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Abstract: The abuse of alcohol, one of the most popular psychoactive substances, can cause several
pathological and psychological consequences, including alcohol use disorder (AUD). An impaired
ability to stop or control alcohol intake despite adverse health or social consequences characterize
AUD. While AUDs predominantly occur in men, growing evidence suggests the existence of
distinct cognitive and biological consequences of alcohol dependence in women. The molecular and
physiological mechanisms participating in these differential effects remain unknown. Transcriptomic
technology permits the detection of the biological mechanisms responsible for such sex-based
differences, which supports the subsequent development of novel personalized therapeutics to treat
AUD. We conducted a systematic review and meta-analysis of transcriptomics studies regarding
alcohol dependence in humans with representation from both sexes. For each study, we processed
and analyzed transcriptomic data to obtain a functional profile of pathways and biological functions
and then integrated the resulting data by meta-analysis to characterize any sex-based transcriptomic
differences associated with AUD. Global results of the transcriptomic analysis revealed the association
of decreased tissue regeneration, embryo malformations, altered intracellular transport, and increased
rate of RNA and protein replacement with female AUD patients. Meanwhile, our analysis indicated
that increased inflammatory response and blood pressure and a reduction in DNA repair capabilities
are associated with male AUD patients. In summary, our functional meta-analysis of transcriptomic
studies provides evidence for differential biological mechanisms of AUD patients of differing sex.

Keywords: alcohol use disorders; sex characteristics; meta-analysis; transcriptomics; functional profiling

1. Introduction

Alcohol use disorder (AUD) is one of the most prevalent addictions in the world, according to
data from the World Health Organization [1]. Alcohol abuse has been associated with more than 200
different health problems and pathologies [2], leading to high costs for social and health services across
the globe. Alcohol consumption is also responsible for 6% of total deaths every year [1]. Amongst
other effects, alcohol abuse can cause tolerance, physical dependence, and addiction.
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AUD is a multifactorial disease that is influenced by both genetic and environmental factors [3].
Amongst those of environmental origin, social pressure, low socioeconomic level, and high stress
during childhood are among the most relevant factors [4]. At the genetic level, there exist several genes
that, individually, exhibit a modest influence in the probability of suffering from AUDs. For instance,
genetic defects in enzymes involved in alcohol metabolism (Alcohol Dehydrogenase (ADH), Aldehyde
Dehydrogenase (ALDH)) [5] and, in particular, a single mutation in the aldehyde dehydrogenase
(ALDH2) gene, which codes for an enzyme that transforms acetaldehyde into to acetic acid, lead to
acetaldehyde accumulation following alcohol consumption [6]. Thus, patients with specific variants of
ADH suffer displeasing symptoms after low doses of alcohol, thereby discouraging alcohol consumption
and, in turn, significantly reducing the chances of developing an addiction [7]. Epigenetic factors
can also influence the development of addictions [8]. Sex can also influence the risk of developing
AUDs [9] and can be seen as an environmental factor due to diverse cultural views regarding alcohol
consumption in women and a biological/genetic factor [10]. Related studies on hormonal development
have established that differences regarding AUD between men and women start appearing after
puberty [9].

Due to the high prevalence of AUD, any added information regarding disease mechanisms and
organismal effects may be of huge importance. A better understanding of alcohol addiction may
also allow for the development of personalized therapies, and any studies aiming to understand
any differences between men and women could implicate currently unknown genetic factors.
A comprehensive understanding of specific factors would be relevant when developing new therapies
or highlighting risk factors to be considered in patients of each sex.

As such, meta-analyses of transcriptomic studies conducted in the AUD field may provide some
of the answers that we seek. The rapid development of the transcriptomics field has provided crucial
information regarding how cell metabolism becomes altered in different situations, including the
development of AUD [11]. Unfortunately, the obtained results generally lack a biological perspective,
and the conclusions of these studies remain limited due to the methods usually employed in this field,
such as differential expression analysis. However, the application of Gene Set Enrichment Analysis
(GSEA) [12,13], which adds a layer of biological meaning to the results of the traditional analysis,
and meta-analyses of similar studies, which provide statistically more powerful results, [14,15] can
overcome these limitations. Altogether, the combination of these methods may provide answers
regarding how sex influences AUD.

