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Abstract: The mammary gland undergoes important anatomical and physiological changes from
embryogenesis through puberty, pregnancy, lactation and involution. These steps are under the
control of a complex network of molecular factors, in which epigenetic mechanisms play a role that
is increasingly well described. Recently, studies investigating epigenetic modifications and their
impacts on gene expression in the mammary gland have been performed at different physiological
stages and in different mammary cell types. This has led to the establishment of a role for epigenetic
marks in milk component biosynthesis. This review aims to summarize the available knowledge
regarding the involvement of the four main molecular mechanisms in epigenetics: DNA methylation,
histone modifications, polycomb protein activity and non-coding RNA functions.
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1. Introduction

The mammary gland is a complex organ that undergoes important modifications
during its development and at each cycle of reproduction. The precise and complex
regulation of mammary development has been extensively studied over the years at the
genetic, physiological and morphological levels. Recent reports have assessed the potential
implications of epigenetic control of normal development and regulation of particular cell
types in the mammary gland during the different mammary gland stages.

In this paper, we review the available data on four main molecular mechanisms in-
volved in epigenetics (DNA methylation, histone modifications, polycomb protein activities
and ncRNA functions) in mammary gland biology. Data concerning mammary cancers, as
well as epigenetic modifications due to the environment, health and diet, are not included
in this review.

2. Mammary Gland

The mammary gland is a complex organ containing two compartments, the epithe-
lium and the stroma (for review, see [1]). Ducts and milk-producing alveolar structures
constitute the epithelium. The majority of epithelial cells are secretory cells. These cells
are subject to functional differentiation during pregnancy in order to produce milk later in
lactation. Myoepithelial cells surround epithelial cells and contract, allowing the delivery
of milk. The ducts and alveoli are embedded in the stroma, a connective tissue. This tissue
is composed mainly of adipose tissue and contains blood vessels, fibroblasts, neurons,
and haematopoietic cells. The development of the mammary gland occurs throughout
the lifetime, and the lactating mammary gland is the result of the succession of distinct
hormone-regulated stages (Figure 1). The mammary anlage is established during foetal
development. Then ductal elongation and branching take place principally after puberty.
During pregnancy, alveolar proliferation occurs; however, functional differentiation is
not achieved until parturition and during lactation. Involution is initiated by the loss
of suckling stimuli and the pressure build-up due to cessation of milk removal. During
this stage, massive cell death, collapse of the alveoli and remodelling of the epithelial
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compartment to restore a simple ductal structure are observed. The process reinitiates for
subsequent pregnancies. The regenerative capacity of the mammary gland is enabled by
mammary stem cells [2].
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Figure 1. Principal stages of the mammary gland development throughout the lifetime. Major hor-
mones that control development are outlined in italics and blue. TEB: terminal end bud. GH: 
growth hormone. IGF1: insulin-like growth factor-1. PG: Progesterone. PRL: Prolactin. PL: Placen-
tal lactogen. ERBB4: Erb-B2 Receptor Tyrosine Kinase 4. RANK-L: receptor activator of nuclear 
factor kappa-B ligand. 
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tivity that do not involve modifications of the DNA sequence, thus providing a supple-
mentary layer of information and control [3]. Epigenetic mechanisms correspond to post-
translational modifications of histones and covalent chemical modifications of nucleic ba-
ses that define chromatin structure (Figure 2 and Table 1) [4,5]. Through these epigenetic 
mechanisms, cells integrate environmental stimuli to coordinate a wide range of DNA 
processes, including gene transcription. 

Epigenetic modifications are not restricted to a specific life stage of an organism but 
continue throughout the lifespan [6]. Nevertheless, they more commonly arise during 
stages of development and cell proliferation [7]. As discussed previously, the mammary 
gland goes through several developmental periods including prenatal, postnatal, and pu-
berty. During this time, the mammary gland might be more sensitive to epigenetic modi-
fications and disruptions [8,9]. 

Figure 1. Principal stages of the mammary gland development throughout the lifetime. Major hormones that control
development are outlined in italics and blue. TEB: terminal end bud. GH: growth hormone. IGF1: insulin-like growth
factor-1. PG: Progesterone. PRL: Prolactin. PL: Placental lactogen. ERBB4: Erb-B2 Receptor Tyrosine Kinase 4. RANK-L:
receptor activator of nuclear factor kappa-B ligand.

3. Epigenetic Modifications

The concept of epigenetics describes mitotically stable states and changes in gene
activity that do not involve modifications of the DNA sequence, thus providing a sup-
plementary layer of information and control [3]. Epigenetic mechanisms correspond to
post-translational modifications of histones and covalent chemical modifications of nucleic
bases that define chromatin structure (Figure 2 and Table 1) [4,5]. Through these epigenetic
mechanisms, cells integrate environmental stimuli to coordinate a wide range of DNA
processes, including gene transcription.
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Table 1. Summary of epigenetic modifications and enzymes that play a role in mammary gland development and function.

Groups of Epigenetic
Regulators

Group Members Involved
in Mammary Gland

Development and Function
Epigenetic Modification Description

DNA methyltransferases
(DNMTs)

DNMT1, DNMT3A, and
DNMT3B DNA methylation

Family of enzymes that catalyse the transfer of a
methyl group (CH3) to cytosine in order to form

5-methylcytosine (5-mC) occurs on the 5th carbon
of the pyrimidine ring. Methylation is most often

found at CpGs, but has been
observed in other instances.

TET methylcytosine
dioxygenases TET1, TET2, and TET3 DNA methylation

Ten-eleven translocation methylcytosine
dioxygenases oxidize 5-mC to

5-hydroxymethylcytosine (5-hmC),
5-formylcytosine (5-fC), and
5-carboxylcytosine (5-caC).

Polycomb-group proteins
(PcG) EZH2, Suz12, BMI1, Pygo2 Histone (H3K27) methylation,

Histone (H3K56) acetylation

Family of enzymes that catalyse the transfer of a
methyl group (CH3) or an acetyl group (CH3CO) to

lysine (K) residues of histone proteins.

Lysine demethylases
(KDMs)

JARID1B, UTX, JHDM1B,
JMJD2B

Histone (H3K4, H3K36, H3K9,
and H3K27) demethylation

Enzymes that catalyse the removal of methyl
groups (CH3) from K residues of histone proteins.

Sirtuins (SIRTs) SIRT1 Histone deacetylation
Class III of histone deacetylases (HDACs) that

catalyse NAD-dependent
histone lysine deacetylation.

miRNAs too many to enumerate mRNA degradation
Small (~22 nt) non-coding RNAs that regulate
post-transcriptional gene expression through
negative regulation or mRNA degradation.

lncRNAs too many to enumerate Chromatin remodeling
Long (≥200 nt) non-coding RNAs that regulate
gene expression through different mechanisms,

including chromatin remodeling.

Epigenetic modifications are not restricted to a specific life stage of an organism but
continue throughout the lifespan [6]. Nevertheless, they more commonly arise during
stages of development and cell proliferation [7]. As discussed previously, the mammary
gland goes through several developmental periods including prenatal, postnatal, and
puberty. During this time, the mammary gland might be more sensitive to epigenetic
modifications and disruptions [8,9].

