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Abstract: Normalization of gene expression using internal controls or reference genes (RGs) has been
the method of choice for standardizing the technical variations in reverse transcription quantitative
polymerase chain reactions (RT-qPCR). Conventionally, ACTB and GAPDH have been used as
reference genes despite evidence from literature discouraging their use. Hence, in the present
study we identified and investigated novel reference genes in SK-BR-3, an HER2-enriched breast
cancer cell line. Transcriptomic data of 82 HER2-E breast cancer samples from TCGA database were
analyzed to identify twelve novel genes with stable expression. Additionally, thirteen RGs from
the literature were analyzed. The expression variations of the candidate genes were studied over
five successive passages (p) in two parallel cultures S1 and S2 and in acute and chronic hypoxia
using various algorithms. Finally, the most stable RGs were selected and validated for normalization
of the expression of three genes of interest (GOIs) in normoxia and hypoxia. Our results indicate
that HSP90AB1, DAD1, PFN1 and PUM1 can be used in any combination of three (triplets) for
optimizing intra- and inter-assay gene expression differences in the SK-BR-3 cell line. Additionally,
we discourage the use of conventional RGs (ACTB, GAPDH, RPL13A, RNA18S and RNA28S) as
internal controls for RT-qPCR in SK-BR-3 cell line.

Keywords: SK-BR-3; RT-qPCR; reference genes; hypoxia; gene expression; breast cancer cell line;
HER2 enriched

1. Introduction

Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR) represents
a modified variant of the popular conventional PCR with diverse applications, ranging
from functional genomics to molecular medicine, virology, microbiology, and biotech-
nology [1]. Quantitative PCR-based assays can target both DNA (genome) and RNA
(transcriptome), thereby making it an extremely powerful and important technique in
molecular diagnostics [2]. While functional genomics deals with understanding the func-
tions and interactions of genes and proteins at a genome-wide level including the role of
ligands, receptors, and signaling networks that converge on transcriptional regulation [2],
transcriptomic analysis, deals with ascertaining the functional significance to expression
signature changes between tissues, disease states, or treatment [2]. Large-scale analysis
of expression patterns is performed by RNA-Seq or high-throughput microarray analysis,
however, the findings for individual genes usually are validated by RT-qPCR due to its
high sensitivity, specificity, reproducibility, and broad dynamic range [2–4].

However, this enhanced sensitivity of RT-qPCR imposes special conditions. The
protocol necessitates accurate and precise pipetting, high-quality RNA, accurate estimation
of RNA concentration, and efficient reverse transcription [3]. Other considerations include
standardization of RT-qPCR protocols [5], maintaining consistency of used reagents [6,7]
and careful attention towards assay design, template preparation, and statistical analysis [8].
Any deviation from these requirements (by human error etc.) can introduce variations and
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influence the accuracy and precision of the results [9–12]. To account for such deviations,
several strategies are recommended that can be incorporated in the protocol at different
stages [12–14] ranging from ensuring that a similar sample size is chosen to using controls
such as spike-in foreign RNA and reference genes (previously housekeeping genes).

Normalization using reference genes has been the method of choice by most researchers
since variations in the experimental workflow will affect all genes similarly [14–16]. The
expression of reference genes is expected to be sufficient and stable across different tissues
and cell lines under varied experimental conditions [17]. However, variance in the expres-
sion of conventional reference genes like ACTB and GAPDH across different cell types has
been noted [18–22] causing a continued search for suitable candidate genes. In addition,
given the highly specific nature of RT-qPCR, the Minimum Information for Publication of
Quantitative RT-PCR Experiments (MIQE) guidelines recommend using more than one
reference gene for normalization unless a clear evidence of uniform expression dynamics
of a single reference gene is reported for specific experimental conditions [11]. Identifi-
cation and validation of novel reference genes, hence, becomes imperative for accurate
normalization. In the past, reference genes have been identified using various large-scale
gene expression profiling methods such as Expressed Sequence Tags (ESTs), Serial Analysis
of Gene Expression (SAGE) and Microarray Analysis [23–25]. However, with the advent of
technology, better techniques using RNA-seq data have been employed to identify stable
reference genes. Several studies have previously identified novel reference genes and/or
validated conventional reference genes for the study of breast cancer [26–38].

Breast cancer represents the most common malignant disease worldwide among
women, accounting for 24% of new cancer cases and 15% of cancer-related deaths in
2018 [39] with the number predicted to almost double to 46% by 2040 [40]. With the im-
mense burden of the disease, it becomes crucial to develop better protocols, prediction tools,
diagnostics, and treatment modalities. The PAM50 (Prediction Analysis for Microarrays)
represents a 50 gene classifier containing mostly hormone receptor, proliferation-related,
myoepithelial and basal feature-related genes and is widely used to classify breast cancer
into molecular subtypes [41–43]. The HER2-Enriched (HER2-E) subtype according to
PAM50 is defined by higher expression of ERBB2 along with the upregulated expression of
tumor proliferation-related genes at the RNA and protein levels in comparison to other
cancer types [44,45]. SK-BR-3, established in 1970 from the pleural effusion of a Caucasian
female with malignant breast adenocarcinoma, is a human breast cancer cell line overex-
pressing ERBB2 gene product [46]. There are contrasting views in the literature over the
classification of SK-BR-3 with some authors including it in the luminal subtype [47,48],
with others classifying it as HER2-E [49–51].

