
genes
G C A T

T A C G

G C A T

Article

Genetic Diversity of C4 Photosynthesis Pathway
Genes in Sorghum bicolor (L.)

Yongfu Tao 1 , Barbara George-Jaeggli 1,2 , Marie Bouteillé-Pallas 1, Shuaishuai Tai 3 ,
Alan Cruickshank 2, David Jordan 1 and Emma Mace 1,2,*

1 Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland,
Hermitage Research Facility, Warwick, QLD 4370, Australia; y.tao1@uq.edu.au (Y.T.);
b.georgejaeggli@uq.edu.au (B.G.-J.); mariebouteille0384@gmail.com (M.B.-P.); david.jordan@uq.edu.au (D.J.)

2 Agri-Science Queensland, Department of Agriculture and Fisheries (DAF), Hermitage Research Facility,
Warwick, QLD 4370, Australia; Alan.Cruickshank@daf.qld.gov.au

3 BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China; shuaishuai.tai@bgi.com
* Correspondence: emma.mace@uq.edu.au

Received: 24 June 2020; Accepted: 13 July 2020; Published: 16 July 2020
����������
�������

Abstract: C4 photosynthesis has evolved in over 60 different plant taxa and is an excellent example of
convergent evolution. Plants using the C4 photosynthetic pathway have an efficiency advantage,
particularly in hot and dry environments. They account for 23% of global primary production
and include some of our most productive cereals. While previous genetic studies comparing
phylogenetically related C3 and C4 species have elucidated the genetic diversity underpinning
the C4 photosynthetic pathway, no previous studies have described the genetic diversity of the
genes involved in this pathway within a C4 crop species. Enhanced understanding of the allelic
diversity and selection signatures of genes in this pathway may present opportunities to improve
photosynthetic efficiency, and ultimately yield, by exploiting natural variation. Here, we present the
first genetic diversity survey of 8 known C4 gene families in an important C4 crop, Sorghum bicolor (L.)
Moench, using sequence data of 48 genotypes covering wild and domesticated sorghum accessions.
Average nucleotide diversity of C4 gene families varied more than 20-fold from the NADP-malate
dehydrogenase (MDH) gene family (θπ = 0.2 × 10−3) to the pyruvate orthophosphate dikinase (PPDK)
gene family (θπ = 5.21 × 10−3). Genetic diversity of C4 genes was reduced by 22.43% in cultivated
sorghum compared to wild and weedy sorghum, indicating that the group of wild and weedy
sorghum may constitute an untapped reservoir for alleles related to the C4 photosynthetic pathway.
A SNP-level analysis identified purifying selection signals on C4 PPDK and carbonic anhydrase (CA)
genes, and balancing selection signals on C4 PPDK-regulatory protein (RP) and phosphoenolpyruvate
carboxylase (PEPC) genes. Allelic distribution of these C4 genes was consistent with selection signals
detected. A better understanding of the genetic diversity of C4 pathway in sorghum paves the way
for mining the natural allelic variation for the improvement of photosynthesis.
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1. Introduction

C4 photosynthesis has independently evolved in more than 60 different plant taxa [1]. The main
driver for this convergent evolution is the tendency of Ribulose-1,5-bisphosphate carboxylase (Rubisco),
which catalyzes the net fixation of carbon dioxide (CO2) to also catalyze an unfavorable oxygenation
reaction. This reaction produces toxic phosphoglycolate which has to be converted to useful metabolites
requiring substantial metabolic energy [2,3]. This wasteful use of CO2 is termed photorespiration.
Photorespiration becomes a major constraint of photosynthesis in situations where CO2 to O2 ratios
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are low and temperatures are high. The evolution of C4 photosynthesis coincided with declining
atmospheric CO2 concentrations [1,4] as a mechanism to avoid photorespiration by concentrating CO2

in the vicinity of ribulose-1,5-bisphosphate carboxylase (Rubisco).
In the majority of C4 plants, this is achieved via spatial separation of the initial CO2 fixation

and the Calvin–Benson–Bassham cycle in two different cell types, most often mesophyll cells and
bundle sheath cells [5]. CO2 concentration in C4 bundle sheath cells is up to 10-fold higher than that
found in C3 mesophyll cells [6]. At higher temperatures, C4 photosynthesis is not only more efficient
compared with C3 photosynthesis in terms of reducing energy losses from photorespiration, but due to
the improved efficiency of this pathway, it renders plants more nitrogen- and water-use efficient [7,8].
C4 plants are more productive than C3 plants in areas with high light intensities, warm temperatures,
and low rainfall, such as the sub-tropical and tropical areas around the globe.

