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Abstract: DNA methylation change has been useful for cancer biomarker discovery, classification,
and potential treatment development. So far, existing methods use either differentially methylated
CpG sites or combined CpG sites, namely differentially methylated regions, that can be mapped to
genes. However, such methylation signal mapping has limitations. To address these limitations, in this
study, we introduced a combinatorial framework using linear regression, differential expression,
deep learning method for accurate biological interpretation of DNA methylation through integrating
DNA methylation data and corresponding TCGA gene expression data. We demonstrated it
for uterine cervical cancer. First, we pre-filtered outliers from the data set and then determined
the predicted gene expression value from the pre-filtered methylation data through linear regression.
We identified differentially expressed genes (DEGs) by Empirical Bayes test using Limma. Then we
applied a deep learning method, “nnet” to classify the cervical cancer label of those DEGs to determine
all classification metrics including accuracy and area under curve (AUC) through 10-fold cross
validation. We applied our approach to uterine cervical cancer DNA methylation dataset (NCBI
accession ID: GSE30760, 27,578 features covering 63 tumor and 152 matched normal samples).
After linear regression and differential expression analysis, we obtained 6287 DEGs with false
discovery rate (FDR) < 0.001. After performing deep learning analysis, we obtained average
classification accuracy 90.69% (±1.97%) of the uterine cervical cancerous labels. This performance is
better than that of other peer methods. We performed in-degree and out-degree hub gene network
analysis using Cytoscape. We reported five top in-degree genes (PAIP2, GRWD1, VPS4B, CRADD
and LLPH) and five top out-degree genes (MRPL35, FAM177A1, STAT4, ASPSCR1 and FABP7).
After that, we performed KEGG pathway and Gene Ontology enrichment analysis of DEGs using
tool WebGestalt(WEB-based Gene SeT AnaLysis Toolkit). In summary, our proposed framework that
integrated linear regression, differential expression, deep learning provides a robust approach to
better interpret DNA methylation analysis and gene expression data in disease study.

Keywords: uterine cervical cancer; DNA methylation; Liner regression; deep learning; differentially
expressed genes
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1. Introduction

DNA methylation has been found a promising biomarker in cancer detection and cancer
classification. DNA methylation can be defined as a heritable epigenetic mark where a methyl group
can transfer covalently to the C-5 position of the cytosine ring of DNA through DNA methyltransferases
(DNMTs). DNA methylation is vital for normal development. It plays very important role in a number
of key operations including genomic imprinting, inactivation of X-chromosome, repression of repetitive
element transcription and transposition, and different diseases including cancer [1]. To biologically
interpret the DNA methylation data, two kinds of analysis are available: (i) single differentially
methylated genes (CpG sites) finding [2,3] and (ii) differentially methylated region (DMR) finding [4–6].
These two kinds of analysis are only specific to performing a single task. Therefore, it is important
to incorporate different factors to correctly interpret DNA methylation data by which it can work
as multi-functionalities from different directions such as prediction of gene expression using DNA
methylation, differential expression analysis, cancer classification [7], hub gene finding, and others.

In practical scenarios, it is observed that DNA methylation normally reduces gene expression
levels [8,9]. However, this opinion varies on different factors. There are different kinds of method
to integrate DNA methylation and gene expression data. There are several shortcomings of those
existing methods. Firstly, it is not easy to determine the directionality of the evaluated gene expression
estimated from the DNA methylation. Normally, the suppression of gene expression is caused by
hypermethylation in the promoter region, while the activation correlates the hypermethylation in
the gene body. Therefore, the prediction of changing in gene expression based on simple DNA
methylation results is difficult [10]. Secondly, an accurate measure of gene promoter methylation is
difficult due to the variance in the size of canonical promoters as well as the presence of the distal
augments, which initiates biases into the association of methylated regions with gene models [10].
Thirdly, the high probability of selecting a long gene due to the nearby differentially methylated
CpGs or overlapping (or nested) with other genes [10]. Fourthly, some specific tools are required for
reformatting the methylation data into the genomic region formats (e.g., BED) for some web-based
methods such as GREAT [11], Galaxy [12]. It creates more complications in their usage [10].