3.1. DNA Methylation

DNA methylation is a process in which a methyl group is added to the carbon-5
position of a cytosine with temporal and spatial precision [10]. This mechanism, me-
diated by DNA methyltransferases (DNMTs) and DNA demethylases, is important in
CpG islands, regions where a cytosine nucleotide is followed by a guanine nucleotide
in the sequence of bases [11]. These CpG islands are enriched at promoters, and the
associated genes can be silenced upon CpG methylation [12]. Inversely, gene body methy-
lation correlates with transcriptional activation [13]. Three different DNMTs (DNMT1,
DNMT3A, and DNMT3B) catalyse DNA methylation and can behave both as transcription
enhancers and inhibitors [14,15]. CpG islands are demethylated by ten-eleven transloca-
tion (TET), a chromatin modifier that allows the conversion of 5-methylcytosine (5-mC)
into 5-hydroxymethylcytosine (5-hmC) to activate DNA demethylation. In this way, TET
family proteins (TET1, TET2, and TET3) regulate embryonic and adult stem cell home-
ostasis [14,16]. DNA methylation can also be found at non-CpG sites, this is referred to as
non-CpG methylation. While it was first discovered in the plant genome [17], it has also
been found in embryonic stem cells and brain tissue [13,18]. DNMT3A and DNMT3B are
known to catalyse non-CpG methylation [19,20].
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3.2. Histone Modifications

Covalent histone modifications, such as acetylation, methylation, phosphorylation,
ubiquitination and sumoylation, are dynamic and can regulate gene expression [21,22].
The crosstalk between these marks and DNA methylation plays a key role in the epigenetic
regulation of genome expression [23]. Histone modifications may activate or inactivate
neighbouring genes, alter chromatin structure and conformation or recruit transcriptional
activators/suppressors [24–27]. At first believed to be an irreversible process, histone
methylation was thought to only be removed by histone eviction or dilution through
DNA replication. However, after the discovery of enzymes that can demethylate specific
Lys residues on histones and, in some cases non-histone substrates, this model changed.
Histone methylation and demethylation are very important for developmental control, cell
fate decisions, and disease [28].

Histone methylation can designate both transcriptionally active (H3K4me3) and in-
active (H3K27me3) regions [29]. Bivalency refers to the presence of both H3K4me3 and
H3K27me3 at promoters [30]. Genes with bivalent domains are primed for differential
expression upon differentiation; they are often found in embryonic stem cells but have
been discovered in adult stem cells as well. Studies suggest that the resolution of a bivalent
domain is required to regulate development and commit to lineage choice [31]. The chro-
matin state also influences the histone modification rate. Chromatin can be untranscribed
and compact, defined as heterochromatin, or can be transcribed and loose, defined as eu-
chromatin [32]. Heterochromatin plays a role in transcription regulation by limiting access
to DNA and impacting the location of nucleosomes. Histone modifications are catalysed
by specific enzymes, such as Histone acetyltransferase (HAT), Histone methyltransferase
(HMT), Protein arginine methyltransferase (PRMT), Histone deacetylase (HDAC) and
Lysine demethylase (KDM) [33].

3.3. Polycomb Proteins

Epigenetic regulation can be mediated by polycomb-group proteins (PcGs), which
are transcriptional regulators that play a role in establishing and maintaining epigenetic
memory during development. In mammals, PcGs form two complexes, Polycomb Repres-
sive Complexes 1 and 2 (PRC1 and PRC2, respectively). PRC2 is the main mammalian
complex responsible for H3K27 trimethylation and is integral to chromatin organization.
Important targets of H3K27 methylation include genes involved in development, stem
cell maintenance, and differentiation [34]. PRC2 is comprised of several subunits, which
include either Enhancer of Zeste Homologue 2 (EZH2) or EZH1 [35] in combination with
Suppressor of Zeste 12 protein homologue (Suz12) and Embryonic Ectoderm Development
(EED) [36].

3.4. Non-Coding RNAs

Non-coding RNAs (ncRNAs) are genes that are transcribed but not translated into
proteins and play an important role in epigenetic regulation [37–39]. There are several
classes of ncRNAs due to their functions as housekeeping or regulatory RNAs. Several
long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs)
are involved in epigenetic regulation. Depending on their function, lncRNAs, which are
transcripts of greater length than 200 nucleotides, can be classified as signals and decoys.
In this case, they are associated with gene activation and suppression. They can also
be classified as guides that regulate gene expression by recruiting enzymes that modify
chromatin. They can be defined as scaffolds that allow the formation of ribonucleoprotein
complexes by recruiting proteins [40]. However, these functions are not exclusive; that
is, multiple functions can be performed by one lncRNA. miRNAs are small, conserved
ncRNAs (18–22 nt in length) [41] that participate in post-transcriptional gene expression
through negative regulation of translation or through mRNA degradation. circRNAs are
ncRNAs generated from back-splicing reactions of linear RNAs. The most important
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function of circRNAs is to act as sponges for miRNAs in cells by increasing the number of
available miRNA binding partners.

Many studies have been conducted in the context of breast cancer and tumorigenesis;
however, epigenetic control is crucial in normal mammary biology, as shown in several
recent studies [42,43]. The mammary gland has the capability to undergo cycles of cell
proliferation, differentiation and apoptosis during adult female life. Epigenetic regulation
plays crucial roles in these different processes. In this review, we propose an overview of
epigenetics in normal mammary gland development and lactation.

4. DNA Methylation in the Mammary Gland

DNA methylation modulating proteins are involved in the regulation of different
mammary gland development stages (Figure 3).
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DNMTs mediate DNA methylation and their role in virgin and pregnant mice has been
investigated using the DNMT inhibitor azacitidine (AzaC). A reduction in the number and
size of ductal and alveolar structures after AzaC treatment is found regardless of pregnancy
status and is likely caused by decreased cell proliferation of mammary epithelial cells [44].
The DNA methylation patterns are relatively similar; however, genes with low expression
are preferentially hypermethylated due to age, not pregnancy [44]. Interestingly, similar
DNA methylation patterns are found between pregnant and retired breeder mice [44].
Pregnancy is found to induce substantial and persistent changes to DNA methylation
of sites that bind Signal Transducer and Activator of Transcription (STAT) 5A and genes
upregulated during pregnancy [43]. DNMT1 is necessary for ductal and terminal end bud
(TEB) development. In fact, deletion of DNMT1 in mice leads to a significant reduction in
mammary stem/progenitor cells [45].

Another DNA methylation modulating protein is TET2. It is the most highly expressed
TET family protein in mammary tissue (The Human Protein Atlas). A mouse model with
mammary-specific TET2 deletion presents with impaired luminal lineage commitment
resulting in enhanced ductal branching and an increased number and size of TEBs, as well
as fibrosis and hyperplasic lesions in virgin heterozygous and knockout mice compared
to wild type mice [46]. Lactating heterozygous and knockout mice are found to have
defective luminal-alveolar development, with fewer lobulo-alveoli; those that are formed
are deficient in lipid droplet-like morphology, resulting in reduced milk production. These
findings suggest that TET2 plays an important role in directing the differentiation of
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mammary stem/progenitor cells [46]. Moreover, TET2 forms a chromatin complex with the
transcription factor Forkhead box P1 (FOXP1), which then regulates the demethylation of
Estrogen receptor 1 (Esr1), GATA binding protein 3 (Gata3), and Forkhead box A1 (Foxa1). These
three genes are known to be involved in mammary luminal lineage specification [47,48].

Lactation performance (milk quantity and milk composition) is under the control
of several important pathways, such as the hypothalamic-pituitary-adrenal (HPA) axis
pathway, which regulates the expression of Growth Hormone (GH) and Prolactin (PRL).
Paired-like homeodomain 1 (PITX1), located upstream of the HPA axis pathway, has
been shown to activate the Pro-opiomelanocortin (Pomc) gene and to interact with Pituitary-
specific positive transcription factor 1 (Pit1), resulting in differential expression of GH, PRL,
and Thyroid-Stimulating Hormone (TSH), which in turn affects lactation performance in
mammals [49]. In goats, the overall DNA methylation status of a PITX1 CpG island in the
mammary gland showed hypermethylation in tissue from the dry period (a period of rest
between lactations) and hypomethylation in tissue from the lactation period [50].

In the same study, several important transcription factors, CCCTC-binding factor
(CTCF), STAT, SMAD, CDE promoter element (CDEF), Specificity Protein 1 (SP1), Kruppel-
Like Factors (KLFs), and zinc finger transcription factors, were predicted to bind to the same
PITX1 CpG island. These transcription factors are known to influence various biological
functions that could affect PITX1 and therefore lactation performance. CTCF binds the gene
Imprinting control region (ICR), thereby regulating gene expression [51]. Proteins in the STAT
family represent some of the main components of the JAK/STAT pathway, which plays a
role in the development and function of mammary epithelial tissue [52]. SMAD signalling
influences mammary gland differentiation via the JAK/STAT pathway [53]. CDEF could
regulate the epithelial cell cycle [54]. SP1 and KLFs could play a role in the expression of
genes with GC-rich promoters [55].