Hypoxia is one of the principal drivers of tumor progression and growth in vivo. The
presence of hypoxic conditions in the cancer microenvironment is not only a recognized
event in cancer development but also is sustained by the cancer cells themselves, secondary
to the inflammatory processes [52–54]. Such a condition in the local tumor microenviron-
ment is necessary to induce angiogenesis and release of growth factors whilst inducing
structural and functional damage to the healthy surrounding tissue [54]. It is estimated that
about 1.5% of the whole human genome is transcriptionally responsive to hypoxia, thereby
affecting gene expression [55]. Hence, given the critical role of hypoxia in tumorigenesis
and its direct impact on gene expression, we decided to investigate the stability of the
chosen reference genes in different hypoxic conditions.

In the present study, we identified and validated novel reference genes that could be
used to normalize qPCR data in SK-BR-3 breast cancer cell line. Additionally, we com-
pared expression stability of newly identified genes with previously reported reference
genes [26–38] to select suitable candidate reference genes. Our study reports for the first
time to our knowledge, a comprehensive analysis, combining previous and novel candi-
dates studied over multiple successive passages (p), in replicate cultures S1 and S2, and
validated in various hypoxic conditions for SK-BR-3 cell line.
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2. Materials and Methods
2.1. TCGA Transcriptomic Analysis for Selection of Novel Candidate Reference Genes

The transcriptome profiling datasets of 82 HER2-E (PAM50 classifier) breast cancer sam-
ples were downloaded from TCGA-BRCA legacy archive via R package TCGAbiolinks [56–58].
The scaled_estimate (Platform—Illumina HiSeq; file extension—rsem.genes.results) values,
which represent the estimated frequency of gene/transcripts amongst the total number
of transcripts that were sequenced, were obtained from the database. TPM (transcripts
per million) values were generated by multiplying scaled_estimate values to a factor of
1 million (106). For data analysis and visualization, the TPM values were converted to
logarithmic scale using log2(TPM).

2.2. Gene Ontology (GO)

GO Annotation and enrichment analysis was done using a web based open-access tool—
The Gene Ontology Resource, powered by Panther Classification (http://geneontology.org/
(accessed on 15 April 2021)) [59–62]. Gene ranking was based on the fold enrichment against
the background frequency of total genes annotated to that term in the designated species
(Homo Sapiens; whole genome, GO version Oct 2020, doi: 10.5281/zenodo.408174) [63].
Fisher’s Exact test with False Discovery Rate (FDR) correction was used to estimate signifi-
cance with the cut-off FDR value of <0.05. The tool was further used to group genes based
on functional classification.

2.3. Culture and Seeding Conditions

Samples were collected from the SK-BR-3 cell line (ATCC, HTB-30) that had been
used in our laboratory for previous studies [64]. For consecutive passage analysis, two
cultures, S1 and S2, were established from different laboratory lineages of SK-BR-3 which
were cultured over five consecutive passages (p7–p11). For hypoxic exposure analysis,
cultures at the level of 80–90% confluence were transferred to Xvivo System Sx2 (BioSpherix
Medical; 37 ◦C, 5% CO2, 2% O2). The length of hypoxic exposure for acute hypoxia samples
was 24 h and 72 h. To obtain chronic hypoxia samples, the cultures (n = 3) were fully
maintained in the hypoxic environment for four consecutive passages. From each culture,
3 lysates (in triplicates) were collected per passage. Cells were cultured in RPMI-1640
(Lonza, BE12-115F), supplemented with 10% FBS (fetal bovine serum; Sigma Aldrich,
F9665) at 37 ◦C, 5% CO2 with the growth medium replaced every 2–3 days. Cell passaging
was performed using 1x TrypLE solution (Thermo Fisher Scientific, A12177-02). Cells
were grown to 80–100% confluence in T-25 cm2 flasks (Sarstedt). Cell count and viability
were estimated using a cell counting chamber (Improved Neubauer Hemocytometer). For
further consecutive passages, cells were seeded at a density of 5000 cells/cm2. Three TRIzol
lysates (1 × 106 cells) were obtained from each passage for both cultures for RNA isolation.

2.4. RNA Extraction and cDNA Synthesis

Total RNA was extracted using Trizol reagent (Thermo Fisher Scientific, Waltham, MA,
USA; 15596026) according to the manufacturer’s protocol. The concentration and quality
of RNA were assessed by Nanodrop 2000 with the mean absorption ratios A260/280 and
A260/230 checked to ensure RNA purity. RNA integrity was evaluated using 1.8% agarose
gel electrophoresis. The RNA was further examined for DNA contamination by PCR for
ACTB and GAPDH. The PCR reaction was performed in the presence of both positive and
negative controls. No amplified PCR product was found on the agarose gel after PCR and
electrophoresis of the RNA samples (except for positive controls). The cDNA synthesis
reaction was carried out using the High-Capacity cDNA Reverse transcription kit (Thermo
Fisher Scientific, Waltham, MA, USA; 4368814) in accordance with the manufacturer’s
protocol and guidelines and was stored at −20 ◦C until further analysis.

http://geneontology.org/
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2.5. Selection of Reference Genes and Primer Design

In total, thirteen reference genes were selected by searching for relevant literature
related to various breast cancer cell lines [26–38]. Twelve more genes were selected from
the TCGA dataset analysis and were referred to as Novel Candidate Reference genes. All
selected genes are summarized in Table 1. Along with these 25 candidate reference genes,
three genes of interest (target genes; GOIs) were also normalized to test the selected refer-
ence genes (Table 1). Primers for all 12 selected novel candidate reference genes, PPIA and
SNAI1 were designed using Primer3Plus in accordance with the MIQE guidelines [11,65]
while the rest were taken from literature or from our previous study in MCF-7 cell line [66].
The gene function, primer pairs and respective melting curves of all the selected genes are
presented in Supplementary File S1.