Many of the major crops that originated from warm and dry regions of the world, such as maize,
sorghum, millet, sugarcane, miscanthus, and switchgrass, use the C4 pathway [9]. C4 crops account
for an estimated 23% of global primary production [10]. Improved photosynthetic capacity has been
suggested as the next frontier in lifting crop productivity [11]. The C4 photosynthesis pathway is a
good starting point to improve photosynthetic capacity and resource efficiency in crop plants. Attempts
are currently being undertaken to integrate characteristics of the C4 pathway into C3 crops [7,12–14].

However, possibly due to multiple independent evolutions of C4 photosynthesis in different
plant taxa [1], large variation also exists among C4 species in terms of the biochemical pathway.
It has long been known that three major biochemical subtypes—nicotinamide adenine dinucleotide
phosphate-malic enzyme (NADP-ME), nicotinamide adenine dinucleotide-malic enzyme (NAD-ME)
and phospho-enol-pyruvate carboxykinase (PCK)—exist among C4 species [15]. More recently, it has
been suggested that mixtures among them exist [16] and that the subtypes vary in their performance
under different environmental conditions, e.g., low light [17]. Especially among the grasses, which all of
the C4 cereals belong to, differences in pathway and performance are likely to exist, as C4 photosynthesis
has evolved at least 25 times in this group of plants [18]. Exploring such variation may provide avenues
to further improve C4 photosynthetic efficiency [9].

Sorghum is an NADP-ME subtype C4 crop well-known for its adaption to drought and high
temperatures. It provides staple food for over 500 million people in the semi-arid tropics of Africa and
Asia; in addition to being an important source of feed, fiber, and biofuel. Due to these characteristics,
it is expected to play an increasingly important role in meeting the challenges of feeding the world’s
growing population under the threat of global warming. Substantial variation in photosynthesis
and related traits has been revealed in sorghum [19–23], indicating existence of genetic variation of
underlying genes. However, this variation has not yet been studied.

The recent assembly of whole-genome sequences for a wide range of wild and cultivated
sorghum species [24–26] provides an excellent opportunity to explore genetic diversity of genes
related to the C4 photosynthetic pathway. Several high-throughput comparative transcriptomics
and evolutionary studies using C3 and C4 phylogenetically related species and cell-specific gene
expression have elucidated the key genes and regulatory networks that underpin the C4 photosynthetic
pathway [5,27–37]. In the present study, we explored the genetic variation in genes that have previously
been identified as core C4 genes, mined their allelic diversity and investigated signatures of selection
during domestication in sorghum.

2. Materials and Methods

Identification of C4 Gene Families

This study focuses on 8 key proteins in the NADP-ME photosynthetic pathway in sorghum
(Figure 1). A total of 9 genes encoding these proteins with expression and evolutionary evidence
supporting their involvement in NADP-ME pathway (hereafter, referred as C4 genes), and their non-C4

isoforms in sorghum were extracted from two previous studies [38,39] (Table 1). These non-C4 isoforms
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are homologous of C4 genes but there was no evidences supporting their involvement in the NADP-ME
photosynthetic pathway. Homology between these sorghum C4 genes and their non-C4 isoforms was
further verified via a local blast strategy. Protein sequences of these 9 core C4 genes were extracted
from the sorghum reference genome V3.1 and were blasted against the reference genome. Blast hits of
each gene were filtered using the criteria: E-value <−10, sequence identity >60%, and alignment length
>80%. All hits of the same gene satisfying the criteria were plotted based on –log (E-value); only hits of
top –log (E-value) class were considered if clear differentiation among them was visualized, otherwise
all hits were used.
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Figure 1. Diagram of the nicotinamide adenine dinucleotide phosphate-malic enzyme (NADP-ME)
biosynthetic pathway of C4 photosynthesis (adapted from [40]). In the mesophyll cells, CO2 is converted
to HCO3

− catalyzed by carbonic anhydrase (CA) and fixed into the four-carbon acid, oxaloacetate
(OAA), by phosphoenolpyruvate carboxylase (PEPC). Phosphorylation of PEPC is carried out by
PEPC kinase (PPCK). The OAA generated by PEPC is then reduced to malate by the NADP-malate
dehydrogenase (NADP-MDH) or trans-aminated to aspartate. The resultant C4 acids, malate and
aspartate, are transported to the bundle sheath and then decarboxylated in the vicinity of Rubisco
to release CO2 and pyruvate. Pyruvate is transported back to mesophyll cells to regenerate PEP by
pyruvate orthophosphate dikinase (PPDK), while CO2 enters the Calvin–Benson–Bassham cycle and
is fixed by ribulose-1,5-bisphosphate carboxylase (Rubisco). Activation and inactivation of PPDK is
catalyzed by PPDK regulatory protein (PPDK-RP).
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Table 1. Single nucleotide polymorphism (SNP) information and selection signals across 27 genes from C4 gene families.

