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Abstract: Spinal muscular atrophy (SMA) is a lower motor neuron disease, once considered incurable.
The main symptoms are muscle weakness and muscular atrophy. More than 90% of cases of SMA are
caused by homozygous deletion of survival motor neuron 1 (SMN1). Emerging treatments, such as
splicing modulation of SMN2 and SMN gene replacement therapy, have improved the prognoses
and motor functions of patients. However, confirmed diagnosis by SMN1 testing is often delayed,
suggesting the presence of diagnosis-delayed or undiagnosed cases. To enable patients to access the
right treatments, a screening system for SMA is essential. Even so, the current newborn screening
system using dried blood spots is still invasive and cumbersome. Here, we developed a completely
non-invasive screening system using dried saliva spots (DSS) as an alternative DNA source to
detect SMN1 deletion. In this study, 60 DSS (40 SMA patients and 20 controls) were tested. The
combination of modified competitive oligonucleotide priming-polymerase chain reaction and melting
peak analysis clearly distinguished DSS samples with and without SMN1. In conclusion, these results
suggest that our system with DSS is applicable to SMA patient detection in the real world.

Keywords: dried saliva spot; spinal muscular atrophy; SMN1; modified competitive oligonucleotide
priming-polymerase chain reaction; melting peak analysis; nested PCR

1. Introduction

Spinal muscular atrophy (SMA) is one of the most devastating neuromuscular disor-
ders, characterized by motor neuron degeneration [1]. The patients present with muscle
weakness and muscular atrophy [1]. Clinically, SMA is divided into five subtypes: Type 0
(the most severe form, prenatal onset, death within weeks of birth); Type I (Werdnig–
Hoffmann disease, severe form, onset < 6 months, non-sitter); Type II (Dubowitz disease,
intermediate form, onset < 18 months, sitter); Type III (Kugelberg–Welander disease, mild
form, onset > 18 months, walker); and Type IV (the mildest form, onset > 30 years) [2,3].

The majority of SMA cases (~95%) involve homozygous deletion of survival motor
neuron 1 (SMN1), while some others (~5%) carry a deleterious SMN1 mutation, thus SMN1
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is considered the disease-causing gene [1,2]. The homologous gene, SMN2, serves as an
SMA-modifying gene because a high SMN2 copy number is generally associated with a
milder phenotype [4,5].

SMN1 and SMN2 are identical except for five nucleotides located in intron 6, exon 7,
intron 7, and exon 8 [1]. Molecular diagnosis of SMA requires the detection of SMN1-
specific nucleotides, especially the one located in exon 7. Several methods have been
developed to achieve this, including single-stranded conformation polymorphism (SSCP)
analysis [1], restriction enzyme digestion analysis [6], modified competitive oligonucleotide
priming-polymerase chain reaction (mCOP-PCR) [7,8], multiplex ligation-dependent probe
amplification (MLPA) [9], digital droplet PCR (ddPCR) [10] and next-generation sequenc-
ing (NGS) [11].

SMA has long been thought an incurable disease because of the absence of effective
drugs. However, three new and effective drugs for SMA are now available: nusinersen [12],
onasemnogene abeparvovec-xioi [13], and risdiplam [14]. These drugs give better out-
comes when treatment is initiated at an early stage, before the onset of symptoms [12–14].
Therefore, there is a growing implementation of newborn screening programs for SMA
(NBS-SMA) worldwide [7,15–21]. Technically, the current NBS-SMA program can detect
all SMA patients with a homozygous deletion regardless of the clinical subtype.

Even though NBS-SMA has begun in many countries, there remain many older chil-
dren or adults with SMA in the population who were not detected in early infancy. The
majority of them may be diagnosed with SMA in a timely fashion, but the rest may
be diagnosed late or may not be diagnosed, particularly those with a later onset of the
disease [22–25]. Undiagnosed patients cannot access treatment with the new drugs. There-
fore, to complement NBS-SMA, it is desirable to establish a screening system that covers
older children and adults. The samples for that purpose should be collected at schools,
workplaces, or homes. However, one potential hurdle is the invasiveness of blood-based
templates such as dried blood spots (DBS), which may require health care visitation of the
individuals or blood collection by health care workers.