Given the utility of transcriptome analysis in understanding the molecular mechanisms of
disease [16] and the impact of AUD on both social and health services, we aimed to identify those
biological factors and mechanisms differentially affected in AUD patients of both sexes. We undertook a
functional meta-analysis of transcriptomic data from studies found in public repositories that included
samples of AUD patients of both sexes.

2. Materials and Methods

2.1. Systematic Review and Study Selection

The review and selection of studies were carried out between March to May 2020 in the Gene
Expression Omnibus (GEO) [17] and ArrayExpress [18] public repositories. During this step, the
guidelines of the PRISMA declaration for the elaboration of systematic revisions and meta-analysis
were followed [15].

The search identified a range of transcriptomics studies related to human AUD. Keywords used
during this step included but were not limited to: “transcriptomics”, “alcoholism”, “alcohol abuse”,
“alcohol dependence”, “alcohol”, “ethanol”, “Alcohol Use Disorder” and “Homo sapiens.” From this
set of studies, those that fulfilled the inclusion criteria were selected, which included data derived
from RNA sequencing or genetic expression microarray platforms; the study had information about
the sex of the subjects; the study had not been performed on cell lines; the study included a control
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group; and a minimum size of three subjects per experimental group. The normalized data of selected
studies were downloaded using the R package GEOquery [19].

2.2. Bioinformatics Analysis Strategy

The same strategy was applied to the transcriptomic analysis of each selected study. This analysis
included: data preprocessing, differential expression analysis, and functional enrichment analysis.
Next, the functional results of all studies were integrated using meta-analysis techniques (Figure 1a
depicts the bioinformatics analysis pipeline). Version 3.5.1 of R software [20] was used during the whole
study. Every package and library used is detailed in Supplementary Materials (Table S1). Computer
code is available at https://gitlab.com/ubb-cipf/metafunr.Genes 2020, 11, x FOR PEER REVIEW 5 of 18 
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Figure 1. (a) Data-analysis workflow. (b) Principal Component Analysis plot in the GSE44456 study.
(c) Clustering. (d) A forest plot of the GO:1900391, showing the LOR (log odds ratio) of each study and
the global result. (e) Funnel plot of the GO:2001028; dots in the white area indicates the absence of bias
and heterogeneity.

2.3. Data Processing and Exploratory Analysis

Data preprocessing included the standardization of the nomenclature of the experimental group
of each selected study, focusing on sex and diagnosis of AUD. The probe identifiers from the different
platforms were also standardized. The Entrez code of the National Center for Biotechnology Information
(NCBI) [21] was used for this step. Repeated probes were summarized using the median of their
expression levels. An exploratory data analysis was then carried out (descriptive analysis of the
expression levels, principal components analysis, and clustering analysis) to enable the identification
of subjects with anomalous behavior or possible batch effects (Figure 1b,c).

https://gitlab.com/ubb-cipf/metafunr
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2.4. Differential Expression Analysis and Functional Profiling

The analysis of differential expression levels between sexes was performed by using the R package
limma [22]. For every gene, a linear model was adjusted. These models included the contrast to detect
differences between women and men when comparing AUD and control groups:

(AUD Women - Control Women) - (AUD Men - Control Men)

p-values associated with the resulting statistics were adjusted using the Benjamini and Hochberg
(BH) method [23]. Functional enrichment analysis was performed on the results of the differential
expression analysis of each study. This functional profiling was performed using the GSEA method [12],
implemented in the R package mdgsa [24]. This method detects functions that are overrepresented in
groups of genes with a common expression profile. GSEA uses all the genes involved in the study, and
genes are ordered by their level of differential expression and not only their significance; therefore,
GSEA represents a more integrative approach to the study of gene expression. From this list of genes,
ordered according to their differential expression, and the functional annotation of a given database (list
of genes associated with each function), a logistic regression is adjusted for each function with the aim
of explaining the relationship of a group of genes associated with a function and their expression level.
In this type of regression, the relationship is quantified with the logarithm of the odds ratio (LOR),
which compares the possibility that there is an association between a gene and a function against the
possibility that there is no such relationship. Regarding the interpretation of the LOR, when a function
has an LOR > 0, this indicates that the genes associated with that function have higher expression in
women than men, while if a function has an LOR < 0, then the genes associated with that function
will have higher expression in men than women. p-values obtained for every function were corrected
again using the BH method. Functions with an adjusted p-value lower than 0.05 were considered
statistically significant. The metabolic pathways of the Kyoto Encyclopedia of Genes and Genomes
(KEGG) [25–27] and the Gene Ontology (GO) [28,29] were used for this functional enrichment analysis.
GO terms were propagated separately for the three ontologies of this database: biological processes
(BP), molecular functions (MF), and cellular components (CC).