Gene ID Enzyme GL CDSL NoS NoSiC NoNS NoSS UPSGL UBSGL NoSUPS NoNSUPS NoSUBS NoNSUBS

Sobic.002G230100 CA 4823 1014 115 14 4 10 No No 0 0 1 0
Sobic.003G234200 CA 10440 1371 475 33 7 26 No No 1 1 0 0
Sobic.003G234400 CA 4749 615 138 13 3 10 No No 0 0 0 0
Sobic.003G234500 CA 2986 609 173 11 5 6 No No 0 0 0 0
Sobic.003G234600 CA 4750 771 210 18 10 8 No No 0 0 0 0
Sobic.007G166200 NADP-MDH 3354 1308 53 11 6 5 No No 0 0 0 0
Sobic.007G166300 NADP-MDH 3816 1290 108 12 3 9 No No 0 0 0 0
Sobic.003G036000 NADP-ME 6107 1941 111 11 4 7 No No 0 0 0 0
Sobic.003G036200 NADP-ME 5447 1911 141 12 3 9 No No 0 0 0 0
Sobic.003G280900 NADP-ME 5691 1782 175 22 13 9 No No 1 1 0 0
Sobic.003G292400 NADP-ME 4527 1782 95 22 8 14 No No 10 2 0 0
Sobic.009G069600 NADP-ME 3624 1713 118 34 10 24 No No 3 1 0 0
Sobic.002G167000 PEPC 5632 2904 41 11 6 5 No No 0 0 0 0
Sobic.003G100600 PEPC 8881 3117 371 43 9 34 No No 0 0 21 2
Sobic.003G301800 PEPC 7610 2901 138 19 3 17 No No 0 0 0 0
Sobic.004G106900 PEPC 6977 2883 146 34 5 29 No No 0 0 7 0
Sobic.007G106500 PEPC 5616 2895 64 12 8 4 No No 1 1 0 0
Sobic.010G160700 PEPC 6647 3087 193 28 9 19 No No 0 0 2 0
Sobic.004G219900 PPCK 1612 924 40 9 1 8 No No 0 0 2 0
Sobic.004G338000 PPCK 1749 855 37 9 4 4 No No 0 0 0 0
Sobic.006G148300 PPCK 1997 900 64 4 1 3 No No 0 0 0 0
Sobic.001G326900 PPDK 8494 2730 321 46 18 28 No Yes 0 0 24 5
Sobic.009G132900 PPDK 12748 2847 441 16 0 16 No No 3 0 0 0
Sobic.002G324400 PPDK-RP 2507 1290 79 22 8 14 No No 0 0 3 0
Sobic.002G324500 PPDK-RP 3072 1260 69 20 5 15 No No 4 0 0 0
Sobic.002G324700 PPDK-RP 4662 1587 222 28 19 9 No No 1 1 2 2
Sobic.005G042000 RbcS 1556 510 45 7 4 3 No No 0 0 0 0

Gene ID is according to sorghum reference genome V3.1. Gene IDs in bold indicate their C4 genes. Enzyme: Encoded enzyme. GL: Gene length. CDSL: Length of coding sequence (CDS).
NoS: Total number of SNPs identified across the gene. NoSiC: Number of SNPs identified in CDS. NoNS: Number of non-synonymous SNPs. NoSS: Number of synonymous SNPs.
UPSGL: Under purifying selection based on gene level analysis. UBSGL: Under balancing selection based on gene level analysis. NoSUPS: Number of SNPs under purifying selection.
NoNSUPS: Number of non-synonymous SNPs under purifying selection. NoSUBS: Number of SNPs under balancing selection. NoNSUBS: Number of non-synonymous SNPs under
balancing selection.
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3. Plant Material and Genomic Data

Sequence data of the identified C4 genes were extracted from 48 accessions of Sorghum bicolor with
high mapping depth (~22× per accession, ranging from 16 to 45×) reported in previous studies [24–26].
These 48 accessions represent all major cultivated sorghum races and some wild progenitors (Table S1).