Here, we aim to develop a non-invasive SMA screening method from dried saliva
spots (DSS) to detect SMN1 using a combination of nested mCOP-PCR and melting curve
analysis. The simplicity and non-invasiveness of the DSS collection might be suitable for
adults and children school-aged or older. To our knowledge, there has been no reported
study employing DSS as genetic material to screen for SMA.

2. Materials and Methods
2.1. Patient and Control Samples

A total of 61 DSS samples (40 SMA patients and 21 controls) were enrolled in this study.
The patients had been diagnosed as having SMN1-deleted SMA based on an SMN1 deletion
test using the PCR restriction fragment length polymorphism (PCR-RFLP) method [6].

Prior to this study, informed consent was obtained from all participants. The study
was approved by the Ethics Committee of Kobe University Graduate School of Medicine
(reference number 1210, approved on 12 October 2011) and was conducted in accordance
with the World Medical Association Declaration of Helsinki.

2.2. Detection of SMN1 and CFTR
2.2.1. Outline of the Detection System

Our system consisted of two steps, multiplex nested PCR amplification and melting
curve analysis. (1) Multiplex nested PCR. The first-round PCR amplified SMN1 exon 7
and SMN2 exon 7 using a common primer set, and simultaneously amplified CFTR as
a reference gene. The second-round PCR amplified SMN1 exon 7 with a specific mCOP
primer set and simultaneously amplified CFTR as a reference gene. (2) Melting curve
analysis. The dissociation characteristics of the nested PCR products during heating were
analyzed. In this analysis, the SMN1 peak was clearly separated from the CFTR peak.
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2.2.2. Preparation of DSS Samples

The chemically modified filter paper was used in this study, Indicating Flinders
Technology Associates (FTA) card (GE Healthcare, Boston, MA, USA), which is designed to
inactivate highly pathogenic organisms. The DSS sample was prepared by direct spitting
into the center of the FTA card and was then air-dried for at least one hour. The DSS
cards were sent to our laboratory for immediate analysis or stored in a dark room at room
temperature until use.

2.2.3. Multiplex Nested PCR
First-Round PCR: Multiplex Amplification of SMN and CFTR Outer Fragments

A conventional multiplex PCR was used to amplify outer fragments of SMN1/SMN2 and
CFTR using the GeneAmp®PCR System 9700 (Applied Biosytems, Foster City, CA, USA).

The DSS was punched out in the center of the spot area using a 2 mm diameter
paper punch. The punched paper was then placed into a 50 µL PCR mixture for direct
amplification containing 1 U of DNA polymerase KOD FX Neo (TOYOBO, Osaka, Japan).
A blank paper was also punched out and used as a negative control. The primers used
to amplify the outer fragment of SMN1 and SMN2 were R111 (5′-AGA CTA TCA ACT
TAA TTT CTG ATC A-3′) and 541C770 (5′-TAA GGA ATG TGA GCA CCT TCC TTC-3′)
(Figure 1A) [1]. The primers used to amplify the outer fragment of CFTR were CF621F
(5′-AGT CAC CAA AGC AGT ACA GC-3′) and CF621R (5′-GGG CCT GTG CAA GGA
AGT GTTA-3′) (Figure 1A) [26].

Figure 1. Primer locations for (A) the first-round PCR and (B) the second-round PCR. Arrows indicate
the direction of the primers.

The PCR conditions were: (1) initial denaturation at 94 ◦C for 7 min; (2) 35 cycles of
denaturation at 94 ◦C for 30 s, annealing at 60 ◦C for 30 s, and extension at 72 ◦C for 30 s;
(3) additional extension at 72 ◦C for 7 min; and (4) hold at 10 ◦C.

To confirm the amplification of the target sequences, the first-round PCR products
were run on a 4% agarose gel in 1 × TBE buffer and visualized by Midori-Green staining
(Nippon Genetics, Tokyo, Japan). The first-round PCR products were then diluted 100-fold
and used as the template for the second-round PCR.

