absorption of fat-soluble vitamins, and exerts positive effects on immune
response [200] as exemplified by Calder’s work [58] demonstrating the relationship between fatty
acid composition of immune cells and their function. Marbling score to date remains one of the most
important traits and reason why carcass evaluation is carried out in the abattoir [201]. In the United
States of America for instance, it is the major index considered in assigning beef quality grades [202]
because the quantity and distribution of IMF in the longissimus muscle area have marked effects on
tenderness, flavour, juiciness and colour [203]. The amount of IMF is greatly influenced by a number
of factors. These include animal age and breed, weight at slaughter [204], diet [205] and growth
rate [206]. Adipogenesis in the animal’s life commences with deposition of visceral fat, subcutaneous,
intermuscular and intramuscular fat occurs last [207].
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Deposition of IMF is a highly heritable trait and is positively correlated with overall body
fatness [203]. Nutritional value is an essential determinant of meat quality. Hocquette et al. [208]
reported that awareness amongst consumers has greatly increased over the years regarding the
relationships that exists between diet, health and well-being which has resulted in selection of foods
which are healthier and nourishing. Level of marbling, fatty acid composition, biological value of
protein, minerals and vitamins are essential elements of nutritive value of any food [209].

4.1. Influence of IMF on Lamb Eating Quality

4.1.1. Tenderness

Meat tenderness has been identified as the most important sensory trait consumers consider
when making decisions to purchase meat [210] as it probably affects consumers’ understanding of
acceptability. They are prepared to pay a premium for consistently tender meat and other traits
they value [211]. Meat tenderness affects the profitability of the lamb meat industry. It depends
on a number of factors including muscle sarcomere length, integrity, connective tissue content and
composition [212]. Meat tenderness differs within and between animals and the different muscles [213]
and is influenced by age of the animal, its sex, breed, genotype, nutrition, ante-mortem stress and
post-mortem handling [214]. Refrigerating carcasses just after slaughter leads to intense contraction of
the fibre muscles known as “cold shortening” which is an undesirable trait [215]. Cold shortening is the
result of the rapid chilling of carcasses immediately after slaughter, before the glycogen in the muscle is
converted to lactic acid. With glycogen still present as an energy source, the cold temperature induces
an irreversible contraction of the muscle, thus impacting negatively on tenderness. Perlo et al. [216]
reported that meat from lambs finished on forage-based diets was less tender than meat from their
counterparts fed concentrates. In contrast, Sanudo et al. [217] reported that meat from grazing animals
was more tender than from concentrate-fed lambs. This difference could be due to variation in carcass
fatness resulting in differential cooling rates during rigor development. Furthermore, the use of
fatness measures as covariates during statistical analysis can provide an unbiased basis for treatment
comparison to judge if the observed differences are solely due to intrinsic dietary influences [218]. Meat
from young lambs is more tender, has lower fat content and preferred by most consumers compared
to mutton from older sheep [219]. The metabolic processes of lipogenesis, lipolysis and fatty acid
transport culminate in IMF deposition [220]. Therefore, a diet with high-energy content leads to more
lipogenesis [221]. Furthermore, the level of intramuscular fatty acids is mainly regulated by either
inducing or inhibiting genes encoding for specific metabolic enzymes normally linked with lipid
metabolism or transcription factors [222].

Tenderness is a proclamation of meat texture and is regarded as a major sensory quality attribute
that is related with consumer satisfaction and positively correlated with juiciness and flavour, with
consumers willing to pay more for tender meat [223]. It is closely related to meat structure, biochemical
activity as well as time that elapses between slaughter and consumption [224]. Ali et al. [225] reported
that meat tenderness is influenced by the rate and level of glycolysis and the onset of rigor post-slaughter.
According to Starkey et al. [226], meat tenderness is dependent on intrinsic physiological traits of
the live muscle and processing elements developed after rigor, while Rhee et al. [227] attributed it to
sarcomere length. Sarcomere length governs the overall length of muscle fibres and plays a significant
role in the mechanical structure of muscles [228].