4. Gene-Level Population Genetic Analyses

Population genetic parameters including nucleotide diversity (θπ) [41], Tajima’s D [42],
and Watterson’s Estimator (hW) [43] were directly calculated for each of the 27 genes using the
Bio::PopGen::Statistics module. FST [44], which measures population differentiation, was also calculated
for each of the 27 genes using the Bio::PopGen::PopStats module [26]. The Bio::PopGen::IO module
was used to read input file, which was prepared using an in-house Perl script for calculation of these
population genetic parameters.

The criteria used in Mace et al. (2013) were employed to identify genes under purifying selection
and balancing selection, respectively. Criteria for purifying selection included: (1) θπ and hW < 5% of
the empirical distribution in the cultivated group, (2) FST between the group of cultivated sorghum
and the group of wild and weedy sorghum > 95% of the population pairwise distribution, (3) Tajima’s
D < 0. Criteria for balancing selection included: (1) θπ and hW > 25% of the empirical distribution
in the cultivated group, (2) FST between the group of cultivated sorghum and the group of wild
and weedy sorghum < 90% of the population pairwise distribution, (3) Tajima’s D > 5% of the
empirical distribution.

5. SNP-Level Identification of Selection Signature

Population genetics parameters including θπ, Tajima’s D, and FST between the group of cultivated
sorghum and the group of wild and weedy sorghum were computed for these 27 genes using
CDS sequence in PopGenome, a population genomics package implemented in the R environment
(http://cran.r-project.org/) [45]. Specifically, commands diversity.stats, F_ST.stats, and neutrality.stats
were called to calculate θπ, FST, and Tajima’s D for each single nucleotide polymorphism (SNP),
respectively, with a slide window of 1-bp and 1-bp step size. Functional annotation of each SNP was
conducted using get.codons command. Fold decrease of θπ in the cultivated sorghum group compared
to the group of wild and weedy sorghum was calculated to represent reduction of diversity (RoD).
The following criteria were adopted to identify sites with signature of purifying selection: (1) A RoD
greater than the average of neutral genes; (2) FST > 0; (3) Tajima’s D < 0. The following criteria were
adopted to identify sites with signature of balancing selection: (1) An increase in diversity (IoD) in the
cultivated group and the group of wild and weedy comparison; (2) FST > 0; (3) Tajima’s D > 0.

6. Phylogenetic and Haplotype Analysis

A phylogenetic tree was constructed based on CDS of all 27 genes from C4 gene families using the
neighbor-joining method with default settings (bootstrapped 100 times; support threshold, 50%) in
Geneious 8.1.2 (https://www.geneious.com/, Biomatters Ltd., Auckland, New Zealand). Analysis of
haplotype network was conducted using a combination of the R package ape [46] and pegas [47]. All 48
sorghum accessions were classified into four groups: Cultivated, wild and weedy, Guinea margaritiferum
and S. propinquum (Table S2).

7. Results

Nucleotide Diversity of Core C4 Gene Families in Sorghum

Based on 9 genes corresponding to 8 core C4 enzymes in sorghum, 18 homologous genes were
identified across the sorghum genome. In total, 5 CA genes, 2 NADP-MDH genes, 5 NADP-ME genes,
6 PEPC genes, 3 PPCK genes, 2 PPDK genes, 3 PPDK-RP genes, and 1 rbcS gene were identified

http://cran.r-project.org/
https://www.geneious.com/
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(Table 1). Nucleotide diversity (θπ) of these 27 genes was investigated using sequence data of
48 genotypes covering wild and weedy, and cultivated sorghum (Mace et al., 2013). A total number
of 4183 single nucleotide polymorphisms (SNPs) were identified in these 27 genes with 521 SNPs
located in coding sequence (CDS) regions (Table 1). These C4 gene families displayed an average
overall nucleotide diversity of θπ = 2.09 × 10−3, which is comparable to that of 130 housekeeping genes
(θπ = 1.97 × 10−3, Mace et al., 2013) (t-test, p-value > 0.05). Nucleotide diversity varied dramatically
among the C4 gene families, with the NADP-MDH genes displaying the lowest levels of diversity
across all genotypes (average θπ = 0.25 × 10−3), followed by NADP-ME genes (θπ = 0.93 × 10−3),
PPCK genes (θπ = 1.20 × 10−3), PEPC genes (θπ = 2.11 × 10−3), CA (θπ = 2.26 × 10−3), and PPDK-RP
(θπ = 2.96 × 10−3), while PPDK genes showed the highest level of diversity (θπ = 5.21 × 10−3) (Table 2,
Figure 2A). The only gene encoding ribulose bisphosphate carboxylase/oxygenase small-subunit (rbcS),
Sobic.005G042000, had relatively high genetic diversity among C4 gene families with θπ = 4.32 × 10−3

across all 48 genotypes, 5.72× 10−3 in the wild and weedy group, and 3.03× 10−3 in the cultivated group.