In the lactating bovine mammary gland, a 10 kb region upstream of the αS1-casein
(Csn1S1) gene is hypomethylated. Three CpG dinucleotides are methylated following
E. coli or S. uberis infection, which is associated with chromatin condensation, resulting
in the cessation of αS1-casein expression [56]. These three CpG dinucleotides are also
methylated in healthy mammary glands following an 8-day non-milking period [57] or
during pregnancy [58].

DNMT1 is expressed at a higher rate in cloned lactating cows than in non-cloned
lactating cows. This is linked to a higher apoptotic rate and lower rate of αS2-casein
transcription [59].

Mammary gland fat development is influenced by multiple genes containing CpGs
that are differentially methylated before, during, and after pregnancy in humans, for
example, SH3 and PX domains 2B (sh3pxd2b), RAR-related orphan receptor C (rorc), and AT-rich
interaction domain 5B (arid5b) [60].

Transcription factor E74-like factor 5 (Elf5) controls the differentiation of mammary
luminal progenitor cells into alveolar cells. Methylation of the Elf5 promoter maintains
the stem cell and myoepithelial lineages, whereas loss of this methylation is a mark of
the luminal lineage. Elf5 promoter methylation is therefore lineage-specific [61]. Similarly,
transcription factors associated with luminal differentiation (e.g., GATA3) are found to be
gene body methylated (activated) in human mammary luminal cells [62].

DNA methylation modulating proteins affect the expression of multiple genes that
play a role in mammary gland development. As a result, DNA methylation plays an indirect
role in the formation of TEBs, ductal elongation, lobulo-alveolar, and fat development.
It affects lactation performance and marks mammary epithelial cells with a different
methylation profile depending on the mammary gland stage of development, whether it is
a question of age or reproduction cycle. On a cellular level, DNA methylation is important
for the regulation of mammary epithelial cell proliferation, viability, and differentiation
(Figure 4). It is indisputable that DNA methylation is at least partially responsible for
mammary gland development regulation; however, the intricate relationships between the
different genes it affects have yet to be completely understood.
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5. Histone Modifications in the Mammary Gland

In this review, we will discuss modifications on histone 3 (H3) and their effects on
mammary gland development. Mouse mammary stem/basal, luminal progenitor cell,
and mature luminal cell subsets display distinct patterns of H3K27me3 in the steady
state. The mammary stem/basal cell subset is found to have the lowest H3K27me3 levels;
higher levels of H3K27me3 coincide with reduced gene expression, and H3K27me3 levels
increase upon cell specification. This suggests that mammary epithelial cell differentiation
is dependent on the narrowing of transcriptional programmes and suppression of alternate
cell fates [63].

Multiple histone modifying proteins are important for the regulation of mammary
gland development during the various stages (Figure 3) and the control of several mam-
mary epithelial cell processes (Figure 4).

Lysine-specific demethylase 5B (JARID1B), also called PLU1 or KDM5B, is an epige-
netic regulator. This histone demethylase converts tri- and dimethylated lysine 4 on histone
H3 (H3K4me3 and H3K4me2, respectively) to the monomethylated form (H3K4me1) [64].
It is a part of the JARID1 protein family, which contains proteins that possess H3K4 histone
demethylase activity in vitro and in vivo [65]. H3K4me3 is a mark of positive transcription;
therefore, its demethylases can act as transcriptional repressors that silence gene expres-
sion [66,67]. Nevertheless, JARID1B can activate gene expression when predominantly
recruited to intragenic regions according to Xie et al. [68]. Surprisingly, a more recent study
from Kidder et al. contradicted this JARID1B recruitment site in embryonic stem cells.
While it did suggest that JARID1B removed intragenic H3K4me3, it also showed that it was
predominantly bound to active promoters and enhancers, in correlation with H3K4me3
marks [69]. The latter is also in line with the findings of Ram et al., further contradicting
Xie et al. [70]. It is difficult to determine the reason for these different results, especially
since both Xie et al. and Kidder et al. agree that JARID1B depletes intragenic H3K4me3.
Further studies are required to elucidate the role of JARID1B in gene expression.
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JARID1B is expressed in the mammary gland and several components of the female
reproductive system. Female mice lacking JARID1B exhibit delayed mammary gland
development, reduced fertility rate, lower estrogen levels in circulating blood, and an
altered transcription programme in the mammary epithelium [71]. The loss of JARID1B
leads to a decrease, rather than an increase, in H3K4me3 levels. In fact, in a mouse model,
JARID1B has been shown to act as a transcriptional activator by recruiting the luminal
transcription factor GATA3 to its target genes, such as Foxa1 and Stat5a [71].

FOXA1, a transcription factor that plays an important role in modulating estrogen
receptor α (ERα) binding to many of its target genes, is indispensable in long-range
chromatin remodelling, thereby allowing ERα to access its targets [72]. In the mammary
gland, FOXA1 is also essential for ductal invasion during puberty but is not required for
alveologenesis during pregnancy and lactation [73]. FoxA1 gene body methylation level is
higher in mammary tissue from early parous women (full-term pregnancy under the age
of 25) than in mammary tissue from nulliparous women [74]. FOXA1 is downregulated in
JARID1B-lacking mice, suggesting that an epigenetic regulator can directly affect another
factor with chromatin remodelling functions.

Lysine-specific demethylase 6A (UTX), also named KDM6A, demethylates H3K27me2/3
and is, therefore, a transcriptional activator [75]. In a mammary luminal cell line, the
depletion of UTX leads to the loss of luminal transcription factors, leaving behind cells with
basal characteristics [76]. An in silico correlation between GATA3 and UTX was validated
in vitro, and the complex formed was found to activate multiple genes, including Dicer
and UTX itself. Dicer plays a key role in the biogenesis of small regulatory RNAs, such as
miRNAs and siRNAs [77].

Another demethylase that plays a role in mammary gland epigenetic regulation is
JmjC-domain-containing histone demethylase 1B (JHDM1B), also known as FBXL10. This
protein demethylates H3K4me3 and H3K36me2, thus removing active transcription marks
and inhibiting gene expression [78]. Galbiati et al. reported that JHDM1B knockdown in
two mammary epithelial cell lines leads to an increase in the levels of either H3K4me3
or H3K36me2, depending on the cell line. This suggests that JHDM1B is involved in
the demethylation of these residues. Knockdown of JHDM1B leads to increased cellular
proliferation in one cell line and increases colony-forming ability in both cell lines as well
as greater invasiveness and staminal potential, the latter of which explains the ability
of knockdown cells to form mammospheres [79]. This suggests a role for JHDM1B as a
tumor suppressor with control over cell cycle progression in mammary epithelial cells.
These results are consistent with the findings of Penzo et al. [80]; however, they differ from
Kottakis et al., where silencing of JHDM1B in the same cell lines through a stable lentiviral
system led to cell death [81]. One explanation for these contrasting results could be that
Kottakis et al. used a non-inducible experimental approach and achieved a better gene
silencing efficiency compared to Galbiati et al. and Penzo et al.

Lysine-specific demethylase 4B (JMJD2B) is a histone demethylase also known as
KDM4B. JMJD2B depletion reduces ERα enrichment, and estrogen stimulation leads to
decreased H3K9me3 methylation levels at ERα target sites in JMJD2B-depleted T-47D
human breast cancer cell line, suggesting that JMJD2B is a regulator of H3K9me3 demethy-
lation [82]. A mouse model of JMJD2B depletion in the mammary gland is found to have
delayed ductal morphogenesis and thus mammary gland development [82].