For each ontology (BP, CC, and MF) and KEGG pathways, we analyzed the number of
overrepresented elements shared by the studies. These results were graphically represented as
UpSet plots [30] to depict the number of elements in common between the different sets.

2.5. Meta-Analysis

Results of the functional characterization of studies were integrated through a meta-analysis,
which used the R packages metafor [31] and mdgsa [13]. First, the association with men and women of
every KEGG pathway or GO term that appeared in at least two of the analyzed studies was determined.
This process was performed using the odds ratio logarithms obtained using the DerSimonian and
Laird (DL) method [32] available in the metafor package. This model enabled the detection of functions
overrepresented in the set of analyzed studies, with better precision than that offered by the individual
analysis previously performed, and thus offering greater statistical power. In the global estimation
of the measured effect, the variability of the individual studies was incorporated, thereby granting
greater statistical weight to studies whose values were less variable. The suitability of each analyzed
studies was evaluated and confirmed with a heterogeneity study of the aforementioned indicators.

For each of the KEGG pathways and GO terms analyzed during the meta-analysis, the p-value,
the LOR, and its confidence interval were calculated. p-values were adjusted using the BH method,
and a particular term was considered significant if it had a p-value lower than 0.05. Significant terms
with an LOR greater than 0 indicated an overrepresentation in women, while those with an LOR lower
than 0 indicated an overrepresentation in men. Funnel plots and forest plots were used to evaluate
the variability and the effect measure of every term in each one of the analyzed studies (Figure 1d,e).
The significant results were represented graphically through dot plots and treemaps.
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A total of 12,078 BP terms, 1723 CC terms, 4182 MF terms, and 229 KEGG pathways were evaluated
during the meta-analysis.

2.6. Web Tools

The large volume of data and results generated in this work is freely available in the metafun-AUD
web tool (https://bioinfo.cipf.es/metafun-AUD), which will allow users to review the results described
in the manuscript and any other results of interest to researchers. The front-end was developed using
the Bootstrap library. All graphics used in this tool were implemented with Plot.ly, except for the
exploratory analysis cluster plot, which was generated with the ggplot2 package.

This easy-to-use resource is organized into five sections: (1) a quick summary of the results obtained
with the analysis pipeline in each of the phases. Then, for each of the studies, the detailed results of
(2) the exploratory analysis, (3) the differential expression, and (4) the functional characterization are
shown. The user can interact with the tool through its graphics and search for specific information for
a gene or function. Finally, in Section (5), indicators are shown for the significant functions identified
in the meta-analysis that inform whether they are more active in women or men. Clicking on each
indicator obtains the forest plot and funnel plot that explain the effect of each function in individual
studies, as well as an evaluation of their variability.

3. Results

We have organized the results into three sections. The first describes which studies were assessed
and selected in the systematic review, the second section demonstrates the results of the bioinformatic
analysis of each of the selected studies (with (i) exploratory analysis, (ii) differential expression, and (iii)
functional enrichment), while the third section summarizes the overall results of the studies on the
differential functional profiling by sex.

3.1. Systematic Review and Study Selection

We identified 1416 studies that described illnesses/disorders related to alcohol abuse during the
systematic review, of which we selected only 72 after refining the search. With this refined search,
we avoided interference from studies related to other illnesses associated with alcohol use, such as
fetal alcohol spectrum disorders, or unrelated studies that employed alcohol as a reagent or as part of
growth media. Of these 72 studies, we only selected those transcriptomic studies of AUD performed in
humans, thereby reducing the number of valid studies to 23. Most studies excluded at this point had
been performed in animal models (e.g., rat and mouse), while we also discarded several studies with a
methylome-based rather than transcriptomic approach, since we will subsequently need the same type
of data in our bioinformatics strategy. Finally, we excluded those studies (74%) that lacked information
regarding the sex of the subjects or had less than three subjects in any of their experimental groups.
Remarkably, most of the excluded studies in this final step were due to the lack of a sex perspective.
We also discarded studies without control subjects, which brought the number of applicable studies for
meta-analysis down to four.