Table 2. Genetic diversity (θπ) and fixation index (FST) of 27 genes from C4 gene families.

GeneID Enzyme θπ–All θπ-Cultivated θπ-W&W FST

Sobic.002G230100 CA 0.80 0.74 0.90 0.19
Sobic.003G234200 CA 2.65 2.46 2.66 0.16
Sobic.003G234400 CA 1.01 0.91 0.88 0.37
Sobic.003G234500 CA 5.55 5.51 4.56 0.07
Sobic.003G234600 CA 1.27 1.35 0.65 0.06
Sobic.007G166200 NADP-MDH 0.18 0.21 0.13 0.07
Sobic.007G166300 NADP-MDH 0.33 0.33 0.42 0.08
Sobic.003G036000 NADP-ME 0.88 0.65 1.59 0.15
Sobic.003G036200 NADP-ME 0.89 0.67 1.39 0.06
Sobic.003G280900 NADP-ME 0.93 0.85 1.11 0.09
Sobic.003G292400 NADP-ME 1.43 0.08 4.44 0.32
Sobic.009G069600 NADP-ME 0.52 0.49 0.10 0.45
Sobic.002G167000 PEPC 0.58 0.51 0.85 0.04
Sobic.003G100600 PEPC 5.36 5.18 3.56 0.05
Sobic.003G301800 PEPC 0.64 0.22 2.37 0.22
Sobic.004G106900 PEPC 3.18 3.02 2.14 0.07
Sobic.007G106500 PEPC 0.44 0.22 0.47 0.21
Sobic.010G160700 PEPC 2.49 2.25 2.86 0.04
Sobic.004G219900 PPCK 2.08 1.94 2.12 0.12
Sobic.004G338000 PPCK 1.03 0.96 0.91 0.03
Sobic.006G148300 PPCK 0.48 0.39 0.13 0.41
Sobic.001G326900 PPDK 8.34 5.64 5.64 0.40
Sobic.009G132900 PPDK 2.07 1.79 2.19 0.13
Sobic.002G324400 PPDK-RP 5.04 3.82 4.55 0.41
Sobic.002G324500 PPDK-RP 1.27 0.10 3.75 0.24
Sobic.002G324700 PPDK-RP 2.58 2.50 3.51 0.05
Sobic.005G042000 rbcS 4.32 3.41 5.72 0.12

Gene ID is according to sorghum reference genome V3.1. Gene IDs in bold indicate the C4 gene versions. Enzyme:
Encoded enzyme. θπ-All: Nucleotide diversity across all 48 genotypes. θπ-Cultivated: Nucleotide diversity across
cultivated genotypes. θπ-W&W: Nucleotide diversity across wild and weedy genotypes. All θπ values are in unites
of per kb. FST: Fixation index between cultivated genotypes and wild and weedy genotypes.
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Figure 2. Genetic diversity and fixation index (FST) of C4 gene families between cultivated sorghum
and the wild and weedy group. (A) Genetic diversity (pi) for each of the C4 gene families. Gene IDs
in red indicate core C4 genes. Red bars represent the pi of cultivated sorghum, while dark blue bars
represent the pi of wild and weedy. (B) FST between cultivated and wild and weedy of each of C4 gene
families. Gene IDs in red indicate core C4 genes.

Mixed trends were found when comparing C4 genes with non-C4 isoforms in each gene family with
the average overall genetic diversity of C4 genes being comparable to that of their non-C4 counterpart
(Table 2). The C4 PPDK-RP gene (Sobic.007G166300) and C4 NADP-MDH gene (Sobic.002G324400)
had an overall θπ which was 161.76% and 79.85% higher than their non-C4 isoforms, respectively,
whereas the θπ of the C4 PPDK gene (Sobic.009G132900) was 75.16% lower than that of the non-C4

PPDK isoform. Nucleotide diversity of C4 genes in the other gene families was within the range of
variation of their non-C4 isoforms.