These findings describe the role of H3 modifications in mammary cell fate determina-
tion, lineage commitment, and cell cycle progression. Histone modifications are involved
in ductal morphogenesis and invasion of the fat pad. Moreover, histone modification
regulators have been shown to interact with other epigenetic regulators such as Dicer and
FOXA1. This suggests mammary gland development is dependent on a complex regulatory
network involving multiple epigenetic mechanisms.
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6. Polycomb Proteins Role in the Mammary Gland

PcGs are regulatory elements that play an important role in mammary gland devel-
opment throughout the different stages (Figure 3), but also modulate different mammary
epithelial cell processes (Figure 4).

Suz12 is an essential element of all PRC2 complexes. In vivo, Suz12 loss is lethal [83].
It is thus necessary to study the effects of its deletion in other models. One such model is
Suz12-deleted basal-derived organoids [84]. Suz12 deletion leads to the loss of H3K27me3
and H3K27me2. This results in a complete block of normal mammary gland development
as well as severely reduced progenitor activity in 3D organoid cultures. PRC2 function is
key for the development of the mammary gland since it represses alternate transcription
programmes and maintains chromatin states.

EZH2, a SET domain-containing methyltransferase, is responsible for the formation of
a di- or trimethyl mark on lysine 27 of Histone H3 (H3K27). This mark is later recognized
and bound by PRC1, resulting in transcriptional repression. The specific overexpression of
EZH2 in mouse mammary epithelial cells results in a multilayered, disorganized ductal
epithelium as a consequence of mammary epithelial cell expansion. This supports a role
for PcGs in mammary gland morphogenesis [85]. Conventional knockout mice do not
survive past the embryonic stage [86], which makes understanding the role of EZH2 in
postnatal mammary gland development and function more difficult. Alternate models to
conventional EZH2 knockout mice have therefore been used. A mouse model lacking EZH2
in mammary stem cells was generated by Yoo et al. [87]. Whole mounts of mammary glands
collected at day 13 of pregnancy show augmented mammary alveolar content in mice
lacking EZH2 compared to controls. Histological analysis of mammary tissue collected
at the same stage reveals signs of precocious differentiation of the alveolar epithelium in
mice lacking EZH2 compared to controls, signs such as overt lumina, small lipid droplets,
and expression of whey acidic protein (WAP), normally detected in late pregnancy [87].
In this mouse model, EZH1 was found to compensate for the absence of EZH2. The same
team also performed transplantation experiments using mammary epithelial cells from
mature virgin mice. EZH2 knockout or control cells were injected generating similar ductal
outgrowths. This is in contrast to the findings of Pal et al., who discussed a 14-fold decrease
in the frequency of mammary repopulating cells when a mammary fat pad reconstitution
assay was performed with cells lacking EZH2 [63].

Moreover, in another study by Michalak et al., a transgenic mouse model that allows
the inducible knockdown and, therefore, the temporal control of EZH2 expression was
used. This model showed that EZH2 knockdown in newborn mice stunts mammary gland
development in young virgin mice by delaying terminal end bud (TEB) formation and
impairing ductal elongation during puberty. Moreover, EZH2 is necessary for maintain-
ing the luminal cell pool, and its knockdown delays lobulo-alveolar expansion during
pregnancy [88]. These results underline the importance of EZH2 in mammary luminal
cell specification. The reasons for the contradictory results discussed here are difficult
to pinpoint, and further studies are required to better understand the role of EZH2 in
mammary gland development.

Interestingly, the effects of PRC2 complex member B lymphoma Mo-MLV insertion re-
gion 1 homologue (BMI1) deletion are the inverse of those seen for EZH2 knockdown. BMI1
deletion causes premature lobulo-alveolar differentiation [89], suggesting that EZH2 and
BMI1 might have opposing roles during pregnancy-induced differentiation of luminal cells.

The hedgehog signalling Pathway components patched 1 (PTCH1) and glioma-
associated oncogenes (Gli) 1 and 2 are highly expressed in human mammary progeni-
tor/stem cells cultured as mammospheres but are downregulated when cells are induced
to differentiate. Mammosphere size and mammosphere-initiating cell number are found to
increase when hedgehog signalling is activated and decrease when it is inhibited. BMI1, a
downstream target of the hedgehog pathway, modulates these effects [90].

Pygopus 2 (Pygo2), a co-activator of Wnt/β-catenin signalling, plays a role in histone
modification. It was found to enhance the acetylation of lysine 56 on histone 3 (H3K56Ac)
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in cultured human mammary epithelial cells. Global levels of H3K56Ac are reduced in the
absence of Pygo2, while its presence permits the optimal expression of multiple histone
genes [91].

7. ncRNAs in the Mammary Gland
7.1. miRNAs
7.1.1. Characterization of miRNAs

The first analysis of miRNAs in the mammary gland was performed in a study
of 20 human tissues, including mammary tissue, by microarray. This study revealed
that each tissue has a specific pattern of expressed miRNAs, called its miRNome [92].
Subsequently, additional miRNAs expressed in the mammary gland have been identified
by a cloning strategy [93,94]. The evaluation of miRNA expression variations during the
different mammary gland stages (virgin, pregnancy, lactation, weaning) was performed.
The first data were obtained in mice through the study of at least six stages (including
virgin, pregnancy, lactation and involution) using a microarray approach followed by
high-throughput sequencing [95–98]. These studies have demonstrated that each stage has
its own signature miRNome, similar to a tissue signature. Avril-Sassen et al. [96] identified
groups of miRNAs with similar relative expression patterns over the course of mammary
gland development and proposed profiles based on the expression of 102 miRNAs, thus
distinguishing distinct stages of mammary gland development in a similar manner to
the mRNA expression signature. Llobet-Navas et al. [97] found that 12 miRNAs were
preferentially upregulated during involution.

Other studies have compared miRNA expression during different parts of the cycle.
In mice, Heinz et al. [99] observed that the majority of differentially expressed miRNAs
declined between late pregnancy and lactation. In ruminants, lactating and non-lactating
stages (in cows [100–102], goats [103], and buffalo [104]) and pregnancy and lactation
periods (in sheep (five stages studied by microarray) [105]) have been compared. These
studies allowed to highlight miRNAs related to the different stages.

Lactating mammary gland miRNomes were specifically characterized in many species,
such as mouse, rat, cow, buffalo, goat, sheep and pig (Table 2). During the lactation stage,
the mammary gland undergoes changes, and so does its miRNome. For example, in dairy
goats, during early lactation, total number of mammary cells increase for approximately
20% which correspond to mammary growth. The increase in mammary cell number and
secretory activity per cell is due to the proliferation and differentiation of mammary secre-
tory cells, and results to the increase in milk production [106,107]. When milk production
decreases, particularly during late lactation, the mammary gland undergoes extensive
tissue cell apoptosis and remodelling, including changes in cell populations, alveolar struc-
ture, and extracellular matrix synthesis. Characterizing miRNomes and their variations
during lactation stages improves the knowledge of miRNAs that are crucial for the different
biological processes that regulate mammary gland functions. For this reason, several teams
have described miRNA expression variations during lactation stages in different species
(Figure 5). These data have allowed to describe the highly abundant miRNAs in each
species and to identify a lactating mammary gland miRNA signature through comparison
across species [101,108–118]. The comparison of miRNA expression in lactating cows,
goats and mice and non-lactating humans highlighted 15 miRNAs highly expressed in
the mammary gland in all four species (miR-148a-3p, miR-143-3p, miR-26a-5p, let-7g-5p,
miR-103-3p, let-7f-5p, let-7c-5p, miR-30a-5p, miR-126-3p, let-7a-5p, miR-378a-3p, miR-24-3p,
miR-200c-3p, miR-21-5p and let-7b-5p) (personal data).
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Table 2. Lactating mammary gland miRNomes.

Species Microarray Characterization Small RNA Sequencing Characterization

Mouse [95,96] [98,108]

Rat [115]

Cow [119] [93,100,108,120,121]

Buffalo [104]

Goat [103,110,112,113,116,122,123]

Sheep [105] [124,125]

Pig [126]

Genes 2021, 12, x FOR PEER REVIEW 12 of 35 
 

 

Table 2. Lactating mammary gland miRNomes. 