Cervical cancer is a cancer which starts in the cervix, a hollow cylinder that connects the lower
part of uterus to a woman’s vagina. Most of the cervical cancers grow in the cells on the outer surface
of the cervix. Normally women are unable to realize this disease in the initial stage since the symptoms
are more or less similar with the common conditions such as menstrual periods and urinary tract
infections. The normal symptoms of the cervical cancer include abnormal bleeding during mensuration
time or after having sex, pain in the pelvis, as well as pain during the urination [13]. Here, we used
a DNA methylation dataset for uterine cervical cancer from NCBI (Accession ID: GSE30760) [14] which
have two types of samples, one is normal sample and another one is uterine cervical cancer sample.

So far, there has been no method to integrate regression, differential expression and deep learning
strategies for accurate interpretation of DNA methylation in a complex disease like cancer. To resolve
the previously mentioned drawbacks, in this article, we provided an integrated framework using
regression, differential expression and deep learning methods to correctly interpret biologically
of the DNA methylation data through integrating that DNA methylation data and corresponding
TCGA (The Cancer Genome Atlas) gene expression data for uterine cervical data (NCBI accession
ID GSE30760) [14–16]. We pre-filtered the redundant CpG sites, eliminated outliers, and replaced
missing values. Next, we predicted corresponding gene expression value from the pre-filtered DNA
methylation data through linear regression algorithm where the impact between DNA methylation and
TCGA gene expression has been determined. As a result, we obtained the predicted gene expression
matrix for the preprocessed DNA methylation data. Through the entire analysis, we used ByMethyl R
package [10]. Next, we identified differentially expressed genes (DEGs) using downstream analysis,
Empirical Bayes test using Limma [17–19]. After we applied a recently released deep learning method,
“nnet” (feed-forward neural network based model) [20] to interpret those DEGs for determining
the classification capacity of uterine cancer and normal groups, we then estimated all classification
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metrics (average accuracy, average sensitivity, average specificity, average precision, average overall
error rate and area under curve (AUC)) using 10-fold cross validation. We trained our predicted
DEG expression data using “nnet” with the default parameter settings (i) size (=number of units
in hidden layer), (ii) rang (=initial random weights) while [-rang, rang], (iii) decay (=parameter for
weight decay), (iv) maxit (=the maximum number of iterations or number of epochs), (v) MaxNWts
(=the maximum allowable number of weights) and other default parameters. Remarkably, we obtained
90.69% (±1.97%) as average classification accuracy of the uterine cervical cancer samples and normal
samples by using DEG expression data. According to comparative study, the classification accuracy
of our proposed method is higher than that of other state-of-the-art methods. We further performed
in-degree and out-degree hub gene network analysis using Cytoscape [21]. We reported the five
top in-degree genes (PAIP2, GRWD1, VPS4B, CRADD and LLPH) and the five top out-degree genes
(MRPL35, FAM177A1, STAT4, ASPSCR1 and FABP7). After that, we performed Gene Set Enrichment
Analysis (GESA) to determine enriched KEGG pathways and Gene Ontology (GO) terms including
Biological Process (BP), Cellular Component (CC), and Molecular Function (MF) on the set of all DEGs
having FDR < 0.001 using WebGestalt (WEB-based Gene SeT AnaLysis Toolkit) [22]. Finally, our proposed
integrated framework using linear regression, differential expression and deep learning method can
interpret the DNA methylation data better than using single differential methylation analysis or
differentially methylated region finding strategies for any kind of cancer.

2. Materials and Methods

The steps of our proposed framework are demonstrated as follows, as well as in Figure 1.

2.1. Data Collection

In this study, we used a cervical cancer methylation dataset(NCBI accession ID: GSE30760) [14–16].
This dataset included 63 uterine cervical tumor samples and 152 matched normal samples. Of note,
the initial analysis had 27,578 genes.

2.2. Preprocessing of Methylation Data

In this article, we provided an extensive analysis to integrate DNA methylation and corresponding
TCGA gene expression data by utilization of regression, differential expression and deep learning.
In this method, we have utilized different steps as below.