Altogether, the number of samples in these studies amounted to a total of 151 individuals:
49 control men, 50 AUD men, 27 control women, and 25 AUD women. In three of the four studies
evaluated, the age of participants was available (mean and standard deviation in years): GSE44456,
58.44 (10.36); GSE49376, 56.5(9); GSE59206, 29.18 (7.74). Figure 2 depicts the flow diagram of the review
system and study selection. The description of selected studies and the distribution of samples in each
experimental group are detailed in Table 1 and Figure 3.

In both GSE44456 [33] and GSE49376 [34], samples were obtained from the New South Wales
Tissue Resource Centre at the University of Sydney, Australia [35]. This institution has a track record
of collaboration in studies regarding AUD, and the volunteers whose samples were used in these
studies were diagnosed using the Diagnostic Instrument of Psychosis (DIP) screening instrument [36].
In GSE52553 [37], samples were obtained from the Collaborative Study on the Genetics of Alcoholism

https://bioinfo.cipf.es/metafun-AUD
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(COGA), which included up to 8000 individuals from the United States [38], and we only used the
expression data from samples that had been grown in control conditions in this study. In GSE59206 [39],
samples were obtained from the inhabitants of the community surrounding Yale University School of
Medicine, USA. We only used the expression data from “baseline time point in neutral conditions”
samples in our study. Of note, subjects in GSE59206 were recruited under the condition that they did
not suffer from alcohol dependence according to the fourth version of the Diagnostic and statistical
manual of mental disorders (DSM-IV); however, the original study notes that several subjects from the
“Heavy Drinking” group engaged in binge drinking. Due to this caveat, the requirements to be part of
said group (consumption of 15 or more standard alcoholic beverages per week in men and 8 or more
standard alcoholic beverages per week in women), and the updated fifth version of DSM our experts
used [40], we considered these subjects as part of the AUD group in our meta-analysis, even though
they were not diagnosed with such an addiction in the original study.
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Figure 2. Flow diagram of the systematic review and selection of studies for meta-analysis according
to PRISMA statement guidelines.

Table 1. Studies selected for analysis after the systematic review. GEO (Gene Expression Omnibus)
accession number, platform used, number of samples, sample tissue and citation number are included.

GEO Accession Platform Number of Samples Sample Tissue Citation

GSE44456 1 GPL6244 Affymetrix Human Gene 1.0 ST Array 39 Hippocampus McClintick, J. et al. [33]

GSE49376 2 GPL10904 Illumina HumanHT-12 V4.0
expression beadchip 48 Dorsolateral

prefrontal cortex Xu, H. et al. [34]

GSE52553 3 GPL570 Affymetrix Human Genome U133 Plus
2.0 Array 42

Immortalized
lymphoblasts from

blood samples
McClintick, J. et al. [37]

GSE59206 4 GPL10558 Illumina HumanHT-12 V4.0
expression beadchip 22 Whole blood Beech, R. et al. [39]

1 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE44456. 2 https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE49376. 3 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52553. 4 https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE59206.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE44456
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE49376
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE49376
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52553
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE59206
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE59206
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3.2. Individual Analysis of the Studies

The initial exploratory analysis helped to pinpoint any bias caused by the batch effect in the
studies corresponding to GSE44456 and GSE59206 (detailed results in the metafun-AUD web tool).
We corrected the batch effect using the limma package [22], which incorporates a control variable in
the linear model used in the differential expression, adjusting the part of variability that corresponds to
this effect.

With the results of the differential expression analysis performed in each study, we also performed
a functional enrichment analysis for every GO ontology and KEGG pathway. In this analysis, terms
associated with one condition can be due to an overrepresentation of that term in the members of one
sex when they suffer AUD, or the underrepresentation of the same term in the members of the opposite
sex when they suffer AUD, and that could cause an indirect overrepresentation due to the relativistic
nature of the results of the comparison performed.

Individual functional enrichment analysis of GO terms and KEGG pathways revealed the highly
diverse nature of significant results among studies (Table 2). The relationship analysis of the significant
functions using UpSet plots (all GO functions in Figure 4 and specific functions by ontology in Figures
S1–S4) indicated a low number of functions obtained by the simple intersection between studies.
These parameters reinforce the implementation of functional meta-analysis, which avoids the loss of
information and allows for the quantification of a combined measure of the activity for each function
across all studies with greater precision than that provided by individual studies.