Table 1. Summary table of candidate reference genes and genes of interest (GOI).

Cell Line Source Selected Candidate Reference Genes

Breast cancer various cell lines Literature
ACTB [26,29,32,34], CCSER2 [35], GAPDH [34], HNRNPL [37],

HSP90AB1 [31], PCBP1 [37], PGK1 [30], PPIA [36], PUM1 [28,33,35],
RNA18S [26,34], RNA28S [66], RPL13A [27,33], SF3A1 [32,38]

HER2-E tissue samples TCGA (Novel) BSG, CFL1, DAD1, EIF5A, GABARAP, NACA, PFN1, PSMB4, RBX1,
TPT1, TUBA1B, UBC

Genes of Interest (GOI) Expression Atlas AURKA, BUB1, SNAI1

Selection of the three genes of interest was based on the data from Expression atlas
(https://www.ebi.ac.uk/gxa/home (accessed on 15 April 2021)); European Bioinformatics
Institute). The atlas was searched for SK-BR-3 cell line and GOIs were randomly selected
based on high expression (AURKA; 241 TPM), medium expression (BUB1; 31 TPM), and
low expression (SNAI1; 5 TPM).

2.6. Primer Efficiency

Standard (calibration) curves were analyzed using different concentrations and dilu-
tions as shown in Supplementary File S1. For each reaction, 7 µL was used in a 384 well
plate. Each dilution was done in triplicate for each primer pair along with appropriate
non-template controls (NTC). Real-time PCR was performed using the ViiA7 RT-PCR
thermocycler (Thermo Fisher Scientific). The cycling parameters were 95 ◦C for 10 min
followed by 40 cycles of amplification at 95 ◦C for 15 s, 58 ◦C for 30 s and 72 ◦C for 30 s
with signal acquisition. After that melting curve were obtained by signal acquisition from
58 ◦C to 95 ◦C in increments of 0.05 ◦C/s.

2.7. Reverse Transcription Quantitative PCR (RT-qPCR)

Reverse transcription quantitative PCR (RT-qPCR) was performed with 10 ng of
cDNA per reaction using ViiA 7 RT-PCR thermocycler (Thermo Fisher Scientific). Triplicate
reactions of each sample were done using HOT FIREPol EvaGreen qPCR Supermix (Solis
Biodyne, Tartu, Estonia; 08-36-00020) on 384 well plates (Applied Biosystems™, Thermo
Fisher Scientific, Waltham, MA, USA; LS4309849). The cycling parameters were 95 ◦C for
10 min followed by 40 cycles of amplification at 95 ◦C for 15 s, 58 ◦C for 30 s and 72 ◦C for
30 s. This was followed by melting curve acquisition as described above. All assays were
performed with non-template controls (NTC).

2.8. Determination of the Least Variable Reference Genes and Validation in Hypoxic Conditions

The Cq values obtained from RT-qPCR were used to determine the stability of the
candidate reference genes in the sequential normoxic passage samples using different
algorithms (coefficient of variation—CV%, NormFinder [67], geNorm [17], BestKeeper [68],
Comparative ∆Ct [69] and RefFinder [70]). The least variable reference genes were then
tested in hypoxic samples to verify their stability and expression in hypoxic conditions.

https://www.ebi.ac.uk/gxa/home
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The working methodology and cut-off criteria for each of these algorithms is demonstrated
in Supplementary File S4. Data management and storage along with descriptive analysis
was done using MS Excel (Microsoft Office 365). The various algorithms mentioned above
were performed using R v4.0.2 (via R studio v1.3.1056). A complete workflow employed in
the present study is shown in Scheme 1.
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Scheme 1. Brief overview of the workflow of analysis employed in the present study. The boxes indicate the different steps
including lab wet work that was performed. The circles indicate the algorithms used for selection and identification of
appropriate reference genes in SK-BR-3 breast cancer cell line. Blue boxes indicate the cellular wet lab work whilst the green
and pink boxes indicate the two pipelines followed for selection of candidate reference genes. The yellow boxes indicate the
major work packages and milestones in the common workflow employed. Grey circles indicate the different algorithms
employed for the determination of appropriate reference genes.
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3. Results
3.1. TCGA Analysis for Selection of Novel Reference Genes

Novel candidate reference genes were selected on the basis of HER-E breast cancer
sample transcriptomic data from TCGA legacy dataset by applying the following crite-
ria: (I) medium to high expression levels—mean (log2(TPM) ≥ 5; (II) low expression
variance—standard deviation (log2(TPM)) ≤ 1; (III) no exceptional expression—no log2
(TPM) differs from the mean log2 (TPM) by a factor of two or more (criteria based on study
by Li Y. et al.) [71]. Once the genes were filtered according to the criteria, CV% (Coefficient
of Variation) was calculated. The lower the CV%, the more stable the expression of a
candidate reference gene.