4.1.2. Flavour

Flavour is mainly as a result of volatile substances that impact strongly on the sensory characteristics
of red meat [229]. Meat flavour is affected by animal breed, nutrition, genotype, temperament, aging
after slaughter, cooking method and their interactions [229,230]. Meat flavour is derived through
cooking, as raw meat possesses slight or no aroma. During cooking, a number of complex reactions
are observed between a number of non-volatile compounds of lean and fatty tissues making the meat
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flavoursome [231,232]. The major reactions seen in aromatic volatile production are the Maillard
reactions between amino acids and carbohydrates and heat degradation of fats [233]. Gylcosylamine
which is a product of condensation of amino compounds with carbonyl group of reducing sugar
precipitated by heat, becomes dehydrated to yield furfural, furanone, hydroxyketones and dicarbonyl
compounds [231]. However, these results of Maillard reactions arising from interaction linking
carbohydrates and proteins contribute significantly to meat flavour [234]. In sheep, lamb and mutton
have a distinct strong species-related flavour that is influenced by various antemortem and postmortem
factors such as pH, age, sex, diet, type of cooking, and curing. Post-cooking storage and modulation of
lipid oxidation in mutton also has effects on flavour characteristics and various chemical compounds
have been implicated as responsible for or contributing to ovine flavour [232,234]. Of those compounds,
medium-length branched-chain fatty acids are the most important. Although processing methods that
reduce or modify species flavour such as washing and extrusion with non-meat ingredients have been
evaluated, definitive generalisations regarding sheep production management practices yielding meat
with the most desirable flavour attributes have not yet been made [232].

4.1.3. Juiciness

Juiciness is an organoleptic index of the quantity of moisture released from meat and the degree
of salivation during the process of mastication [235]. Meat juiciness is dependent on water and
fat contents [236]. de Lima et al. [237] reviewed the intrinsic factors affecting sheep meat quality
and reported that the level of marbling affects different sensory attributes, especially juiciness.
Cloete et al. [238] evaluated sheep breeds and reported that the lower proportion of IMF in meat from
Merino breed was responsible for lower sensory score for initial juiciness and lasting succulence
compared to other sheep breeds. This therefore explains why juiciness has a positive correlation with
water holding capacity as well as level of intramuscular fat in meat as demonstrated by the work
of Hocquette et al. [239] showing that IMF has a profound effect on juiciness and flavour. Human
perception of juiciness is elevated as the IMF level in meat increases [240]. In general terms, juiciness is
more of a sensory trait for pork than flavour and tenderness [241] while beef consumers rate tenderness
higher [242].

4.2. Fat Melting Point

The hardness or softness of fat is determined by its melting point. Flakemore et al. [199] stated
that soft fat has a comparatively lower melting point than hard fat and this has implications for meat
processors in abattoirs. MUFA are characterised by lower melting points than SFA, an attribute that
favours meat flavour, tenderness and juiciness [28]. Fat melting point is affected by the physical and
chemical structures of fatty acids, which in turn, drive carcass evaluation, classification and sensory
characteristics of meat [243]. Furthermore, fat melting point is influenced by the molecular weight,
the number and configuration of double or triple bonds in the fatty acid structure [244]. Red meat
consumers prefer fats with low melting point [199,245] because of their association with reduced risks
of cardiovascular diseases [246]. Hard fats pose meat processing and safety challenges in the boning
room [247]. In sheep, Holman et al. [205] reported FMP in Merino, Dorset, Black and White Suffolk
breeds ranging from 41.5 to 44.8 ◦C. FMP ranging from 40.6 to 48.0 ◦C have also been reported in
Dorset, White Suffolk and Merino breeds [199]. However, published data on FMP in the TAW sheep
breed are currently not available.

5. Conclusions and Future Research

The TAW is a new breed. Mechanisms explaining the impacts and expression patterns of genes
associated with intramuscular fat, fat melting points and n-3 LC PUFA on meat sensory attributes
are neither currently published nor fully understood. Future work should attempt to unravel single
nucleotide polymorphisms, expression patterns and molecular mechanisms of various fat related genes
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and growth responses of TAW lambs to diverse feedlot finishing diets with and without omega-3
oil inclusion.

Specific knowledge gaps include:

• Early selection decision tools for meat quality traits in TAW lambs are currently non-existent. Most
reported selection programmes on fatty acid profile and meat quality traits in other sheep breeds
are based on carcass data after the animals have been slaughtered and long gone. Pioneering
studies using biopsy sampling of the Longissimus muscle in rams, ewes and lambs to directly
determine n-3 LC-PUFA, IMF and FMP contents while the animals are young and alive for early
selection and breeding purposes are needed.

• Published data on how parents selected for their high n-3 LC-PUFA, IMF and low FMP pass
these genes to their offspring are currently non-existent in the TAW breed. Pioneer studies to
estimate heritability values based on actual performance data and not estimated breeding values
are recommended.

• SCD, FASN and FABP4 genes have been documented to exert some influence on carcass fat traits
in other bovine and ovine breeds. No such data exist for the TAW breed. There is the need to
sequence the FABP4, FASN and SCD genes to provide foundational data underpinning their roles
in fatty acid metabolism unique to the TAW breed.

• In-depth feedlot growth studies are required for better understanding of the interactions between
n-3 LC-PUFA oil diets, finishing performance, and carcass traits of TAW lambs to afford industry
players the opportunity to utilise them for greater economic gains.

• A cost–benefit analysis of the implication of including n-3 LC-PUFA rich oil in feedlot finishing
diets will be of immense industry significance to lamb producers, feed millers and meat processors.
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