Second-Round PCR: Allele-Specific Amplification of SMN1 and CFTR Inner Fragments

A real-time mCOP-PCR was performed to specifically amplify the inner fragment of
SMN1 using a LightCycler® 96 system (Roche Applied Science, Mannheim, Germany). Here,
the inner fragment of CFTR was also amplified, together with SMN1, as a reference gene.



Genes 2021, 12, 1621 4 of 10

Two microliters of a 100-fold dilution of the first-round PCR product were added
into a reaction mixture with a final volume of 30 µL containing 1 U of DNA polymerase
KOD FX Neo and 1.5 µL EvaGreen® Dye (Biotium, Hayward, CA, USA). The primers for
allele-specific amplification of the SMN1 inner fragment were RIII and SMN1-COP (5′-TGT
CTG AAA CC-3′) (Figure 1B) [1,27]. The primers for amplification of the CFTR inner
fragment were CF621F2 (5′-ATC ATA GCT TCC TAT GAC CCG GA-3′) and CFTR-COP
(5′-GGC TGG GTG TA-3′) (Figure 1B).

The PCR conditions were as follows: (1) initial denaturation at 94 ◦C for 7min; (2) 20 cy-
cles of denaturation at 94 ◦C for 30 s, annealing at 37 ◦C for 30 s, and extension at 72 ◦C for
30 s; and (3) melting curve analysis consisting of an initial holding step at 65 ◦C for 1 min,
a heating step with a temperature increase from 65 to 97 ◦C at a rate of 0.2 ◦C/s, and a final
holding step at room temperature.

To confirm the amplification of the target sequences, the second-round PCR products
were run on a 4% agarose gel in 1 × TBE buffer and visualized by Midori-Green staining.

2.2.4. Melting Curve Analysis

Melting curve analysis was performed with LightCycler® 96 Software (version 1.1.0.1320).
The temperature conditions are described above. Fluorescence data were converted into
melting peaks by the software and plotted as the negative derivative of fluorescence
with respect to temperature (−dF[fluorescence]/dT[temperature] vs temperature) [28]. To
quantify the melting peak profiles, we calculated the SMN1/CFTR ratio (SCR). The SCR
values are defined as the SMN1 melting peak height divided by the CFTR melting peak
height (see the Results section).

2.3. Statistical Analysis

To compare differences in the SCR between the two groups, the Student’s t-test was
performed using Microsoft Excel with the add-in software Statcel 3 (The Publisher OMS
Ltd., Tokyo, Japan). A p-value of less than 0.05 was considered statistically significant.

3. Results
3.1. Preliminary Assays

We analyzed three fresh samples using conventional PCR and gel electrophoresis: a
control DSS sample, a patient DSS sample, and a blank filter paper sample as a negative
control. Nested PCR products of these samples were electrophoresed on an agarose gel
(Figure 2A). The control DSS sample showed two bands for the SMN1 (169 bp) and CFTR
(111 bp) products, whereas the patient DSS sample showed only one band for CFTR,
indicating the absence of SMN1 amplification. CFTR has been often used as the reference
gene [26,28,29].

Next, instead of using conventional PCR analysis and agarose gel electrophoresis,
we analyzed the samples using real-time PCR and melting curve analysis. To detect
the amplification products of CFTR and SMN1, melting curve analysis was performed
immediately after real-time PCR (Figure 2B). The control DSS sample showed two melting
peaks for the SMN1 (77 ◦C) and CFTR (82 ◦C) products, whereas the patient DSS sample
showed only one peak for CFTR, indicating the absence of SMN1 amplification.

Then, we also checked the possibility of DNA degradation in the DSS sample during
the storage period. We analyzed the same control DSS sample 1, 2, 3, and 4 months after
saliva collection. Two melting peaks for the SMN1 and CFTR products were observed in
all the experiments performed at 1, 2, 3, and 4 months.
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Figure 2. Detection of SMN1. (A) Agarose gel electrophoresis of the second-round PCR products indicating the SMN1 band
(169 bp) and the CFTR band (111 bp). Lanes M, 1, 2, and 3 represent the DNA ladder, SMA patient, healthy control, and
blank paper, respectively. (B) Melting curve and melting peak analysis to detect SMN1/CFTR in a healthy DSS (blue line),
an SMA DSS (red line), and a blank paper (green line).