Genetic diversity across C4 gene families was significantly reduced during sorghum domestication
(paired t-test, p-value < 0.05). Averaged across all C4 gene families genetic diversity was reduced
by 22.44% in the domesticated compared with the wild and weedy group and when just the 9 core
C4 genes were considered, the reduction was 22.98%. However, the reduction of genetic diversity
during domestication in C4 genes was not significantly different from that in housekeeping genes
(Table S2) (t-test, p-value > 0.05). Among the 27 genes, Sobic.003G292400, a non-C4 NADP-ME isoform,
exhibited the most severe reduction in genetic diversity, with a reduction of 98.23%. The C4 version
of that gene, the NADP-ME gene (Sobic.003G036200), showed the greatest loss of genetic diversity
(51.89%) among the C4 genes, with an FST between the cultivated and wild and weedy groups of 0.06
(Figure 2B). In contrast, another non-C4 isoform of NADP-ME (Sobic.009G069600), a non-C4 isoform of
PPCK (Sobic.006G148300), and a non-C4 CA isoform (Sobic.003G234600) showed a more than 2-fold
increase in genetic diversity in the cultivated group.

8. Identification of Selection Signals during Domestication across the 27 Genes

The selection signature of these C4 gene families was firstly investigated at the gene level.
Based on thresholds of genome-wide rankings described in Mace et al. (2013), only one gene
(Sobic.001G326900, non-C4 PPDK isoform) was identified as being under balancing selection,
which maintains diversity of selected genes, during sorghum domestication, while no gene was
identified as being under purifying selection, which reduces diversity of selected genes (Table 1).
Subsequent to this, a higher resolution detection of selection signature was conducted at the SNP
level using the CDS of the 27 genes. Among 521 SNPs across 27 CDS, 176 were non-synonymous.
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The number of non-synonymous SNPs within genes varied from 19 in the non-C4 PPDK-RP isoform
(Sobic.002G324700) to 0 in the C4 PPDK (Sobic.009G132900). The C4 PEPC gene (Sobic.010G160700)
had the highest number of non-synonymous SNPs (9) among the 9 C4 genes (Table 1). In contrast to
the gene-level analysis, SNP-level analysis identified 24 SNPs across 8 genes under purifying selection,
including 7 non-synonymous SNPs in 6 genes (Table S3). Genes with SNPs under purifying selection
included two C4 isoforms, PPDK (Sobic.009G132900) and CA (Sobic.003G234200), three of 4 non-C4

NADP-ME (Sobic.003G280900, Sobic.003G292400, Sobic.009G069600), both two non-C4 PPDK-RP
(Sobic.002G324500, Sobic.002G324700), and a non-C4 PEPC gene (Sobic.007G106500). Among the
2 C4 genes with SNPs under selection, Sobic.009G132900 had 3 synonymous SNPs under purifying
selection, while Sobic.003G234200 had a non-synonymous SNP under purifying selection.

A total of 60 SNPs across 8 genes were identified as being under balancing selection, 7 of which were
non-synonymous SNPs distributed across 2 genes (Table S4). The non-C4 PPDK (Sobic.001G326900)
had 24 SNPs under balancing selection including 5 non-synonymous SNPs, and additionally had an
overall gene-level signature of balancing selection based on the previous analysis. Two C4 isoforms,
PPDK-RP (Sobic.002G324400) and PEPC (Sobic.010G160700), were identified with 3 and 2 SNPs under
balancing selection, respectively, although none of them were non-synonymous SNPs. Two non-C4

PEPC (Sobic.003G100600, Sobic.004G106900) were identified with SNPs under balancing selection,
with Sobic.003G100600 having 21 SNPs including 2 non-synonymous SNPs exhibiting signatures of
balancing selection. The other 2 genes with SNPs under balancing selection were a non-C4 CA isoform,
Sobic.002G230100, and a non-C4 PPCK isoform, Sobic.004G219900.

9. Allelic Variation of Core C4 Genes under Selection in Sorghum

A phylogenetic tree was constructed using the CDS of these 27 genes to depict the genetic
relationship of 48 accessions (Figure S1). The inter-and intra-species distribution of private haplotypes
of each gene is detailed in Table S5, with the majority (~90%) of the genes with private inter-species
haplotypes from S. propinquum, e.g., 4 unique haplotypes were observed for the C4 isoform of PEPC,
with the 2 S. propinquum accessions sharing a single private haplotype. To investigate allelic variation
of 4 core C4 genes with SNPs under selection in sorghum, haplotype networks were constructed using
CDS SNPs. Based on 16 SNPs within the CDS of the PPDK gene (Sobic.009G132900), 8 haplotypes were
identified. Five haplotypes were identified in the wild and weedy genotypes, with 3 being private
haplotypes and two of them being maintained in cultivated sorghum; two new haplotypes arose in
cultivated sorghum after domestication (Figure 3A). Ten haplotypes of one CA gene (Sobic.003G234200)
were revealed using 33 SNPs, with 4 distinct haplotypes being characterized by the wild and weedy
genotypes. Two of the wild and weedy haplotypes were maintained in cultivated sorghum during
domestication, with three new haplotypes arising after domestication (Figure 3B). The loss of wild and
weedy haplotypes in cultivated sorghum in these two genes was consistent with the finding that they
were under purifying selection.