A complete list of 3363 ranked genes which fulfilled the selection criteria is available
in Supplementary File S5. The candidates for validation (12 genes) were selected, based
on further criteria including association with dissimilar cellular functions and that the
selected genes are not subunits of the same protein as encoded by traditional reference
genes. Upon consideration, from the top 10 genes, six genes were selected (GABARAP,
PFN1, UBC, EIF5A, CFL1 and TPT1). Three more genes were selected from ranks 11–20
(NACA, DAD1 and PSMB4). Finally, three genes (TUBA1B, RBX1 and BSG) were randomly
selected from the top 400 ranks.

Based on expression levels (measured as log2[TPM]), ACTB, TPT1 and GAPDH
showed high expression levels while PUM1, SF3A1 and PPIA showed low expression
levels in HER2-E samples (Figure 1a). Based on CV%, however, GABARAP, ACTB and
PFN1 were the genes with the least variable expression, while PUM1, SF3A1 and PGK1
were the genes with the most variable expression (Figure 1b). Genes with higher levels of
expression generally were associated with lower inter-sample variation.

3.2. Gene Ontology (GO) Over-Representation Analysis

Based on fold enrichment (Table 2), the top ranked biological process was modulation
by symbiont of the host process which included GAPDH, UBC and PGK1. However, the
most significantly enriched biological process was cellular response to cytokine stimulus
(FDR = 3.33 × 10−03) which included GAPDH, RBX1, TUBA1B, HSP90AB1, RPL13A,
UBC, CFL1, PPIA and PSMB4. A complete ontology for Molecular function and Cellular
Component is presented in Supplementary File S2.

Table 2. Gene Ontology (Biological Process) of candidate reference genes ranked by fold enrichment.

GO ID GO Term No. of Genes * Fold Enrichment Raw p Value FDR

GO:0044003 Modulation by symbiont of host process 3 46.10 4.24 × 10−05 3.05 × 10−02

GO:0006090 Pyruvate metabolic process 3 38.31 7.20 × 10−05 3.68 × 10−02

GO:0061418 Regulation of transcription from RNA polymerase
II promoter in response to hypoxia 3 34.87 9.43 × 10−05 4.27 × 10−02

GO:0048524 Positive regulation of viral process 3 32.67 7.14 × 10−06 1.03 × 10−02

GO:0019058 Viral life cycle 5 20.33 4.26 × 10−06 7.52 × 10−03

GO:0006417 Regulation of translation 5 12.12 4.90 × 10−05 3.26 × 10−02

GO:0071345 Cellular response to cytokine stimulus 9 7.86 8.38 × 10−07 3.33 × 10−03

GO:0043066 Negative regulation of apoptotic process 7 6.96 4.13 × 10−05 3.12 × 10−02

GO:0006139 Nucleobase containing compound
metabolic process 11 3.64 6.05 × 10−05 3.56 × 10−02

GO:0010604 Positive regulation of macromolecule
metabolic process 12 3.05 1.33 × 10−04 5.02 × 10−02

GO:0043170 Macromolecule metabolic process 17 2.43 2.16 × 10−05 2.01 × 10−02

* No. of genes indicates the number of genes from the input selected candidate reference genes that are represented by the respective GO term.



Genes 2021, 12, 1631 7 of 20
Genes 2021, 12, 1631 7 of 23 
 

 

 
Figure 1. Ranking of the novel (pink) and conventional (blue) candidate reference genes. The rankings are based on TCGA 
database analysis. (a) Gene ranking based on expression levels (log2[TPM]); (b) Scatterplot showing the order of genes 
based on CV% and mean log2[TPM] values. CCSER2 (grey boxplot) was retrieved as FAM190B and violated the selection 
criteria due to low expression levels. 

3.2. Gene Ontology (GO) Over-Representation Analysis 
Based on fold enrichment (Table 2), the top ranked biological process was modula-

tion by symbiont of the host process which included GAPDH, UBC and PGK1. However, 
the most significantly enriched biological process was cellular response to cytokine stim-
ulus (FDR = 3.33 × 10−03) which included GAPDH, RBX1, TUBA1B, HSP90AB1, RPL13A, 
UBC, CFL1, PPIA and PSMB4. A complete ontology for Molecular function and Cellular 
Component is presented in Supplementary File S2. 

  

Figure 1. Ranking of the novel (pink) and conventional (blue) candidate reference genes. The rankings are based on TCGA
database analysis. (a) Gene ranking based on expression levels (log2[TPM]); (b) Scatterplot showing the order of genes
based on CV% and mean log2[TPM] values. CCSER2 (grey boxplot) was retrieved as FAM190B and violated the selection
criteria due to low expression levels.

3.3. Grouping of Genes Based on Functional Classification (Panther)

Panther was used to group the candidate reference genes based on function. The
grouping was done across five different ontologies (Figure 2; Supplementary File S2)—
GO biological process, GO molecular function, GO cellular component, protein class and
pathway. Most of the genes in GO cellular component analysis were associated with cell or
cell part (17 genes each) (Figure 2). In protein class classification six genes were identified as
genes encoding cytoskeletal proteins (ACTB, TUBA1B, TPT1, PFN1, CFL1 and GABARAP).
Finally, based on pathway, three genes were associated with cytoskeletal regulation by
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Rho GTPase pathway (ACTB, PFN1 and CFL1) while two genes were associated each with
glycolysis (GAPDH and PGK1) and Huntington disease (GAPDH and ACTB).
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3.4. Candidate Reference Gene Stability in SK-BR-3 Cell Line