2.2.1. Data Preprocessing

First we eliminated the CpG sites that had missing values in more than half of the samples and
then the remaining missing values would be imputed through integrating a new traditional quality
control R package ‘ENmix′ [23], which is widely useful in Illumina Human Methylation data analysis.
The functions under the ‘ENmix′ package are used to remove unwanted experimental noise and to
improve accuracy and reproducibility of methylation measures. ENmix functions are very flexible
and transparent. In our proposed method this quality control ‘ENmix’ was used in our methylation
data to discard the outliers and to replace missing values using the popular k nearest neighbors
(KNN) algorithm.
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Figure 1. Flowchart of the proposed framework.

2.2.2. Computing Predicted Expression Scores of Gene through Linear Regression Analysis

In this step, we computed the predicted gene expression scores from the preprocessed of DNA
methylation profiles and corresponding TCGA CESC cancer type through linear regression analysis
along with corresponding pre-trained weight factor.

To do so, we utilized the linear regression algorithm to measure the impact between DNA
methylation and gene expression for uterine cervical cancer on preprocessed DNA methylation
and corresponding TCGA CESC cancer type [10]. In a statistical point of view, linear regression is
a linear approach for molding the relationship between a scalar variable (or, dependent variable)
and one or more explanatory variables (or independent variables). In regression analysis, gene
expression (Ex) is the dependent variable and DNA methylation (Mt) is the independent variable.
For an i-indexed gene denoted by genei, Ex = {ex1 , ex2 , ..., exn} is the gene expression across n samples,
and Mt is the corresponding methylation matrix (27, 578× 215 matrix here). Here, we chose those
CpGs (cpgn,j) whose beta values were correlated, i.e., Pearson’s correlation coefficient was greater than
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|0.8|) with gene expression label (genei) for building the model, genei where cpgn,j is the beta value of
j-th CpG in sample n. The equation for the linear regression model was described as follows:

Ex = α + beta ∗Mt (1)

where α denotes the linear regression intercepting factor, and beta refers to the coefficient vector. In our
case, through this linear regression model, we generated the predicted gene expression matrix for
the provided genes (CpG sites) using DNA methylation data. Then we applied 10-fold cross-validation
to validate our model. That means, we need to check the quality of the gene expression inferred by
the linear regression model. Basically, for each validation, to train the model we used 9/10 samples
as training dataset. Then, we computed a gene expression profile for the rest 1/10 samples by
integrating the DNA methylation data and trained model. After completion of 10-fold cross-validation,
our further step was to merge test sample profiles to a gene expression profile containing all samples.
For conducting downstream validation we compared the gene expression with the RNA-seq data.

2.2.3. Voom Normalization and Identifying Differentially Expressed Genes Using Limma

In this step Voom normalization [24] was used and after that we applied Limma [18,25].
After applying Voom normalization tool, we detected DEGs from the predicted gene expression
data for downstream analysis through Limma [19]. According to benchmark methods the performance
of Limma is very good for any kind of data distributions for any sample size. The definition of
the moderated t-statistic of Limma is as follows [19]:

t̄k =

 1√(
1

m1

)
+
(

1
m2

)
 ∗

(
β̂k
p̄k

)
(2)

where m1 denotes the sample size for diseased group and m2 signifies the sample size for control group,
and total sample size m = m1 + m2. β̂k, pk notify corresponding contrast estimator and posterior
sample variance for the genes, respectively.

To find the false discovery rate (FDR) adjusted p-value using Empirical Bayes t-statistics, we used
t-table or cumulative distribution function (cdf). FDR adjusted p-value less than 0.001 indicates
the differentially expressed genes (DEGs) here. This p-value denotes the probability of observing
a t-value which is either equal to or greater than the actually observed t-value in which the given null
hypothesis is true.

Here, we applied the Empirical Bayes test using Limma to compute t-score, p-value and FDR,
where normal uterine samples group had 152 samples and uterine cervical cancer samples group
included 63 samples. Finally, we selected those genes as differentially expressed genes whose
FDR < 0.001. However, all the differentially expressed genes were considered as a single potential
gene signature which could be verified at classification analysis through deep learning.