Table 2. Number of significant GO terms and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways in each study after applying GSEA. Positive and negative LOR represent overrepresentation
in women with AUD and men with AUD, respectively.

GO Terms KEGG Pathways

Studies Positive LOR Negative LOR Positive LOR Negative LOR

GSE44456 1 1208 703 39 25

GSE49376 2 449 802 16 25

GSE52553 3 7 66 0 2

GSE59206 4 113 14 5 0
1 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE44456. 2 https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE49376. 3 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52553. 4 https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE59206.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE44456
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE49376
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE49376
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52553
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE59206
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE59206
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Figure 4. UpSet plots showing the number of common and specific GO functions in women (a) and
men (b).

3.3. Meta-Analysis

We performed four groups of functional meta-analyses, one for each GO ontology and another
one for the KEGG pathways using every term found in at least two of the selected studies. As a result
of these meta-analyses, we indicated a total of 285 BP terms, 96 CC terms, 79 MF terms, and 6 KEGG
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pathways as significant (Table 3). These terms were overrepresented in either male of female AUD
patients. The LOR values of these significant terms ranged between −0.62 and 0.98.

Table 3. Number of significant GO terms and KEGG pathways resulting from each meta-analysis.
Positive and negative LOR represent overrepresentation in female and male AUD patients, respectively.

Ontology/Database Positive LOR Negative LOR

Biological Processes 134 151

Cellular Components 73 23

Molecular Functions 55 24

KEGG pathways 5 1

The functional groups with the highest overrepresentation for each sex have been summarized
using treemaps and are shown in Figures S5–S7.

Among the terms overrepresented in male AUD patients and thus underrepresented in female
AUD patients, we found significance for several terms related to tissue growth and remodeling.
Interestingly, these terms also specifically link to tissues derived from the mesoderm, and we also
identified terms related to growth factors, adherens junctions, and collagen. We also uncovered
significance for terms related to an increased innate immune and inflammatory response, including an
increase in the secretion of Interleukin (IL)-1 and the migration of cells of the immune system. We also
observed a general overrepresentation of terms related to the sense of smell, neural regeneration,
triglyceride synthesis, response to angiotensin, activity on the plasma membrane, transcriptional
regulation, and inhibition of proteolytic activity in male AUD patients (see Figure 5).Genes 2020, 11, x FOR PEER REVIEW 11 of 18 
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Figure 5. Differential Functional Profiling by Sex. The dot plot shows the functional groups with the
greatest differential activity between the sexes. Each dot represents a biological function. Size indicates
the number of genes involved in that function and color associated with the level of significance.

Among those terms overrepresented in female AUD patients and thus underrepresented in male
AUD patients, we found significance in terms related to synaptic activity, vesicle formation, ciliary
activity, melanosome organization, DNA reparation, protein transport, and growth factor inhibition.
In this case, we also found significance with a considerable number of terms related with almost every
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step of gene expression, including nuclear and mitochondrial transcription, histone acetylation, RNA
maturation involved in the formation of both tRNA and ribosomes, translation, and the degradation of
both RNA and proteins (see Figure 5).

3.4. Metafun-AUD Web Tool

The Metafun-AUD web tool (https://bioinfo.cipf.es/metafun-AUD) contains information related
to the four studies and 151 samples evaluated in this study. The portal includes fold-changes of genes
and log odds ratios of functions and pathways for each evaluated study, which can be explored by
users to identify profiles of interest.

We conducted a total of 18,212 meta-analyses. For each of the 466 significant functions,
metafun-AUD demonstrated the global activation level by sex for all studies and the specific contribution
of each study, using statistical indicators (log odds ratio, confidence interval, and p-value) and graphical
representations by function (forest and funnel plots). This open resource aims to contribute to data
sharing between researchers to aid the elaboration or interpretation of similar studies.

4. Discussion

Using a functional meta-analysis of transcriptomic data from different studies found in public
repositories, we identified, for the first time, those biological mechanisms differentially affected in male
and female AUD patients and obtained statistically significant results that more limited intersectional
methods may have missed [15,32].