In the present study, we collected three technical replicates from five consecutive
passages (p7–p11) in two replicate cultures S1 and S2. The biological replicates were
analyzed for all 25 candidate reference genes, thereby producing a dataset with 250 Cq
values. A similar dataset was analyzed for the three genes of interest (dataset of 30 Cq
values). Different algorithms were then used to analyze the stability of the reference gene
expression. NormFinder, geNorm, comparative ∆Ct and RefFinder all ranked HSP90AB1,
PGK1, DAD1, PUM1 and RPL13A as the most stable genes in the consecutive passages
of SK-BR-3 (Figure 3). BestKeeper, however, ranked RBX1, CFL1 and UBC as the most
stable genes. RNA18S, TUBA1B and RNA28S were consistently ranked as the least stable
reference gene candidates by all algorithms.
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3.5. Candidate Reference Gene Stability in Replicate Cultures

To analyze the expression stability of candidate reference genes in replicate cultures
S1 and S2, we applied all algorithms separately, as shown in Supplementary File S3.
Descriptive analysis revealed that CCSER2 and GABARAP showed low expression levels
(Cq > 28), while RNA28S and RNA18S showed high expression levels (Cq < 15). Coefficient
of variation (CV%) analyses revealed that TUBA1B showed high variation (>50%) and
hence was not a suitable candidate. Further analysis with BestKeeper revealed ACTB,
SF3A1, CFL1, UBC and NACA to have a low/moderate correlation with the BestKeeper
Index (BI). After removal of these 10 candidate reference genes, the remaining 15 genes
were re-analyzed using various algorithms, and none of the remaining genes violated any
criteria. Finally, cumulative rankings from both cultures revealed HSP90AB1, DAD1, PGK1,
RPL13A and PUM1 to be the top five most stable genes.

3.6. Selection of Reference Genes for Further Validation

Since geNorm indicated that use of two genes (Supplementary File S3) would be
sufficient, we decided to select the top five least variable genes from our analysis and
test different triplets (rather than in pairs, as a good practice) of the selected five genes.
To select the genes, we analyzed the results obtained so far from both cultures whilst
also factoring-in CV% rankings (Supplementary File S3). As a result, HSP90AB1, DAD1,
PFN1, RPL13A and PUM1 were selected for further analysis and normalization of the genes
of interest.

3.7. Normalization of Genes of Interest (GOIs)

The ∆∆Ct method is the method of choice for normalization of the gene expression of
genes of interest [72]. A modification of the ∆∆Ct method was employed in the present
study. The modification allowed us to account for differential primer efficiencies and the
use of multiple reference genes [73,74]. Subsequently, to account for primer efficiency in
the equation, the efficiencies from broad and narrow range dilutions were used (Supple-
mentary File S1). We then normalized the three genes of interest (GOIs)—AURKA, BUB1
and SNAI1—with triplet pairs of the five chosen reference genes (10 possible triplets as
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shown in Figure 4). According to the guidelines, any arbitrary sample can be considered
as an internal calibrator (control) for normalization without any effects on the relative
quantification result. Hence, we considered passage p7 as the internal calibrator since it
was the initial passage in the experiment.
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For evaluation of successful normalization, the NRQs (normalized relative quantities)
should be checked for patterns in expression, and the difference should be minimal between
each sample after normalization [73,75]. For AURKA, we noticed that the expression in
comparison with p7 decreased in p8 followed by increase in p9. The NRQs were found to
be close to p7 levels in p10 and p11 (Figure 4a). However, this trend was not observed in the
triplets with RPL13A (triplets 2, 5, 6, 7, 9 and 10). The expression of triplets with RPL13A
in p9 and p10 was highly elevated in comparison to p7 (Figure 4a). Similar observations
were made for BUB1 and SNAI1 (Figure 4b,c). This may be explained by the fact that
among the five selected genes RPL13A had the lowest correlation r (r = 0.856) with the
BestKeeper Index (Additional Table S10 in Supplementary File S3), which was also shown
by NormFinder results. Hence, RPL13A was not an ideal candidate and we removed it
from the further analysis.

3.8. Effects of Hypoxia on the Stability of the Selected Reference Genes

To evaluate the effects of hypoxia on reference gene stabilities, we applied all algo-
rithms combining data with hypoxic sample results for the four reference genes (HSP90AB1,
PUM1, DAD1 and PFN1). In hypoxia, DAD1 and HSP90AB1 were the two most stable genes
as revealed by NormFinder, geNorm, Comparative ∆Ct and RefFinder (Figure 5). Best-
Keeper, however, ranked PUM1 as the most stable gene, and the DAD1 showed the highest
correlation with the BestKeeper index. Comparison of the expression stabilities of the genes
in normoxia vs. hypoxia showed that the expression stability of all four genes decreased
after the addition of hypoxic samples to the dataset (Figure 5). Only DAD1 and PFN1
displayed improved expression stability in hypoxia according to RefFinder (Figure 5F).
Similarly, only these two genes improved their correlation with the BestKeeper index in
hypoxia. Nonetheless, no gene violated the respective cutoffs in any of the algorithms,
making them suitable reference genes.
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3.9. Experimental Validation of Reference Genes in Hypoxic Conditions