2.3. Disease Classification of DEGs through Deep Learning

Here, we used a latest deep learning method “nnet” (feed-forward neural network based
model), [20]. We used this deep learning technique with 10-fold cross validation to examine
the class-label (normal and Uterine Cervical cancer groups) of the differentially expressed genes with a
repeat of thirty times. In the cross-validation, we divided the predicted gene expression data of the
DEGs into 10 folds of samples of which nine folds of samples were used as training set, while remaining
one fold of samples was utilized as the test set. From this sub step, we ran “nnet” tool using a certain
number of epochs (termed as “maxit”) that means the deep learning method was internally repeated
for that “maxit” times, and then computed the classification metrics at one time iteration of each fold.
From this sub step, we obtained a confusion matrix consisting of True Positive (TP), False Negative
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(FN), False Positive (FP) and True Negative (TN). This sub procedure was repeated for each fold of
samples (i.e., nine other fold samples). Then we added all these metrics for these 10 times internal
repetition and then produced a final confusion matrix. Then we added all these metrics for these
10 internal repetitions and then produced a final confusion matrix. Thereafter, we repeated this entire
procedure multiple times (30 times) here to obtain the average classification metric values (average
accuracy, average sensitivity, average specificity, average precision, average overall error rate and area
under curve (AUC)). Here, we used the test sample as a validation sample also. In this deep learning
method, we used “nnet” with the default parameter settings (i) size (=number of units in hidden layer),
(ii) rang (=initial random weights) while [−rang, rang], (iii) decay (=parameter for weight decay),
(iv) maxit (=the maximum number of iterations or number of epochs), (v) MaxNWts (=the maximum
allowable number of weights) and other default parameters also.

2.4. Hub Gene Finding

In this regard, we applied Pearson’s correlation analysis on the DEGs identified by our method
for finding out the active edges among genes having correlation value ≥0.8 or ≤−0.8. After obtaining
the set of active edges, we performed degree centrality analysis through Cytoscape online tool [21]
and determined in-degree and out-degree scores of each DEG. We marked top 10 in-degree hub DEGs
and top 10 out-degree hub DEGs.

2.5. Gene Set Enrichment Analysis

The potential function, biological significance, and disease relevance of a list of signature genes can
be assessed by Gene Set Enrichment Analysis (GSEA). After identifying differentially expressed genes
we used KEGG pathways and Gene Ontology (GO) annotations (three domains: Biological Process (BP),
Cellular Component (CC), and Molecular Function (MF)) on a set of top differentially expressed genes
by WebGestalt (WEB-based Gene SeT AnaLysis Toolkit) [22]. We obtained all KEGG pathways and Gene
Ontology (GO) terms accompanied by number of genes in that pathway or GO-term, enriched p-value
and FDR. We filtered out those KEGG pathways or GO terms whose FDR was greater than or equal
to 0.05.

3. Results and Discussion

In this case study, we had 27,578 features and 215 samples including 152 normal samples
and 63 uterine cervical cancer samples. After data preprocessing, linear regression and differential
expression analysis, we obtained 6287 DEGs having FDR < 0.001 by Limma, in a list accompanied by
computed t-score, p-value and FDR. Top 25 DEGs are shown in Table 1. For example, ADCY2 was the
topmost DEG with minimum FDR (FDR = 5.64× 10−119). We provided the list of all DEGs obtained by
differential expression analysis by Empirical Bayes test using Limma with FDR corrected p-value in
a supplementary file, Additional file 1: Table S1. Furthermore, the predicted gene expression matrix of
all DEGs computed from original pre-filtered uterine cervical cancer DNA methylation data through
linear regression analysis was provided in another supplementary file, Additional file 2: Table S2.
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Table 1. List of differentially expressed genes (false discovery rate (FDR) sorted).