Species Microarray Characterization Small RNA Sequencing Characterization 
Mouse [95,96] [98,108] 

Rat  [115] 
Cow [119] [93,100,108,120,121] 

Buffalo  [104] 
Goat  [103,110,112,113,116,122,123] 

Sheep [105] [124,125] 
Pig  [126] 

 
Figure 5. Mammary miRNomes and their variations characterized during lactation stages in cow (green markers), goat 
(orange markers), and rat species (white markers). 

With miRNome data, by using bioinformatic tools, target genes to highlight regula-
tory networks have been obtained [111,112,118]. Ji et al. [112] identified 1487 miRNAs, of 
which 378 were differentially expressed, by sequencing data analysis of early and late 
lactation in goat mammary glands. Then, 214 differentially expressed miRNAs and 18 tar-
get genes annotated in mammary gland were selected to construct a network comprising 
232 nodes (miRNAs and genes) and 335 edges (regulatory relationships between miRNAs 
and target genes). This analysis revealed miRNAs involved in the same pathways or in 
different pathways confirming the functional complexity of miRNAs. 

In several studies, the transcriptome and miRNome have also been studied in the 
same samples, and the correlation between mRNA and miRNA expression has been char-
acterized. The analysis of the intersection of the transcriptomic data and putative target 
genes of differentially expressed miRNAs observed between day 1 and day 7 of lactation 
in the rat mammary gland allowed to identify 1259 mRNAs overlapping between the two 
sets of transcripts. The downregulated genes are enriched in pathways involved in lipid 
biosynthesis [115]. 

Some authors have studied the expression of specific miRNAs over the different 
stages, such as miR-101a [127], miR-126-3p [128], miR-30b-5p [129], miR-424(322)/503 clus-
ter [97], miR-150 [99], miR-139 [130], miR-103 [104] or miR-142-3p [131], with the aim of 
understanding their roles (see § 7.1.2). 

Complementary to the study of miRNAs in the whole organ, their expression in the 
different compartments of the mammary gland, which contain specific cell types, has been 
characterized. Phua et al. [132] analysed miRNomes of distinct compartments, such as the 

Figure 5. Mammary miRNomes and their variations characterized during lactation stages in cow (green markers), goat
(orange markers), and rat species (white markers).

With miRNome data, by using bioinformatic tools, target genes to highlight regulatory
networks have been obtained [111,112,118]. Ji et al. [112] identified 1487 miRNAs, of which
378 were differentially expressed, by sequencing data analysis of early and late lactation in
goat mammary glands. Then, 214 differentially expressed miRNAs and 18 target genes
annotated in mammary gland were selected to construct a network comprising 232 nodes
(miRNAs and genes) and 335 edges (regulatory relationships between miRNAs and target
genes). This analysis revealed miRNAs involved in the same pathways or in different
pathways confirming the functional complexity of miRNAs.

In several studies, the transcriptome and miRNome have also been studied in the
same samples, and the correlation between mRNA and miRNA expression has been
characterized. The analysis of the intersection of the transcriptomic data and putative
target genes of differentially expressed miRNAs observed between day 1 and day 7 of
lactation in the rat mammary gland allowed to identify 1259 mRNAs overlapping between
the two sets of transcripts. The downregulated genes are enriched in pathways involved in
lipid biosynthesis [115].

Some authors have studied the expression of specific miRNAs over the different
stages, such as miR-101a [127], miR-126-3p [128], miR-30b-5p [129], miR-424(322)/503 clus-
ter [97], miR-150 [99], miR-139 [130], miR-103 [104] or miR-142-3p [131], with the aim of
understanding their roles (see § 7.1.2).

Complementary to the study of miRNAs in the whole organ, their expression in the
different compartments of the mammary gland, which contain specific cell types, has been
characterized. Phua et al. [132] analysed miRNomes of distinct compartments, such as
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the stroma (essentially composed of adipocytes), mature ducts (constituted by epithelial
cells) and TEBs (enriched for stem and progenitor cells) of pubertal mice. They identified
a set of specific miRNAs in each compartment, confirming the data obtained by Avril-
Sassen et al. [96] showing the specific miRNA expression profiles in stromal vs epithelial
cells. Moreover, Phua et al. [132] showed that miR-31 is the most highly enriched miRNA
expressed in TEBs. Conversely, miR-184 expression is significantly enriched in mature
ducts compared to TEBs. Interestingly, miR-184 clusters tightly with a subset of epithelial-
specific miRNAs, which includes members of the miR-183 family (miR-183, miR-96) and all
members of the miR-200 family.

Bockmeyer et al. [133] performed miRNome analyses on basal and luminal human
breast epithelium isolated by laser microdissection. Of the 116 miRNAs detected, eight
(let-7c, miR-125b, miR-126, miR-127-3p, miR-143, miR-145, miR-146-5p and miR-199a-3p) were
preferentially expressed in basal cells, and two members of the miR-200 family (miR-200c
and miR-429) were predominantly expressed in luminal cells.

The global miRNA expression profiles of mouse and human functionally distinct ep-
ithelial cell subpopulations (mammary stem cell/basal, luminal progenitor, mature luminal
or stromal cells) have been determined, showing unique miRNA signatures characterizing
each subset, with a high degree of conservation across the two species [134]. The corre-
lation study between differentially expressed miRNAs and gene expression provides a
comprehensive resource for understanding the interplay between miRNA networks and
target gene expression, highlighting lineage-specific miRNAs and potential miRNA-mRNA
networks. miRNA profiles have also been studied in the COMMA-Dβ cell line, which rep-
resents self-renewing progenitor cells (ALDH+/Sca1+) that can reconstitute the mammary
gland. Several miRNAs, including miR-205 and miR-22, are highly expressed in mammary
progenitor cells, while others are depleted, including let-7 and miR-93 [135,136]. In the
postnatal mammary gland, miR-205 is also predominantly expressed in the basal/stem
cell-enriched population [137]. A comparison of stem cell (CD24-CD44+) and non-stem
cell (non-CD24-CD44+) populations isolated from primary human mammalian epithelial
cells and the normal mammary epithelial cell line MCF12A allowed to identify miR-183
and miR-200c as the most downregulated miRNAs in the stem cell population compared to
the non-stem cell population [138].

7.1.2. Roles of miRNAs in Mammary Gland Development

The roles of several miRNAs in the different biological processes of the mammary
gland have been studied using transgenic mouse models or mammary cell lines. In
some cases, the regulatory relationship between the miRNA and its targets has also been
identified. From profile expression data, the authors identified miRNAs that may play
roles in maintaining the function of normal mammary cells, such as stem and progenitor
cells and epithelial cells.

Concerning the maintenance of stem cell characteristics, initial studies have high-
lighted several important miRNAs. Within COMMA-Dβ cells, Ibarra et al. [135] have
shown that the depletion of let-7b and let-7c can be used to enrich self-renewing cell pop-
ulations. Ectopic overexpression of miR-22 results in increased mammary ductal side
branching, accompanied by an expansion of mammary stem cells [139]. miR-93 also regu-
lates the proliferation and differentiation of normal breast stem cells isolated from reduced
mammoplasties [140].

The action mechanisms of important miRNAs in stem cells have been clarified. In
the postnatal mammary gland, miR-205, predominantly expressed in the basal/stem cell
enriched population, is critical for the regulation of this cell identity. In fact, its conditional
deletion results in impaired stem cell self-renewal and mammary regenerative potential.
miR-205 regulates Naked cuticle homologue 1 (Nkd1) and Ppp2r4, the gene encoding a specific
Phosphotyrosyl Phosphatase Activator (PTPA, the B56 subunit) of the dimeric form of
the tumour suppressor Protein Phosphatase 2A (PP2A), which inhibits the Wnt signalling
pathway, and Angiomotin (Amot), which causes Yes-associated protein (Yap) cytoplasmic
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retention and inactivation and directly targets the 4Np63 gene, which is required for
the preservation of self-renewing capacity in epithelial structures [4,137]. The 4Np63α
gene is also targeted by miR-203 in mammary stem cells during mammary epithelium
differentiation [141].