The PPDK-RP gene (Sobic.002G324400) had 22 SNPs in the CDS, based on which 5 haplotypes
were identified. Two haplotypes were characterized by the wild and weedy genotypes, with the main
wild haplotype maintained and further diversifying into two new haplotypes in the cultivated group
(Figure 3C). Based on 28 SNPs in the CDS of the C4 PEPC gene (Sobic.010G160700), 4 haplotypes were
identified. Wild and weedy genotypes encompassed 3 haplotypes and all of them were maintained in
cultivated sorghum (Figure 3D). S. propinquum had unique haplotypes across all 4 genes, while the
Sorghum bicolor race guinea margaritiferum shared haplotypes with the wild and weedy genotypes in
most cases, indicating a closer relationship with the wild and weedy group.
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Figure 3. Haplotype network of 4 core C4 gene with selection signal based on individual SNP analysis.
(A) The PPDK gene (Sobic.009G132900) with signal of purifying selection; (B) one of the CA genes
(Sobic.003G234200) with signal of purifying selection; (C) the PPDK-RP gene (Sobic.002G324400) with
signal of balancing selection; (D) the PEPC gene (Sobic.010G160700) with signal of balancing selection.
Group classification of sorghum accessions used as detailed in Table S1. Color-coding as follows;
cultivated sorghum (red), wild and weedy genotypes (purple), Sorghum propinquum (blue), and Sorghum
guinea margaritiferum (green). The size of the circles in the haplotype networks is proportionate to the
number of accessions with that haplotype. The branch length represents the genetic distance between
two haplotypes.

10. Discussion

The evolution of C4 photosynthesis has been studied extensively at the cross-species level with
signals of adaptive evolution identified on key genes in the C4 pathway [28,34,48–50]. As the evolution
of C4 photosynthesis is driven by environments characterized by low CO2 availability, such as hot and
dry environments in which CO2 uptake is limited by stomatal closure, it is likely that within-species
adaptive variation also exists. However, to our knowledge, studies of within-species allele diversity
and signatures of selection on key genes in the C4 pathway have not previously been undertaken.

Knowledge of existing natural variation and levels of genetic diversity is a pre-requisite for the
optimization of C4 photosynthesis. In this study, we performed the first investigation of the genetic
diversity of C4 gene families within a C4 species using a collection of 48 sorghum lines. We focused on
9 C4 genes due to their reported key roles in C4 photosynthesis. Our collection of sorghum represents
all major cultivated sorghum races, landraces, and wild progenitors, and captures a good proportion of
genetic diversity within sorghum. Substantial variation of nucleotide diversity was observed among
these 8 C4 gene families in sorghum, with the NADP-MDH gene family showing the least diversity
and the PPDK gene family showing the greatest diversity. Nine core C4 genes also exhibited varying
degrees of genetic diversity, ranging from θπ values of 5.04 × 10−3 and 4.32 × 10−3 in PPDK-RP and
rbcS to θπ values of 0.33 × 10−3 and 0.67 × 10−3 in NADP-MDH and NADP-ME. However, despite such
low levels of diversity, non-synonymous SNPs were identified in both NADP-MDH and NADP-ME
(Table 1). C4 PPDK was the only gene which did not contain a non-synonymous SNP, despite its fairly
large size (gene size, 12748bp; CDS, 2847bp), indicating the function of this gene is highly conserved.

Cultivated sorghum was domesticated more than five thousand years ago in Africa [51–53].
This artificial selection process has morphologically and physiologically reshaped sorghum to better
suit human needs, and also resulted in substantial reduction of genetic diversity genome wide in
cultivated sorghum compared with wild and weedy types [26,54,55]. In this study, reduction of
genetic diversity during sorghum domestication was also observed in the C4 gene families, indicating
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that wild sorghum, as a repository for genetic diversity, might harbor alleles useful for improving
C4 photosynthesis.