Here, we defined the SCR value using the peak height of those two genes. The value
tended to decrease as the months increased, suggesting that SMN1 degraded more easily
than CFTR (Figure 3). However, we also noticed that the SCR value did not obviously
decrease within one month after saliva collection. Thus, we analyzed all DSS samples
within two weeks in the main experiments.

3.2. Main Assays
3.2.1. Melting Curve Analysis of 60 DSS Samples

We collected DSS from 21 healthy controls and 40 SMA patients. These SMA patients
enrolled in this study had been confirmed to carry no SMN1 exon 7 using the PCR-RFLP
method [6].

All the samples were successfully analyzed except for one DSS sample of a healthy
control (1 out of 21 DSS). This sample showed no amplification in the first-round PCR (data
not shown). This negative result might be due to the absence of DNA or the presence of
PCR inhibitors. We then excluded this sample from further analysis. In total, we analyzed
20 DSS of healthy controls and 40 DSS of SMA patients.

All 20 DSS samples from healthy controls produced two melting peaks for SMN1 and
CFTR, whereas all 40 DSS samples from SMA patients had only one melting peak for CFTR.
The melting peak profiles of the patients using DSS were consistent with their RFLP-PCR
results using freshly collected blood.

3.2.2. SCR Values between Controls and SMA Patients

In the early stage of the development of our system, the results of melting curve
analyses were only examined by visual inspection by two individuals. However, to
properly deal with poor-quality or poor-quantity DNA samples, we needed to quantify the
melting peak pattern and determine the cutoff point of our assay. For that purpose, we
used SCR values of healthy controls and SMA patients.
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Figure 3. The SMN1/CFTR peak ratio (SCR) value. (A) The formula to calculate SCR. (B) The changes
to the SCR value over the month(s).

The SCR value of healthy controls was 0.59 ± 0.12 (mean ± SD), whereas the SCR
value of SMA patients was 0.13 ± 0.01. The SCR value differences between the two groups
were statistically significant (p < 0.01) (Figure 4).

(n=20) (n=40)

p < 0.01

Figure 4. Box-and-whisker plot of the SCR values from controls (blue box) and SMA patients (red box). The “x” mark
represents the average value. The middle, lower, and upper lines of the box represent the median value, the 25th percentile,
and the 75th percentile, respectively.
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The SCR value ranges of controls and SMA patients were far apart and did not overlap
in this study. An SCR value of 0.2, however, was tentatively set as the cutoff point showing
the absence of SMN1. This tentative cutoff point was less than −3 SD of healthy control
values, 0.23.

4. Discussion
4.1. Expansion of SMA Screening to Older Children or Adults

There may be quite a few undiagnosed cases of SMA in all age groups. The NBS-SMA
is a nationwide public health program intended to identify newborn infants with SMA.
However, the number of newborns screened for SMA is too small to detect all affected
infants with SMA [20]. A nationwide spread of the NBS-SMA program may not happen
soon. In addition, infants after the neonatal period will not be tested in the NBS-SMA.
Diagnosis of SMA may become more difficult after the neonatal period. Milder symptoms
can make a diagnosis of SMA more difficult because of similarities with other muscle
weakness diseases [24,30].

To increase the diagnosis rate, we must consider adding SMA screening into the health
check items for infants, toddlers, school-age children, and adults. Our system may be
the best option for SMA screening as part of the health checks. As a non-invasive and
cost-effective alternative, DSS sampling is suitable for health checks held in schools or
workplaces. Once dried, DSS samples can be stored at room temperature in the dark,
without any special equipment, and they can be sent to a center or a laboratory by airmail,
enabling telediagnosis and eliminating hospital visitation.