The miR-193b locus, which also encodes miR-365-1 and the miR-6365 cluster linked to
the mammary transcription factor Stat5, has a role in the activity of mammary stem and
progenitor cells [142].

miR-146b, which is significantly more highly expressed in the mammary glands of
pregnant and lactating mice than in those of virgin mice, promotes the maintenance of
pregnancy-derived mammary luminal alveolar progenitors, at least partially, by regulating
Stat3b [143].

miR-31 promotes mammary stem cell activity by regulating multiple signalling path-
ways, including the Prolactin Receptor (Prlr)/Stat5, Transforming growth factor-β (TGF-β)
and Wnt/β-catenin pathways [144].

The miR-34 family, miR-34a in particular, is involved in mammary epithelium ho-
moeostasis. miR-34a is expressed in luminal cells and inhibits the expansion of mammary
stem cells and early progenitor cells by regulating genes involved in epithelial cell plasticity
and luminal-to-basal cell transfromation. miR-34a acts as an inhibitor of the Wnt/β-catenin
signalling pathway [145].

miR-206 impacts a network of signalling pathways and acts as a regulator of prolif-
eration, stemness, and mammary cell differentiation in stem-like mammary cells [146].
Among the genes upregulated by miR-206 addition, genes involved in inflammatory re-
sponses, such as type I interferon-mediated signalling, cytokine signalling and nuclear
factor kappa B (NFκB) signalling, were the most represented. Eight genes induced by
miR-206 addition are specifically increased in the stem cell population. Among them,
Nucleostemin (Gnl3), Interferon-related developmental regulator 1 (Ifrd1), Nuclear fragile X men-
tal retardation-interacting protein 1 (Nufip1), and PRKC apoptosis WT1 regulator (Pawr) are
linked to stem cell properties and/or tumorigenesis; Tcf7lc, Secreted frizzed related protein
(Sfrp1), and Ski (encoding a TGF-β antagonist) are present in the Gene Ontology function
category “somatic stem cell maintenance”, and Centromere protein F (Cenpf) is a stem cell
fate-specification gene.

Epithelial to mesenchymal transition (EMT) is a conserved developmental process
throughout which epithelial cells lose their epithelial properties and adopt a mesenchymal
phenotype. Several studies have shown the importance of the miR-200 family in this
transition in the mammary gland. Eades et al. [147] observed downregulation of miR-200
family members between normal mammary epithelial cells and cells that had undergone
EMT-like transformation. SIRT1, a key class III histone deacetylase whose upregulation is
associated with EMT, is correlated with miR-200a downregulation. Moreover, loss of the
tumour suppressor p53, which has a role in regulating both EMT and EMT-associated stem
cell properties, leads to decreased expression of miR-200c and activated EMT, accompanied
by an increased mammary stem cell population [138]. Exogenous expression of miR-200c-
141 in a mesenchymal-derivative breast epithelial cell line with stem cell properties (D492M)
reversed the EMT phenotype, resulting in gain of luminal differentiation [148]. TGF-β, a
secreted cytokine, regulates a variety of processes in development, including EMT.

miR-99a and miR-99b have been identified as two novel effectors of the TGF-β pathway
during EMT in mammary cells [149]. DeCastro et al. [120] showed that miR-203, by
targeting 4Np63α, is able to disrupt activities associated with mammary stem cells but
also to promote mesenchymal to epithelial transition. EMT is induced by overexpression
of miR-221, which is more highly expressed in stem-like and myoepithelial cells than in
luminal cells.

miR-221 acts in EMT by targeting Ataxin-1 (ATXN1), a polyglutamine protein that
alters cell morphology by interacting with microtubules during neuronal development
and activating E-cadherin expression [150]. Increased miR-221 in mammary stem cells
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promotes myoepithelial differentiation, whereas its downregulation promotes luminal
differentiation.

Some authors have focused their studies on the impact of miRNAs on mammary gland
formation at different stages. The crucial role of miRNAs in the initiation of mammary
gland formation has been demonstrated by Lee et al. [151]. In fact, miR-206 is involved
in mammary bud development during embryonic development by regulating the Wnt
pathway, which is essential for mammary gland development [151].

Ucar et al. [152] have shown that the miR-212/132 family is indispensable during mouse
mammary gland development, particularly for the outgrowth of ducts. It is interesting
to note that mammary transplantation experiments showed that miR-212/132 family is
necessary in the stroma but not in the epithelia. This could be explained by their exclusive
expression in the stroma. In 3D culture of a breast epithelial cell line with stem cell
properties, Hilmarsdottir et al. [148] demonstrated that miR-200c-141 is involved in the
formation of branching epithelial structures. Co-expression of miR-200c-141 and ∆Np63
in the D492M cell line restores branching morphogenesis, underlining the requirement
for both luminal and myoepithelial elements. The mammary tissue of virgin (8-week-
old) mice lacking miR-21 has fewer secondary ductal branching than that of wild-type
mice [153]. Studies on lumen formation have shown the role of miRNAs. miR-142-3p
knockdown affects the structure and function of the mammary gland, resulting in a higher
milk-producing capability due to an increased number of lobules and ducts [131].

Comparative analysis of miRNA expression in MCF7 cells versus MCF7/CEACAM1
cells (where CEACAM1 induces lumen formation) revealed that two miRNAs were sig-
nificantly downregulated (miR-30a-3p and miR-342–5p) [154]. The regulation of lumen
formation by miR-342 involves at least two of its known targets, DNA-binding protein
inhibitor ID4 and DNMT1. Le Guillou et al. [129] showed that the overexpression of miR-
30b-5p in the mouse mammary gland provokes a reduction in the size of the alveolar lumen
during lactation. The involution stage is also perturbed by the misregulation of miRNAs.
The overexpression of miR-30b-5p in the mouse mammary gland during involution results
in the persistence of mammary epithelial differentiated structures, suggesting a delay in
the involution process. Llobet-Navas et al. [97] showed that the miR-424(322)/503 cluster
is an important regulator of epithelial involution. The regression of secretory acini is
compromised in the absence of miR-424(322)/503, which regulates cell survival and death
decisions by targeting B-cell lymphoma 2 (BCl2) and Insulin growth factor 1 Receptor (Igf1R).

The major functions of mammary epithelial cells based on their proliferation ability or
differentiation status are regulated by miRNA expression (Figure 4).

Transfection of miR-221, which is highly expressed at peak compared with early lacta-
tion [101], into cultured bovine mammary gland epithelial cells inhibits cell proliferation
and reduces the viability of these cells [155]. Dual luciferase assays have revealed that
Stat5a, Stat3, and Insulin receptor substrate 1 (Irs1), key genes in the PI3KAkt/mTOR and
JAK-STAT signalling pathways, bind directly to miR-221. In a cell culture experiment,
Cui et al. [128] showed that miR-126-3p, which is among 15 miRNAs that are highly ex-
pressed in the mammary glands of several species, inhibits the expression of progesterone
receptors as well as the proliferation of mammary epithelial cells. miR-24-3p, which is
abundantly expressed in mammary tissue, enhances proliferation. Through luciferase
assays in immortalized bovine mammary epithelial cells (MAC-T), miR-24-3p has been
shown to target the 3′UTR of Multiple endocrine neoplasia type 1 (Men1) [156]. miR-101a is
also able to regulate cell proliferation by altering Cyclooxygenase 2 (Cox2) expression [127].
miR-142-3p knockdown in mouse mammary epithelial cells increases proliferation but not
viability, induces cell cycle progression, decreases apoptosis, and increases the expression
of triglycerides and β-casein, which are markers of differentiated mammary epithelial
cells. Moreover, miR-142-3p acts by regulating multiple PrlR-mediated signalling path-
ways [131]. miR-143, which influences the apoptosis of goat mammary epithelial cells
cultured in vitro, targets Nedd4 family-interacting protein 1 (Ndfip1) [157]. Liao et al. [158]
showed that miR-214, by regulating lactoferrin, is directly involved in mammary epithelial
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cell apoptosis regulation. Using bovine mammary epithelial cell transfection experiments,
Li et al. [159] demonstrated miR-15 involvement in the viability of mammary epithelial
cells, and Cui et al. [130] showed that miR-139 promotes proliferation by targeting the GH
Receptor (GHR). miR-21-3p, whose function is suppressed by the transcription factor STAT3,
which downregulates its transcription, promotes the proliferation of bovine mammary
epithelial cells by targeting the Insulin-like growth factor-binding protein 5 (Igfbp5) gene [160].
Bioinformatics analysis suggested that miR-3031 and Igfbp5 are key signalling factors that
regulate cell proliferation and protein synthesis in goat mammary epithelial cells. Chen
et al. [161], using miR-3031 mimics, showed that miR-3031 activated the PI3K-AKT-mTOR
pathway and increased β-casein expression by downregulating Igfbp5. In bovine mammary
epithelium, Li et al. [162] showed that the function of miR-486 is indispensable for reg-
ulating Phosphatase and tensin homologue deleted on chromosome ten (Pten), which reduces
the differentiation of mammary epithelial cells [163]. Yoo’s study [142], which identified
the miR-193b locus as a Stat5 target in mammary epithelium, revealed its role in stem
cell activities but also in controlling mammary epithelial differentiation. Heinz et al. [99]
have shown that miR-150 decreases between late pregnancy and lactation and is crucial
for lactation. In fact, pups nursed by transgenic mice constitutively expressing miR-150
exhibit a dramatic decrease in survival. These data support the hypothesis that a decrease
in miRNAs in late pregnancy serves to allow translation of targets crucial for lactation.