However, the overall reduction in diversity of C4 gene families was not significantly different
from the genome-wide average, indicating that this gene family has not been under particularly
strong selection pressure. Similarly, none of the 9 core C4 genes showed a domestication signal at the
gene level. The absence of large sequence variation at the gene level is also consistent with previous
evolutionary studies suggesting that relatively minor changes to pre-existing regulatory networks and
the use of pre-existing cis-elements were often sufficient to recruit genes into the C4 pathway [56,57].
The C4 isoform of the NADP-ME gene found in maize and sorghum is one such gene that has been
found to be activated for C4 photosynthesis via subtle changes to its promoter, while the rest of the
gene is highly conserved [33]. This is consistent with the low diversity in this gene family observed in
our study.

A further high-resolution investigation of domestication signature at the SNP level revealed 2 C4

genes, PPDK (Sobic.009G132900) and CA (Sobic.003G234200), with SNPs under purifying selection,
while the other 2 C4 genes, PPDK-RP (Sobic.002G324400) and PEPC (Sobic.010G160700), were identified
with SNPs under balancing selection. Previous studies have demonstrated that SNP-level analysis
using less stringent criteria is superior for capturing soft selection signals compared with genome-wide
ranking [54,58]. However, the higher sensitivity may come with a cost of a greater chance of false
positives, and therefore requires cautious interpretation. The contrasting selection signals on genes from
the same pathway within taxa found in this study was also reported previously in signal transduction
pathways [59] and the starch biosynthesis pathway [60].

The C4 isoforms of PPDK and PEPC were also found to show signals of positive selection in a
previous cross-species evolutionary study using orthologous groups from closely related C3 and C4

grass species including sorghum [28]. PPDK and PPDK-RP regulate the regeneration of PEP and as
such have a direct effect on CO2 assimilation rate [61], especially under cool temperatures [62,63].
However, it is thought that only minor changes to the enzyme properties of PPDK were sufficient to
recruit it into the C4 pathway and its residues and regions involved in catalyzes are highly conserved
in C4 species [64], possibly validating the fact that only soft selection signals via SNP-level were found
for the C4 isoform of the PPDK gene in our study.

PEPC is also regarded as a potential limiting step in the assimilation of CO2, and variation of
its affinity for CO2/HCO3

− amongst species has been documented [65–67]. CA is also critical to C4

photosynthesis as it catalyzes the first step of the C4 pathway, converting CO2 to HCO3
− [68]. It was

reported in the C4 dicot Flaveria bidentis, where antisense plants with <10% of wild-type CA activity
required high CO2 for growth and showed reduced CO2 assimilation rates [69,70]. Recent experiments
showed CA and PEPC will be more limiting when stomates are partially closed, e.g., under water
limitation [71].

The signal of soft purifying selection on PPDK and CA may suggest the C4 pathway was indirectly
improved during sorghum domestication. Without photosynthetic rate being a direct selection target
in breeding programs, a steady increase in leaf photosynthetic rate over time of cultivar release has
been shown in other cereals, e.g., in Australian bread wheat [72]. The balancing selection signal on C4

PPDK-RP and PEPC may reflect adaptation to diverse environments, as both PPDK-RP and PEPC
are associated with abiotic stress [73,74]. Interestingly, within the PPDK-RP and PPDK gene families,
the non-C4 genes all showed selection signals contrasting with their C4 counterparts with both two
non-C4 PPDK-RP (Sobic.002G324500, Sobic.002G324700) containing SNPs under purifying selection
and the non-C4 PPDK (Sobic.001G326900) containing SNPs under balancing selection.

After domestication, sorghum was introduced from tropical to temperate areas, and adapted to
divergent local environments. New mutations also arose during this diversification process, and played
an important role in local adaptation. In the haplotype analysis, these haplotypes unique to cultivated
sorghum are likely to be young alleles arising after domestication, while haplotypes unique to the wild
progenitor indicate that some haplotypes were lost during domestication of sorghum. Nevertheless, the
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loss of wild haplotypes of C4 genes in cultivated sorghum does not mean these haplotypes are inferior
in terms of photosynthetic efficiency, as photosynthesis was not specifically targeted during sorghum
domestication [11]. On the contrary, bringing these wild haplotypes back to breeding programs after
evaluation of their functions may enrich breeders’ toolkits to manipulate photosynthetic efficiency,
ultimately contributing to yield improvements.

C4 photosynthesis has been well studied over the past 50 years and key components of this complex
pathway have been identified following the advent of transgenic and sequencing technologies [9].
Understanding the genetic diversity of the key enzymes of the C4 pathway is an important step towards
mining the natural allelic variation for the improvement of photosynthesis.

Further investigation of these allelic variation to link them with agronomical traits will provide
new targets for sorghum improvement [75].
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gene families.
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