Gene Symbol t-Score p-Value FDR

ADCY2 45.22 5.64× 10−119 5.95× 10−115

PTPN6 32.50 1.43× 10−89 7.55× 10−86

LHFPL2 32.09 1.63× 10−88 5.71× 10−85

VAV1 30.24 1.41× 10−83 3.72× 10−80

EYA4 −29.40 2.97× 10−81 6.27× 10−78

PNPLA2 29.02 3.38× 10−80 5.94× 10−77

ARID3A −28.71 2.37× 10−79 3.56× 10−76

HOXD10 28.19 6.97× 10−78 9.20× 10−75

TWIST1 27.69 1.85× 10−76 2.17× 10−73

BHMT 26.49 5.42× 10−73 5.72× 10−70

TSLP 26.25 2.76× 10−72 2.65× 10−69

ACCN4 26.16 5.23× 10−72 4.60× 10−69

HOXA6 25.94 2.22× 10−71 1.80× 10−68

PRR5 25.67 1.40× 10−70 1.06× 10−67

NODAL 25.45 6.44× 10−70 4.53× 10−67

EFCAB1 25.41 8.60× 10−70 5.45× 10−67

WNT2 25.40 8.86× 10−70 5.45× 10−67

PC 25.40 9.31× 10−70 5.45× 10−67

S100A8 25.23 2.84× 10−69 1.58× 10−66

VWCE 24.89 3.05× 10−68 1.61× 10−65

IGFBP2 24.86 3.61× 10−68 1.81× 10−65

ZNF385A 24.74 8.36× 10−68 4.01× 10−65

C1orf220 24.71 1.04× 10−67 4.75× 10−65

COG2 24.63 1.85× 10−67 8.15× 10−65

QRFP −24.51 4.16× 10−67 1.76× 10−64

After that, we applied the latest deep learning method “nnet” (feed-forward neural network based
model), [20] on our computed DEG expression dataset which have 6287 features with 215 samples.
We used this deep learning technique with 10-fold cross validation to examine the class-label
(normal and uterine cervical cancer groups) of the differentially expressed genes with a repeat of
30 times. In the cross-validation, we divided all the samples of the predicted gene expression data of
the DEGs into 10 folds of samples of which nine-fold of samples was used as training set, while the
remaining one-fold of the samples was utilized as the test set. From this sub step, we ran “nnet” tool
using maxit (number of epochs) equal to 100, that means the deep learning method was internally
repeated for 100 times, and then computed the classification metrics at one time iteration of each fold.
From this sub step, we obtained a confusion matrix consisting of True Positive (TP), False Negative
(FN), False Positive (FP) and True Negative (TN). This sub procedure was repeated for each fold of
samples (i.e., nine other folds). Then, we added all these metrics for these 10 times internal repetitions
and produced a final confusion matrix. Thereafter, we repeated this entire procedure for multiple times
(30 times) and obtained thirty confusion metrics. Using this, we obtained the average classification
metric values (average accuracy, average sensitivity, average specificity, average precision, average
overall error rate and area under curve (AUC)). Note that our deep learning method has already
repeated 30,000 times (30× 10× 100) from which we computed the average accuracy, where every
sample was used as a test set at least once (i.e., no sample was missing as a test sample). Here we
used test sample as validation 163 sample. In this deep learning method, we used “nnet” with the
default parameter settings (i) size (=number of units in hidden layer) (=2), (ii) rang (=initial random
weights)(=0.1) while [-rang, rang], (iii) decay (=parameter for weight decay)(=5× e−4), (iv) maxit
(=the maximum number of iterations or number of epochs)(=100), (v) MaxNWts (=the maximum
allowable number of weights)(=84,581) and other default parameters. As we used 10-fold cross
validation, 9/10 of 215 samples (i.e., 194 or 193 samples) were considered as training set and 1/10 of
215 samples (i.e., 21 or 22 samples) were taken as test set. of which nine-fold of samples was used
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as a training set, while remaining one-fold of samples was utilized as a test set. Thus, each sample
participated in each role, either in training sample or test sample, at least once. Here, we also used the
test sample as the validation sample. We obtained 90.69% (±1.97%) average classification accuracy
and value of AUC was 0.858. For more details, see Table 2. We have plotted all metrics in Figure 2.

Table 2. Values of disease classification metrics by proposed method.

Metrics Average Value (std *)

Average accuracy 90.69% (±1.97%)
Average sensitivity 73.97% (±1.06%)
Average specificity 97.63% (±1.71%)
Average precision 93.38% (±4.17%)

Average overall error rate 9.30% (±1.97%)
Area under curve (AUC) 0.858

* std: standard deviation.

Figure 2. ROC plots of all classification metrics for the proposed method.