Hormones play important roles in the control of mammary gland biology, and miRNA
expression is under hormonal control. In bovine mammary epithelial cells, Muroya
et al. [164] have shown that the production of milk-related miRNAs is influenced by
the lactogenic hormones insulin, prolactin, and glucocorticoids. In goat mammary ep-
ithelial cells incubated with PRL, DNMT1 expression is increased, which leads to DNA
methylation of the CpG island upstream of miR-135b, thereby inhibiting its transcrip-
tion [165]. To identify synergistic miRNAs, Lin et al. [166] screened miRNAs differentially
expressed during the lactation which respond positively to prolactin. Correlation analyses
among the expression levels of four miRNAs (miR-23a, miR-27b, miR-103 and miR-200a)
and experiments involving their overexpression in goat mammary epithelial cells allowed
to identify miRNAs that synergistically regulate milk fat synthesis in dairy goats.

Some miRNAs also contribute to lactogenic hormone induction of cellular differ-
entiation; one such miRNA is miR-200a [167]. miR-15a and miR-139 are involved in the
regulation of GHR gene expression; consequently, they are important for mammary gland
development, lactation, and milk composition, functions controlled by a complex interplay
of endocrine hormones acting together, in particular GH, estrogen, progesterone, and
PRL [130,159]. miR-135a is a direct regulator of PrlR, a specific receptor important for
physiological functions in regulating mammogenesis and lactogenesis [168].

7.1.3. Roles of miRNAs in Mammary Gland during Lactation

In regard to studies concerning the role of mammary miRNAs on milk composition,
few articles describe the impact of miRNAs on milk protein synthesis.

To highlight miRNAs involved in milk component synthesis in dairy cow mammary
epithelial cells, Bian et al. [169] showed that the inhibition of miR-29s causes global DNA
hypermethylation and increases the methylation levels of the promoters of important
lactation-related genes, including Csn1S1, Elf5, Peroxisome proliferative activated receptor γ
(Pparγ), Sterol regulatory element binding transcription protein 1 (Srebp1), and Glucose trans-
porter type 1 (Glut1). Moreover, the overexpression of miR-152 leads to a strong decrease
in DNMT1 expression, as well as a reduction in the global rate of 5-meC in mammary
epithelial cells [170]. Studies describing miRNAs involved in the expression of milk protein
genes, such as casein (miR-3031 [161], miR-15 [159], miR-139 [130], miR-101a [127], miR-142-
3p [131]), have highlighted the aforementioned genes as markers of the differentiation
status of mammary epithelial cells (see before) rather than with the goal of understanding
the role of miRNAs in their regulation. Indirectly, by showing that miR-24-3p regulates
genes involved in the PI3K/Akt/mTOR and JAK/Stat5 pathways, which regulate milk
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protein synthesis, Qiaoqiao et al. [156] highlighted the importance of this miRNA in this
process. miRNAs are also involved in milk calcium concentration. In fact, miR-99-3p was
able to increase the intracellular calcium level by decreasing ATPase plasma membrane Ca2+
transporting 1 (Atp2B1) in goat mammary epithelial cells [171].

In contrast, several studies have characterized miRNAs involved in the regulation of
milk fat biosynthesis (Figure 6). Among them, two studies have used transgenic mouse
models, and the effects of this misregulation on miRNAs allowed to identify miRNAs
important for lipid biosynthesis. Le Guillou et al. [129] showed that the overexpression
of miR-30b-5p in the mouse mammary gland provokes lipid droplet formation and se-
cretion failures and modifies milk fatty acid composition. Its overexpression provokes a
downregulation of Atl2 (a member of the ATLASTIN GTPase group described as playing
a key role in lipid droplet formation) expression and changes to endoplasmic reticulum
morphology [172]. Heinz et al. [99] observed a defect in lactation in transgenic dams
constitutively expressing miR-150. In fact, the protein products of the predicted miR-150
targets Fatty acid synthetase (Fasn), Oleoyl-ACP Hydrolase (Olah), Acetyl-CoA carboxylase α
(Acaca), and Stat5b were significantly decreased, and lipid profiling revealed a significant
reduction in fatty acids synthesized by the de novo pathway in mammary epithelial cells of
transgenic mice.
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Several teams have used mammary epithelial cell culture models (goat, bovine, buffalo
and human mammary epithelial cells) to study the roles of specific miRNAs in lipid
metabolism. Several miRNAs studied (miR-15b, miR-24, miR-26 family, miR-27a, miR-103,
miR-126, miR-130 and miR-145) were chosen on the basis of their previously characterized
roles in adipocytes.

The expression of miR-15b, which is regulated by the steroid hormones estradiol and
progesterone, is lower during lactation and negatively correlated with lipid synthesis
proteins, suggesting that it may be involved in lipid synthesis and milk production [173].
Additional experiments have shown that the inhibition of miR-15b expression increases
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the lipid content in mammary epithelial cells through an increase in the level of the lipid
synthesis enzyme fatty acid synthase. The overexpression or downregulation of miR-24 in
goat mammary epithelial cells strongly affects fatty acid profiles, particularly unsaturated
fatty acid concentrations. miR-24 also causes changes in triacylglycerol content and the
expression of Fasn, Srebp1, Stearoyl-CoA Desaturase (Scd), glycerol-3-phosphate acyltransferase
mitochondrial (Gpat), and acetyl-CoA carboxylase 1 (Acaca). Luciferase reporter assays con-
firmed that Fasn is a direct target of miR-24 [174]. Overexpression of miR-27a downregulates
triglyceride accumulation and decreases the ratio of unsaturated/saturated fatty acids and
lipid droplet formation in mammary epithelial cells by affecting the expression of mRNAs
related to milk fat metabolism, such as Pparγ [175,176]. The genomic loci of miR-26a and
miR-26b have been localized to the introns of genes in the C-terminal domain RNA polymerase
II polypeptide A small phosphatase (Ctdsp) family. The downregulation of miR-26a/b and their
host genes in goat mammary epithelial cells decreased the expression of genes related to
fatty acid synthesis (Pparγ, liver X receptor α (Lxrα or Nr1H3), sterol regulatory element-binding
transcription factor 1 (Srebf1), Fasn, Acaca, Glycerol-3-phosphate acyltransferase (Gpam), Lipin 1
(Lpin1), Diacylglycerol acyltransferase 1 (Dgat1) and Stearyl-coenzyme A desaturase 1 (Scd1)),
triacylglycerol accumulation and unsaturated fatty acid synthesis. Luciferase reporter
assays confirmed Insulin-induced gene 1 (Insig1) as a direct target of miR-26a/b [177]. Studies
on the relationship of the miR-26 family and its host genes with milk composition revealed
that their expression are associated with total fat yield and fatty acid content but not milk
protein or lactose content. Moreover, a significant positive correlation was detected for
this miRNA family and the C16:1 and C18:3 fatty acid contents [178]. The overexpression
of miR-103 in mammary epithelial cells increases the transcription of genes associated
with milk fat synthesis, resulting in an upregulation of fat droplet formation, triglyceride
accumulation and the proportion of unsaturated fatty acids [104,179]. miR-126-3p, which is
differentially expressed at various stages of murine mammary gland development, exhibits
a negative correlation with Fasn expression. Its overexpression in MFC-10A cells decreases
lipid content with a reduction in Fasn and Insig1 expression [180]. The overexpression of
miR-130a significantly decreases cellular triacylglycerol levels and suppresses lipid droplet
formation in bovine mammary epithelial cells [181]. miR-130a also significantly affects
the expression of mRNAs related to milk fat metabolism, such as Pparγ, Fatty acid binding
protein 3 (Fabp3), Perilipin 2 (Plin2), Fatty acid transport protein 1 (Fatp1), CCAAT enhancer
binding protein β (C/EBPβ), CCAAT enhancer binding protein α (C/EBPα). Among these, Pparγ
is a direct target of miR-130a. Moreover, in goat mammary epithelial cells, Chen et al. [182]
showed that overexpression of miR-130b potently impairs adipogenesis by repressing the
expression of Pparγ coactivator-1α (Ppargc1a), a major regulator of fat metabolism. The
down-regulation of miR-145 inhibits triacylglycerol and cholesterol contents by regulating
the expression of fatty acid metabolism-related genes in goat mammary epithelial cells by
targeting Insig1 [183,184].