We found that after normalization AURKA was slightly upregulated (Figure 6A) after
24 h of hypoxic exposure while after 72 h, different triplets indicated different results. The
normalization factor (NF) was within the acceptable limits (NF < 2 to 3-fold relative to
the average), thus eliminating potential causative issues, e.g., starting material quantity
or quality, or a problem with one of the reference genes (either not stably expressed, or
not adequately measured) [75]. As pointed out by the other authors [34,75], the choice of
calibrator sample (reference genes) does not influence the relative quantification result.
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Although numbers may differ, the actual fold differences between the samples remain
identical, therefore the results are fully equivalent and only rescaled. The expression of
BUB1 was sequentially increasing, while SNAI1 after an initial (24 h) decrease became
upregulated, but still below the control levels (Figure 6). Both AURKA, and BUB1 were
downregulated (−0.78 and −1.26 average log2 fold change, respectively) in chronic hy-
poxia, when normalized by all four reference gene triplets (Figure 6). However, SNAI1 was
upregulated in chronic hypoxia (+1.03 average log2 fold change). Based on our analysis, we
can conclude that the selected reference gene triplets were able to successfully normalize
the genes of interest irrespective of the expression levels of gene of interest in SK-BR-3 cell
line (AURKA—high expression; BUB1—medium expression; SNAI1—low expression).

4. Discussion

A pivotal aspect in any gene expression study is the selection of appropriate internal
controls that are expressed uniformly irrespective of culturing conditions, experimental
treatment, nutrient stress etc. These controls (or references) normalize any variations
in starting quantities, calibration issues or poor pipetting, thereby providing accurate
results. However, complex gene-gene interactions and environmental effects on gene
expression complicate the identification of such controls. Another layer of complexity
in this pursuit is added by intrinsic heterogeneity of the cancer cells. Several tools and
algorithms (NormFinder, geNorm, BestKeeper, Comparative ∆Ct and RefFinder) have been
developed that can aid in sorting, selection, and validation of the reference genes. However,
the considerations regarding the applicability of these algorithms and the acceptable cut-off
limits are often misinterpreted or misapplied. Finally, the identification and extensive
validation of the reference genes for each type of biological object in different conditions
may not be feasible in every instance. Such studies are often time and resource (labor,
financial) consuming. In the present study, we have identified and validated novel reference
genes for normalization of RT-qPCR results in SK-BR-3 breast cancer cell line.
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In the past the TCGA database has been commonly used to identify novel and reli-
able candidate genes in different cancer types [37,38], but it has never been investigated
individually for HER2-E subtype of breast cancer. Our analysis of TCGA legacy data
revealed that GABARAP, ACTB and PFN1 were the top three genes with the least variation
amongst the samples (Figure 1b). However, upon validation in the SK-BR-3 cell line, we
found that the least variation amongst the samples was displayed by RBX1, UBC and CFL1
(Supplementary File S3). These differences between TCGA database and RT-qPCR results
are normal and expected. Firstly, the database represents a heterogenous mixture of similar
subtypes while the SK-BR-3 is a single cell line, and therefore constitutes a more homoge-
nous sample. Secondly, all samples of TCGA repository come from primary untreated
tumors collected from different institutes. Thirdly, there is an inherent possibility of bias
in the biorepository generation process, stemming from different institutional research
interests, operative protocols, or patient populations [76]. Additionally, it must be consid-
ered that tissue specimens (TCGA data) in addition to cancer and normal mammary cells
contain various types of stromal and immune cells, which are absent from the cell culture
samples. This type of heterogeneity also may have effects on the overall transcription
levels and stability. The database accommodates for most of the possible gene expression
variations in tissues (in vivo) and, since cell lines like SK-BR-3 have been under constant
cultivation over long-term, they tend to behave like outliers when compared to the TCGA
database. Nonetheless, such extrapolation, bridging and application of in vivo data to
in vitro conditions enable us to find common core genes which are uniformly expressed in
both scenarios.

Gene Ontology (GO) analysis (Table 2) revealed that the candidate genes selected
based on the TCGA samples and literature were most significantly enriched in cellular
response to cytokine stimulus (GO:0071345; CFL1, GAPDH, HSP90AB1, PPIA, PSMB4,
RBX1, RPL13A, TUBA1B and UBC). Indeed, it is well known that breast cancer cells
respond to various cytokines in their microenvironment. The cells have been shown to
evade cytokines such as TGF-β in the early stages (due to its anti-proliferative effects),
however, in the later stages TGF-β stimulates the progression of the disease by inducing
epithelial to mesenchymal transition (EMT type 3) [77–79]. IL-1 (adipokine) is known to
increase the aromatase activity in SK-BR-3 cells, resulting in the generation of bioactive
estrogens and increased cellular proliferation [80]. Other cytokines like IL-6, IL-19, IL-
20, TGF-α, TNF-α, and IL-23 are also known to promote cancer progression [77]. Using
data available from Mouse Genome Informatics (MGI; http://www.informatics.jax.org/
(accessed on 12 June 2021)), CFL1 was associated with cellular response to IL-1, IL-6 and
TNF, GAPDH and RPL13A were associated with response to IFN-γ, while HSP90AB1 and
TUBA1B were associated with the response to IL-4. Apart from the cytokine response, the
genes were found to be enriched in viral life cycle (GO:0019058; BSG, HSP90AB1, PCBP1,
PPIA and UBC) and positive regulation of viral processes (GO:0048524; BSG, PFN1 and
PPIA). Evidence of various virus-related DNAs like EBV (Epstein-Barr virus), HPV (Human
Papillomavirus), BLV (bovine leukemia virus) and MMTV (Mouse mammary tumor virus)
has been found in breast cancers [81–84]. In fact, Lawson et al., demonstrated the presence
of HPV-associated pre-malignant koilocytes in normal and malignant breast tissues [85],
indicating possible oncogenic correlation between the viruses and breast cancer. Using
data from MGI, we found that BSG was associated with positive regulation of viral entry
into the host cell, while HSP90AB1 was associated with virion attachment to the host cell.
On the other hand, PFN1 and PPIA were found to be associated with positive regulation of
viral transcription and viral genome replication, respectively.