We carried out a comparative study between proposed method and an existing method “RSNNS”
(Stuttgart Neural Network Simulator (SNNS) based deep learning tool) with 10-fold cross validation
with repeating 30 times. In case of “RSNNS” we also used same default parameter settings like (i) size
(=number of units in hidden layer)(=2), (ii) maxit (=maximum number of iterations or number of
epochs) (=100), among others. In both cases we have repeated entire procedure 30 times to to obtain a
reliable classification. Our proposed method produced an average classification accuracy of 90.69%
(±1.97%) whereas existing method “RSNNS” had 87.27% (±5.92%) as average classification accuracy
(see Figure 3). We considered our framework had better performance than all other methods using
deep learning tool.

Here, we applied Pearson’s correlation analysis on our DEGs for finding out edges among genes
having correlation value greater than or equal to 0.8 or, less than or equal to (−0.8). Then, we also
performed in-degree and out-degree hub gene network analysis using Cytoscape [21]. As an example
the five top genes with highest in-degree values were namely PAIP2, GRWD1, VPS4B, CRADD and
LLPH, see Table 3. Similarly, the five top most out-degree genes were namely MRPL35, FAM177A1,
STAT4, ASPSCR1 and FABP7, see Table 4. We provided detail hub gene network structure in a
supplementary file, Additional file 7: Table S7.
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Table 3. Top 10 hub genes according to the in-degree centrality from our proposed method.

Gene Symbol In-Degree Out-Degree
Average
Shortest Path
Length

Betweenness
Centrality

Closeness
Centrality

Clustering
Coefficient

PAIP2 439 32 3.587 0.802 0.279 0.188
GRWD1 425 66 3.435 11.001 0.291 0.178
VPS4B 406 68 3.460 2.276 0.289 0.191
CRADD 406 178 3.087 11.003 0.324 0.152
LLPH 403 40 3.545 2.313 0.282 0.182
NDUFA4 390 89 3.556 1.927 0.281 0.168
NDUFB6 372 111 3.294 4.661 0.304 0.175
ZKSCAN4 372 88 3.364 1.434 0.297 0.200
SMARCD1 365 43 3.515 0.734 0.284 0.214
TMED10 348 39 3.546 4.124 0.282 0.193

Table 4. Top 10 hub genes according to the out-degree centrality from our proposed method.

Gene Symbol In-Degree Out-Degree
Average
Shortest Path
Length

Betweenness
Centrality

Closeness
Centrality

Clustering
Coefficient

MRPL35 239 376 2.765 9.354 0.362 0.141
FAM177A1 21 339 3.002 0.263 0.333 0.225
STAT4 94 332 2.872 2.744 0.348 0.211
ASPSCR1 68 329 2.888 1.132 0.346 0.212
FABP7 204 315 2.779 3.008 0.360 0.171
HNRNPA0 65 311 3.010 1.230 0.332 0.191
ANGPTL4 18 299 2.887 0.364 0.346 0.249
DDX19A 86 283 2.993 1.385 0.334 0.218
TRNT1 40 282 3.119 0.477 0.321 0.221
PFDN1 52 274 3.005 0.526 0.333 0.243

In the corresponding literature survey, we found that most of the topmost hub genes detected
by our method played an important role in the respective cancer. PAIP2 gene and cervical cancer
were found to be associated by Berlanga et al. [26]. GRWD1 was utilized as the negatively regulator
of p53 in tumorigenesis [27]. It had been also used as a potential bio-marker in DNA methylation at
the time of treatment and risk assessment of cancer. Methylation of GRWD1 might be a protective
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factor in the development of tumor [28]. VPS4B gene and cervical cancer were reported in the
literature Broniarczyk et al. [29]. Similarly, CRADD gene is involved in cervical cancer, as reported in
Sundaram et al. [30], while LLPH gene was associated with cervical cancer in Feron et al. [31]. Similarly,
the topmost out-degree hub genes were mostly associated with cervical cancer through literature
search. For example, the association between FAM177A1 and cervical cancer were documented in
Wen et al. [32], whereas STAT4 was connected with the respective cervical cancer in Luo et al. [33].
In addition, ASPSCR1 and cervical cancer are reported in Liang et al. [34], while FABP7 was found to
be linked to cervical cancer in Zhang et al. [35].