Even though sex differences in AUD have a proven biological basis, the most common scenario in
studies includes few to no women. This situation has caused sex to be seldomly accounted for when
studying the effects of AUD [41], and we observed this bias in most of those studies discarded during
the study selection process. Including the perspective of sex in the present study of AUD provided a
better characterization of the differences between male and female AUD patients besides its origin and
should allow a better understanding of both risk and biological factors associated with AUD and the
efficient adaptation of therapies and pharmacological treatments available [41].

We observed a remarkable lack of standardization among studies. To counter this unfortunately
general problem, several experts have already suggested that studies follow four basic principles:
Findable, Accessible, Interoperable, and Reusable, with studies that fulfill these requirements labeled
as “FAIR” (Findable, Accessible, Interoperable, and Reusable) [42]. The application of these principles
has already become common in projects of greater scope, which ensures the easier generation and
divulgation of data [42,43].

The low number of studies selected represents a limitation with our systematic review; however,
we preferred to keep strictly to our selection criteria to ensure comparability. We are also aware
that the different types of tissue used in the studies and an unbalanced group of samples by sex in
some cases decreases the statistical power. Given these points, and the knowledge that these studies
are independent and derive from different environments, we treated this specific variability using
a meta-analysis of random effects that detects those mechanisms with a similar pattern in the set of
studies. Furthermore, we carried out a subsequent evaluation to confirm that no studies displayed a
constant atypical pattern in functions and genes, ensuring the robustness of the obtained results.

The central nervous system is one of the organs most affected by chronic alcohol consumption.
Studies in human postmortem brain samples have identified specific pattern of gene expression in
brain of alcoholics when compared with controls [44,45]. More recently, transcriptome analysis from
pre-frontal cortex of alcoholics further confirms the role of specific genes and biological pathways
associated with alcoholism and AUD [46,47]. Nevertheless, these studies have been performed with
male samples, and sex differences have not been described. In general, we found that female AUD
patients displayed an increase in the activity of several neuronal and synaptic functions compared
to male AUD patients. These results agree with studies, for example, by de la Monte et al. and
Pfefferbaum et al., where an alteration in activity associated with an elevated generation of glial

https://bioinfo.cipf.es/metafun-AUD
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cells, which are significantly affected by alcohol and are significantly altered in our study [48,49].
However, female AUD patients exhibit worse transduction of olfactory signals and decreased neuronal
regeneration in comparison to male AUD patients [50]. This finding suggests that cells of the brain in
female AUD patients may attempt to counteract neuronal function and regeneration problems with an
increase in activity, which could be related to the increased activity of the reward system observed
in previous studies, thereby leading to a greater vulnerability to addiction. Indeed, studies have
established sex-based differences in alcohol addiction in humans and experimental animals [51] and
ethanol reward-seeking behaviors [52]. For instance, preclinical studies have consistently shown that
under a variety of circumstances, female humans, rats, or mice drink significantly more ethanol than
male counterparts [53]; however, genes associated with the reward system (e.g., c-Fos or -Fos B) do not
exhibit different expression patterns between the sexes after ethanol exposure in rodents.

We also observed sex-based differences in the immune system response, which agrees with
a previous study that described brain region-specific increases in microglial markers in human
postmortem brain samples from moderate alcoholics [54]. For instance, we discovered increased
activity and migration of several cell types related to the innate immune response in male AUD patients.
This increase might relate to an augmented response upon the presence of pathogens and inflammation,
and studies have related an increased inflammatory response to AUD [55,56], which might be related to
a decrease in the production of tumor necrosis factor-α. However, the innate immune response may be
depressed in female AUD patients, making them more vulnerable to infections. In agreement with the
activation of the immune system in men, a recent study demonstrates that increased mean diffusivity
in the brain gray matter of humans and rats undergoing chronic drinking associates with a robust
decrease in extracellular space tortuosity induced by microglial activation, which could facilitate the
dopamine pathways and contribute to the progressively enhanced addictive potency of alcohol [57].
It is interesting to note that gender differences have been observed in microglia cells in resting and
developmental brain [58] and sexual differentiation of microglia and its impact on brain physiology
and pathology has been shown [59]. Furthermore, in association with the difference in immune activity,
we also observed an increase in hematopoietic function in male AUD patients in comparison to female
AUD patients, which could be implicated in overall tissue growth and not only during embryonic
development. This increase in tissue growth and inflammatory response may suggest that the effects
of AUD make men especially vulnerable to some kinds of cancer in comparison to women, an idea
supported by the decreased representation of terms related to DNA repair in male AUD patients [60].