To understand the role of the four validated reference genes in metabolic processes, GO
biological processes analysis in association with data from MGI (http://www.informatics.
jax.org/ (accessed on 12 June 2021)) were investigated. The genes were found to be associ-
ated with negative regulation of apoptosis (DAD1) and nucleobase containing compound
metabolic process (Table 2). HSP90AB1 was found to be associated with positive regulation
of activities of telomerase, phosphoprotein phosphatase and protein serine/threonine
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kinase. PFN1 was found to play a role in the positive regulation of DNA metabolic pro-
cesses and of transcription by RNA polymerase II, while PUM1 was associated with the
regulation of mRNA stability and the production of miRNAs (microRNAs). Based on
Molecular function, HSP90AB1 and PFN1 shared two common ontologies—RNA binding
and Cytoskeletal protein binding (Supplementary File S2), both of which seemed to be
downregulated in hypoxic conditions (for PFN1, fold change was 0.68 and 0.45 after 24 and
72 h of acute hypoxia, respectively, and 0.89 in chronic hypoxia). With respect to cellular
component analysis the regulation of different genes (even from the same ontology) during
hypoxia was divergent/unrelated. Whilst PUM1, HSP90AB1 and PFN1 shared two ontolo-
gies, nuclear and cytosol-associated genes, the genes were differently regulated with PUM1
showing upregulation while the other two showed downregulation in gene expression.

Our analysis revealed that the four reference genes (HSP90AB1, DAD1, PUM1 and
PFN1), when used in any combination of three, successfully normalized the genes of
interest (AURKA, BUB1 and SNAI1) in both hypoxic and normoxic conditions over multiple
passages. HSP90AB1, previously known as HSPCB, was first described as a candidate
reference gene by Jacob et al. [31] in a variety of 25 different cancer cell lines. However,
the only breast cancer line in that study was MCF-7 (Luminal A subtype). The gene has
been included among the most stable reference genes in other tissues/organs, e.g., ovary,
muscle tissue, adipose tissue etc. [86,87]. Heat Shock Proteins like HSP90AB1 have been
previously shown to be downregulated in response to hypoxia in pig adipose-derived
stromal/stem cells [88] as well as in human hepatocytes [89]. Such downregulation (fold
expression change of 0.71 after 24 h and 0.88 after 72 h in acute hypoxia and 0.52 in chronic
hypoxia) appeared to have an impact on the stability of the gene by marginally lowering
the expression stability in hypoxic conditions (Figure 5).

DAD1, a novel reference gene identified in the present study, is a small integral
membrane protein of the oligosaccharyltransferase (OST) enzyme complex involved in the
highly conserved asparagine-linked glycosylation of proteins in all eukaryotic cells [90].
The gene has been shown to be involved in apoptosis. Loss of DAD1 gene led to apoptosis
in hamster cell lines and yeast cells [91,92]. In fact, DAD1 was preferentially expressed
in hepatocellular carcinoma (HCC) and prostate cancer cells [93,94]. Hence, it has been
postulated that high expression of DAD1 in HCC cells can activate OST and block apoptosis,
thereby enhancing tumor cell survival [93]. We speculate that a similar role of the gene
in the SK-BR-3 breast cancer cell line could explain its consistent and stable expression.
In A431 epithelial carcinoma cells, DAD1 was upregulated in hypoxic conditions (by
a fold change of 1.2) after exposure of 72 h [95]. In our results, however, DAD1 was
downregulated by 0.64-fold change after exposure to acute hypoxia for 24 and 72 h. The
expression then increased and approached normoxia levels during chronic hypoxia (fold
change 0.95). The differences in our results from those in A431 cells could be explained
by the cardinal differences in background transcriptome and epigenome of A4321 and
SK-BR-3 cells. Furthermore, there were differences in culturing conditions. While our cells
were exposed to 2% O2 in acute hypoxia, the A431 cells were exposed to <0.1% O2 [95]. Our
results suggest that SK-BR-3 cells after an initial shock phase quickly adapted to chronic
hypoxic conditions and continued to express core genes in levels similar to normoxia. This
is also supported by the fact that the expression stability of DAD1 improved in hypoxia,
i.e., it was expressed even more stably after exposure to hypoxia.