These 6287 DEGs, which have FDR < 0.001, were taken for Gene Set Enrichment Analysis using
WebGestalt (WEB-based Gene SeT AnaLysis Toolkit) [22]. We had applied WebGestalt (WEB-based Gene
SeT AnaLysis Toolkit) database on our DEG set to obtain all KEGG pathways and Gene Ontology (GO)
terms [Biological Process (BP), Cellular Component (CC) and Molecular Function (MF)], accompanied
by number of genes in that pathway or GO-term, enriched p-value and FDR. Here, we took our
input data set in the prescribed format of WebGestalt which was in a two-columns pattern, first one
was gene name and second one was score. Here we used t-score as score. Significant pathways
and GO-terms were described in below and also for more details see Tables 5–8. For example,
hsa05205:Proteoglycans in cancer was a top significant KEGG pathway which has minimum FDR value
(2.16× 10−5). A total of 198 genes were associated in this pathway with enriched p-value 6.65× 10−8.
For the remaining top 10 significant KEGG pathways, see Table 5. We provided the list of all KEGG
pathways in a supplementary file, Additional file 3: Table S3. In addition, the volcano plot of the of
normalized enrichment score of those FDR significant KEGG pathways is shown in Figure 4. Similarly,
GO:0008283 cell proliferation was one of the top significant GO-BP terms with FDR value 0. A total
of 1986 genes were associated with this GO-BP term, enriched p-value 0. For the remaining terms,
see Table 6. We provided the list of all GO-BP terms in a supplementary file, Additional file 4: Table S4.
In such analysis, we found GO:0005783 endoplasmic reticulum as one of the top significant GO-CC terms
with FDR value 0. A total of 1861 genes were associated with this GO-CC term, enriched p-value 0.
For the rest, see Table 7. We provided the list of all GO-CC terms in a supplementary file, Additional
file 5: Table S5. Furthermore, GO:0042802 identical protein binding was one of the top significant GO-MF
terms with minimum FDR value 0. A total of 1696 genes were associated with this GO-MF term
having the enriched p-value 0. For details, see Table 8. We provided the list of all GO-MF terms in
a supplementary file, Additional file 6: Table S6.
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Figure 4. The volcano plot of normalized enrichment score of the FDR significant KEGG pathways
from GSEA analysis of DEGs.
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Table 5. Top significant KEGG Pathways (FDR sorted).

KEGG Pathway Name * #Genes Enriched p-Value FDR

hsa05205 Proteoglycans in cancer 198 6.65× 10−8 2.16× 10−5

hsa04550 Signaling pathways regulating
pluripotency of stem cells 139 1.32× 10−7 2.16× 10−5

hsa05166 Human T-cell leukemia virus 1 infection 255 6.95× 10−7 7.29× 10−5

hsa04510 Focal adhesion 199 8.94× 10−7 7.29× 10−5

hsa05200 Pathways in cancer 524 1.26× 10−6 8.19× 10−5

hsa04015 Rap1 signaling pathway 206 1.93× 10−6 1.05× 10−4

hsa04514 Cell adhesion molecules (CAMs) 144 2.31× 10−7 1.07× 10−4

hsa04611 Platelet activation 123 7.22× 10−6 2.94× 10−4

hsa04072 Phospholipase D signaling pathway 146 1.02× 10−5 3.69× 10−4

hsa04640 Hematopoietic cell lineage 97 4.01× 10−5 1.31× 10−3

* See supplementary Table S3 for details.

Table 6. Top significant GO-BP term enriched (FDR sorted).

GO-BP Term Name * #Genes Enriched p-Value FDR

GO:0008283 cell proliferation 1986 0 0
GO:0006928 movement of cell or subcellular component 1967 0 0
GO:0009891 positive regulation of biosynthetic process 1949 0 0
GO:0016192 vesicle-mediated transport 1942 0 0
GO:0006955 immune response 1919 0 0
GO:0031328 positive regulation of cellular biosynthetic process 1919 0 0
GO:0006915 apoptotic process 1911 0 0
GO:0010628 positive regulation of gene expression 1911 0 0
GO:2000026 regulation of multicellular
organismal development 1908 0 0

GO:0006468 protein phosphorylation 1860 0 0

* See supplementary Table S4 for details.

Table 7. Top significant GO-CC term enriched (FDR sorted).