We also observed that alcohol induces wide-ranging alterations related to tissue regeneration and
scarring. Male AUD patients exhibited an increased platelet activity, which could relate to the observed
increased response to several growth factors, endothelial proliferation, and epithelial differentiation.
This finding suggests that female AUD patients suffer more severe inhibitory alterations in these
processes, and thus their response to the presence of wounds is slower and less efficient. These
functions may relate to the formation of adherens junctions or binding of cells to the extracellular
matrix, which we observed to follow a pattern similar to the aforementioned functions. However, on a
more specific level, male AUD patients suffer more significant melanosome degeneration and loss of
pigmentary function than female AUD patients, which would suggest a less efficient performance of
the function of the skin as a pigmentary barrier and thus the more rapid formation of skin lesions due
to exposure to the sun.

At the cardiovascular level, we observed an augmented response to angiotensin in male AUD
patients, suggesting a greater tendency to suffer high arterial pressure levels due to the vasoconstricting
effects of angiotensin [61].

We also noted an overrepresentation of terms related to microtubules, including cilia structure
and protein and vesicle transport, in female AUD patients. These results are similar to those recently
published by Hitzemann et al., which observed an increased preference for alcohol consumption and
alteration in both ciliary organization and extracellular matrix in female mice [62]. These functions
may also relate to the increase in synaptic and melanosome organization already observed in women,
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but due to their importance in a variety of different functions, they could be involved in several
alterations related to transport at a cellular level [63,64].

Of particular note, we observed the underrepresentation of several functions related with the
development of tissues and organs in female AUD patients, which, together with terms related with
embryonic development, agree with established knowledge regarding the negative impact of alcohol on
pregnancy, especially in the development of nervous structures [65]. These alterations could also relate
to changes to the extracellular matrix, which has a crucial function during embryonic development
in cell migration and has been noted as an element more significantly affected by AUD in women
compared to men. Indeed, chronic exposure to alcohol can cause a variety of problems in the female
reproductive system, including abnormal menstrual cycles, a failure to ovulate, an increased risk of
spontaneous abortions, and early menopause [66]. All the described malformations correspond with
those observed in children diagnosed with fetal alcohol syndrome [67]. Additionally, in relation to
cell metabolism in general, female AUD patients display an overrepresentation of terms related to
the synthesis and degradation of several kinds of RNA. These alterations also include an increase
in histone acetylation, RNA methylation, a general increase in nuclear and mitochondrial activity,
and alterations in terms related to protein synthesis and degradation. Although the implications of
these particular alterations are diverse and require in silico and in vitro confirmation, recent studies
have linked alterations to transfer RNA metabolism to neurodevelopmental disorders [68].

Finally, in many of the observed processes and mechanisms, we observed the presence of terms
implied in totally opposed functions; we hypothesize that this may represent an effort to compensate
for the changes prompted by AUD.

In summary, our findings provide new insight into the complex biological processes and the
differential profile of the biological mechanisms in male and female AUD patients. Said functions and
pathways might be helpful to better understand sex-based differences in AUD, and their in-depth study
could open the door to the development of more effective, personalized treatments for this pathology.

5. Conclusions

In conclusion, we provide further evidence for functional meta-analysis as a robust and efficient
means of evaluating and integrating data derived from transcriptomic studies with differing approaches.
Furthermore, the application of this method promotes the use of FAIR data in future biomedical studies.
The strategy followed in this study fostered the detection and characterization of functional differences
caused by sex in AUD-driven changes at a transcriptomic level. These alterations include decreased
neuronal and tissue regeneration, malformations to the embryo during pregnancy, alterations related
to intracellular transport, and the increased replacement rate of both RNA and proteins in female AUD
patients. Meanwhile, male AUD patients displayed an increase in inflammatory responses and blood
pressure and a decrease in the ability to repair DNA, which may relate to the increased risk of cancer.

These results confirm the utility of incorporating the perspective of sex into biomedical studies,
thereby improving our understanding of AUD-related mechanisms in men and women, and generating
relevant information for the development of efficient, personalized treatments.
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