4.2. Saliva as a Good Source for Genetic Analysis

Saliva has been used for analysis of human DNA by PCR-based HLA typing [31], mi-
croarray SNP genotyping [32,33], TaqMan SNP genotyping assays [32,34], loop-mediated
isothermal amplification-melting curve (LAMP-MC) analysis [34], PCR-Sanger sequenc-
ing [33], next generation sequencing [35], and whole genome or exome sequencing [36,37].

Saliva has now proved to be a good alternative source for genetic analysis. In the
studies mentioned above, saliva was collected using a saliva collection kit with a special
container, either in-house-made [31] or commercially available [32–37]. Later, DNA was
extracted from the liquid saliva sample in the container [31–37].

Some previous studies used a different kind of saliva sample. Instead of a liquid
saliva sample, some researchers prepared DSS samples and extracted DNA from them for
various purposes [38–40]. Kisoi et al. identified insertion/deletion polymorphisms of the
angiotensin-converting enzyme (ACE) gene by PCR amplification using DNA from DSS
samples [38]. Our study also demonstrated genotyping analysis of SMN genes using DSS
samples. These findings support the idea that saliva, even if dried, can be a good DNA
source for PCR.

Kisoi et al. reported a simple DNA extraction method from the DSS samples: they
boiled one DSS punch (4 mm in diameter) and used an aliquot of the supernatant for
PCR amplification [38]. Hayashida et al. reported direct PCR from DSS to detect SNP in
alcohol metabolism-related genes (ADH1B and ALDH2) using a TaqMan probe assay [41].
In agreement with their results, we provide further evidence that direct PCR amplification
is feasible from DSS without boiling or DNA purification procedures.

4.3. Robustness and Accuracy of Our SMA Screening System

In this study, the basic technology to detect SMN1, mCOP-PCR, is a type of allele-
specific PCR. Originally, COP-PCR was based on allele-specific amplification, in which two
oligonucleotide primers compete for one target DNA sequence in one PCR tube [42]. The
primers are short (10–11 bases) and highly identical except for one nucleotide change in
the middle of the primers [8,42]. The modified version adopted in this study, mCOP-PCR,
uses one gene-specific oligonucleotide primer (SMN1-COP) that preferentially binds the
SMN1 sequence rather than the competitor sequence, SMN2 [8].
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Here, we employed nested PCR to rescue low quantity and quality genetic material in
the DSS. The first-round PCR amplified common regions of the target genes and provided
enough template for the second-round PCR, even for quantitative assays [7,8,43]. In
addition, the first-round PCR products contained no other sequences similar to the SMN1-
specific mCOP-PCR primer, which avoids the amplification of unexpected primer binding
sites in the second-round PCR and enhances the specificity of our system [7,8].

4.4. Limitation of PCR-Based Assays Using DSS

The use of saliva, either liquid or dried, has potential limitations for PCR-based assays.
First, the quantity of amplifiable human DNA recovered from liquid saliva is lower than
blood (37.3% in saliva versus 87.6% in the blood) [32]. Second, the DNA quality obtained
from saliva does not always meet the quality standard for certain assays, even though the
DNA obtained from saliva showed a good A260/A280 ratio [36]. DNA degradation during
the storage period may be related to the quality. Third, PCR inhibitors in the saliva may
confound the results [32,44].

We experienced one case of assay failure out of 61 DSS samples (1.6%) in this study.
This failure might be due to the absence of DNA or the presence of PCR inhibitors. The
possibility of DNA degradation can be ruled out because the storage period was less than
two weeks. In our pilot study of NBS-SMA, there were no cases of assay failure out of 4157
DBS samples (0%) [7]. Compared with our previous study of DBS, this study with DSS
showed a higher rate of assay failure.

5. Conclusions

We demonstrated the potential use of DSS sampling as a good alternative source for
SMA detection using nested mCOP-PCR. The sample collection procedure is non-invasive,
easy to handle, and requires no hospital visitation. DSS might be preferable for SMA
screening for older children or adults. We hope that this will help in overcoming the delay
in SMA diagnosis.
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