GO-CC Term Name * #Genes Enriched p-Value FDR

GO:0005783 endoplasmic reticulum 1861 0 0
GO:0097458 neuron part 1690 0 0
GO:0031984 intrinsic component of plasma membrane 1673 0 0
GO:0031984 organelle subcompartment 1661 0 0
GO:0098805 whole membrane 1630 0 0
GO:0005887 integral component of plasma membrane 1596 0 0
GO:0005794 Golgi apparatus 1516 0 0
GO:0044433 cytoplasmic vesicle part 1462 0 0
GO:0044463 cell projection part 1425 0 0
GO:0120038 plasma membrane bounded cell projection part 1425 0 0

* See supplementary Table S5 for details.

Table 8. Top significant GO-MF term enriched (FDR sorted).

GO-MF Term Name * #Genes Enriched p-Value FDR

GO:0042802 identical protein binding 1696 0 0
GO:0005102 signaling receptor binding 1538 0 0
GO:0019904 protein domain specific binding 684 0 0
GO:0044212 transcription regulatory region DNA binding 896 1.33× 10−15 6.25× 10−13

GO:0001067 regulatory region nucleic acid binding 898 2.00× 10−15 7.50× 10−13

GO:0003690 double-stranded DNA binding 915 1.02× 10−14 3.16× 10−12

GO:0008134 transcription factor binding 638 1.18× 10−14 3.16× 10−12

GO:0016301 kinase activity 845 2.19× 10−14 5.00× 10−12

GO:1990837 sequence-specific double-stranded DNA binding 823 2.49× 10−14 5.00× 10−12

GO:0000976 transcription regulatory region sequence-specific
DNA binding 781 2.66× 10−14 5.00× 10−12

* See supplementary Table S6 for details.
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4. Conclusions and Future Work

In this article, we provided a framework using linear regression, differential expression, and deep
learning to provide correct biological interface for integrating DNA methylation and corresponding
TCGA gene expression data to uterine cervical cancer. To develop the framework, first we eliminated
outliers, then applied linear regression to determine predicted gene expression data from the
preprocessed DNA methylation data by the use of TCGA gene expression data. Then we identified
6287 differentially expressed gene with FDR cut off less than 0.001 using downstream analysis through
Empirical Bayes test using Limma. After that, we applied “nnet” deep learning method to interpret
differentially expressed genes with 10-fold cross validation and with the default parameter settings
(i) size (=number of units in hidden layer), (ii) rang (=initial random weights) while [−rang, rang],
(iii) decay (=parameter for weight decay), (iv) maxit (=the maximum number of iterations or number
of epochs), (v) MaxNWts (=the maximum allowable number of weights) and other default parameters
also. We obtained 90.69% (±1.97%) as average classification accuracy of the uterine cervical cancer
samples and normal samples for DEG expression data, which is more significant than other existing
methods . So through the deep learning and comparative study, we can say that our obtained DEGs
are strong and efficient in disease classification.

Here, we also performed in-degree and out-degree hub gene network analysis using Cytoscape [21].
We reported the five highest in-degree genes (PAIP2, GRWD1, VPS4B, CRADD and LLPH) and the five
highest out-degree genes (MRPL35, FAM177A1, STAT4, ASPSCR1 and FABP7). Furthermore, we used
pathway analysis on DEGs with FDR < 0.001 using WebGestalt. Finally, our framework is useful for
better biological interpretation of the DNA methylation data rather than single differential methylation
analysis or differentially methylated region finding.

In our future study, we will extend our current work through integrating random forest ensemble
method into deep learning strategy to obtain a better classification model in all prospective, and then
apply that on big data (e.g., single cell RNA sequencing data or, other TCGA cancer tissue specific
data) for cancer classification.

Supplementary Materials: The code is available online at https://drive.google.com/open?id=
1LsYe3ypiweox2OSmnD5LDaYMJePeozDd, Table S1: List of all DEGs obtained by differential expression analysis
by Empirical Bayes test using limma with FDR corrected p-value; Table S2: The predicted gene expression matrix
of all DEGs computed from original prefiltered Uterine Cervical cancer DNA methylation data through linear
regression analysis; Table S3: List of all KEGG pathways obtained by WebGestalt; Table S4: List of all GO-BP terms
obtained by WebGestalt; Table S5: List of all GO-CC terms obtained by WebGestalt; Table S6: List of all GO-MF
obtained by WebGestalt; Table S7: Image of hub-finding network by Cytoscape.
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