PFN1, another novel reference gene identified in the present study, is often regarded
as the founding member of its family constituting four profilin genes (PFN1, PFN2, PFN3
and PFN4). These genes have been associated with almost every aspect of cellular func-
tions including proliferation, survival, motility, endocytosis, membrane trafficking, mRNA
splicing as well as gene transcription [96,97]. The overexpression of PFN1 could negatively
regulate cancer cell motility in breast cancer cells [98]. Additionally, it has been demon-
strated that in triple negative breast cancer cell lines, overexpression of PFN1 suppresses
AKT (serine-threonine kinase) activation via upregulation of PTEN (phosphatase and
tensin homolog) [99], indicating the tumor-suppressive character of PFN1 gene. Similar
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observations have also been reported in pancreatic cancer cells [100]. These findings are of
interest since the expression of PFN1 in the SK-BR-3 cell line seems to be uniform and stable
despite its anti-tumorigenic nature. In fact, depletion of PFN1 in breast cancer cells has
enabled hyper-migratory phenotype in vitro and enhanced hematogenous dissemination
from primary tumor in vivo [101]. We can hypothesize that some downstream regulation
is at play, which leads to decreased PFN1 protein levels in breast cancer cells despite rather
uniform expression of the gene.

Finally, the fourth reference gene identified for the SK-BR-3 cell line, PUM1 has been
previously described as a candidate reference gene in various cancers including breast
cancers [28,33,35]. The gene has been associated with cancer cell growth, migration, and
invasion [102]. In fact, amongst the four selected reference genes in our study, only PUM1
showed an increase in expression fold change in hypoxia. The fold change was 0.80 and
1.13 after 24 h and 72 h of acute hypoxia, respectively, and reached 1.56 in chronic hypoxia.
These findings suggest that PUM1 may be more involved in the regulation of cellular
functions under hypoxia in comparison to the other identified reference genes. Another
candidate gene, RPL13A, has been previously described as a stable reference gene in breast
cancers [27,33]. The expression of RPL13A was quite stable in our analysis, however, it did
not yield successful normalization of the genes of interest.

Various other reference genes in the past have been described to be suitable reference
genes in breast cancers including GAPDH, ACTB, PPIA and RNA28S/RNA18S [26,29,32,34].
However, there is also contrary evidence suggesting against the use of these genes as
references [18–22]. The use of GAPDH as a reference gene has long been a topic of debate.
It is overexpressed in cervical, prostate, pancreatic and lung cancers, and it has been the
least stable gene in multiple studies [29,34,103,104]. Similar concerns have been raised
concerning use of ACTB as a single internal control [28]. RNA18S and RNA28S have
been reported previously to be stable reference gene candidates [34], however, concerns
regarding the absence of purified mRNA samples and their relatively high abundance
compared to the target mRNAs have been reported [17]. Both RNA28S and RNA18S were
highly expressed (mean Cq = 7–8) in the present study and in our study of MCF-7 cell
line [66]. Secondly, these two genes are not included in the TCGA database, which makes
it difficult to compare their expression between in vivo and in vitro scenarios.

PPIA along with ACTB was found to be the most stable reference gene for basal type
breast cancer cell lines in hypoxic and serum deprived conditions [36]. However, our
analysis revealed that the expression of PPIA was moderately stable and ranked ninth
in the combined analysis (Supplementary File S3). In our study of MCF-7 breast cancer
cell line, we identified GAPDH-CCSER2-PCBP1 triplet as the most stable reference gene
triplet which could be used to normalize the expression of genes of interest in various
nutrient stress conditions [66]. However, the expression of CCSER2 was extremely variable
in the present study. The gene did not reach the thresholds set for TCGA analysis, and
the expression of the gene was low (mean Cq = 27.4). Hence, we eliminated it from our
analysis in early stages. PCBP1 and GAPDH were among the top 15 most stable reference
genes in our analysis (Supplementary File S3). Interestingly, GABARAP was identified to
have the least variation (CV%) among our novel candidate reference genes, however, the
gene was associated with low expression and poor primer efficiency when confirmed by
RT-qPCR (Supplementary Files S1 and S3).

Nonetheless, the results of the present study are constrained by some limitations.
First, the expression stabilities of the reference genes were validated in vitro only. Second,
these reference genes were tested in normoxic and hypoxic conditions only. Their use for
normalization of expression in other conditions such as nutrient stress, drug treatment etc.
remains to be validated. Finally, given the heterogeneous behavior of cancer cells, there is
a need for inter-laboratory validation to further confirm our results. The major question
that arises is how many more reference genes can we identify. Although a precise number
will be difficult to predict, the estimates in normal human tissues (using ESTs) predict the
numbers to be in the range of 3100 to 6900 genes [23], thereby making a plethora of reference
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genes still waiting to be identified and validated that could be more promising than the
ones previously reported. However, we agree with other authors that rather than testing
thousands of genes, we need to validate a panel of reference genes whose expression under
varying conditions can be proven to be as minimally variable and as robust as possible [35].
Accordingly, based on our analysis, we suggest the use of HSP90AB1, DAD1, PFN1 and
PUM1 in any combination of three (triplet), thereby giving other researchers not one but
four different combinations to choose from based on their individual experimental designs
and needs.

5. Conclusions

Based on the results of the present study, we suggest the use of HSP90AB1, DAD1,
PFN1 and PUM1 in any combination of threes (triplet) for normalization of the expression
of genes of interest in SK-BR-3 breast cancer cell line. The conventional RT-qPCR refer-
ence genes such as ACTB, GAPDH, RPL13A, RNA18S, RNA28S, as well as CCSER2 and
GABARAP are not appropriate for use as reference genes in the SK-BR-3 cell line.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes12101631/s1, Supplementary File S1: Primer Description and Efficiency, Supple-
mentary File S2: Gene Ontology, Supplementary File S3: Replicate Culture Analysis, Supplemen-
tary File S4: Description of Algorithms, and Supplementary File S5: TCGA filtered ranking for
HER2-E samples.
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