Some authors have focused on the identification of the mechanism of action or targets
of miRNAs according to variations in expression observed in the mammary gland either
during different reproductive cycle stages or with different milk production status.

In mice, miR-142-3p is differentially expressed in virgin, pregnancy, lactation, and in-
volution stages. Its knockdown in mouse mammary epithelial cells increased proliferation
but not viability and increased the expression of triglycerides by the regulation of multiple
PrlR-mediated signalling pathways [131]. In goats, the analysis of the correlation between
differentially expressed miRNAs in mammary tissue and the fatty acid composition of
milk allowed to determine that the miR-183 level is highly and positively correlated with
the fatty acid content in milk and that miR-183 inhibits milk fat metabolism by targeting
Mammalian Ste20-like kinase 1 (Mst1) [185]. Recently, in research undertaken to better under-
stand the internal relationship between milk quality and lipid metabolism in cows, Jiao
et al. [186] showed that miR-183 contains a CpG island in its promoter region and that Prl
inhibits its expression by methylation of this region. The downregulation of miR-183 in
turn leads to the upregulation of the expression of the target gene Irs1, which ultimately
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leads to changes in fatty acid metabolism. miR-16a, which is one of the miRNAs that is
differentially expressed in the mammary gland during lactation, regulates biological pro-
cesses associated with intracellular triacylglycerol, cholesterol and unsaturated fatty acid
synthesis through Large Tumour Suppressor 1 (Lats1) [109]. miR-221, identified in milk and
adipocytes, is more highly expressed in stem-like and myoepithelial cells than in luminal
cells in mammary tissue [150]. miR-221, the expression of which is regulated by steroid
hormones estradiol and progesterone, can also regulate lipid metabolism in mammary
epithelial cells through modulation of the expression of genes related to lipid synthesis,
such as Fasn, Acyl-CoA synthetase long chain family member 1 (Acsl1), Elf5, Insig1, Pparγ and
Nr1H3. Moreover, the milk proteins α-casein and β-casein and the glucose transporter
GLUT1 are similarly regulated by miR-221, suggesting that this miRNA regulates milk
lipid formation and play a role in glucose transportation and milk protein synthesis [187].
miR-148a and miR-17–5p, such as Ppargc1a (a major regulator of fat metabolism) and Pparα
(an important regulator of fatty acid oxidation), are highly expressed in the goat mam-
mary gland during the early lactation and non-lactating periods. miR-148a cooperates
with miR-17–5p to regulate triacylglycerol synthesis and milk fat droplet accumulation by
targeting Ppargc1a and Pparα, respectively, in goat mammary epithelial cells [188]. miR-152,
whose expression is increased significantly in mammary epithelial cells of cows with high
milk production [170,189], could influence triglyceride production and suppress apopto-
sis via the expression of its target genes Acetyl-coenzyme A acyltransferase 2 (Acaa2) and
Hydroxysteroid 17-β dehydrogenase 12 (Hsd17B12) [190] and Membrane uncoupling protein 3
(Ucp3) [191]. The overexpression of miR-25, which has an inverse relationship with milk
production, significantly represses triacylglycerol synthesis and lipid droplet accumulation,
and expression of its mimic in goat mammary epithelial cells reduce the expression of genes
involved in lipid metabolism (Srebp1, Fasn, Pparγ, Gpam). Peroxisome proliferative activated
receptor γ coactivator 1 β (PGC-1beta) has been identified as a direct target of miR-25 [114].
miR-34b mimic transfection in bovine mammary epithelial cells reduces the content of
intracellular triacylglycerol and lipid droplet accumulation; moreover, overexpression of
miR-34b inhibits the mRNA expression of lipid metabolism-related genes such as Pparγ,
Fasn, Fatty acid binding protein 4 (Fabp4), and C/EBPα. Furthermore, mRNA Decapping
enzyme 1A (Dcp1A) is a direct target of miR-34b, revealing a novel miR-34b–Dcp1A axis that
has a significant role in regulating milk fat synthesis [192]. Fat droplet accumulation and
triglyceride production are inversely correlated with miR-454 expression. This miRNA is
able to target Pparγ 3′UTR [193]. miR-181a expression increases between the dry and early
lactation periods [101] and is able to regulate the expression of Acsl1, which plays a role in
activating fatty acids destined for triacylglycerol synthesis, in bovine mammary epithelial
cells [194]. By screening for miRNAs expressed in the goat mammary gland during peak-
and late-lactation periods, Chen et al. [195] found that miR-181b is differentially expressed.
Its overexpression impairs fat metabolism, while its knockdown promotes fat metabolism.
They have also shown that miR-181b regulates the Hippo pathway by directly regulating
Irs2, Lats1 and Yes-associated protein 1 (Yap1) genes.

miR-30e-5p and miR-15a, which are differentially expressed in the mammary gland
between peak lactation and dry periods, synergistically regulate fatty acid metabolism in
goat mammary epithelial cells via Lipoprotein receptor 6 (Lrp6), a component of cell-surface
receptors for Wnt proteins, and Yap1, playing a role in promoting cell growth and inhibiting
apoptosis [196].

These miRNAs might be useful targets for influencing lipid production and milk yield.
Mammary gland development and dairy potential differ among breeds. Farm animals

are historically selected for specific traits, such as dairy production. These animals are
therefore good models in which to study the impact of genetic background on miRNA
variations.

Mammary miRNA expression profiles have been characterized in swine breeds with
divergent phenotypes [126], dairy and beef breed heifers [119] and two breeds of dairy
cows (Normande and Holstein) [121]. In these three studies, differentially expressed



Genes 2021, 12, 231 19 of 33

miRNAs between breeds were identified. Among differentially expressed miRNAs, Peng
et al. [126] found breed-specific miRNAs. These studies suggest a potential role for miRNAs
in mammary tissue plasticity and milk component synthesis, both of which are able to
change to milk production [121,126], as well as mammary stem cell activity [119].

The connection between miRNA expression, milk yield, and component traits has
also been studied in cows. Correlations were observed between modules of miRNAs
(8 modules with 32 to 164 miRNAs each) and milk yield, lactose, and somatic cell count
but not fat %, protein %, or milk urea nitrogen [118]. Wang et al. [102] studied 15 Holstein
cows with similar genetic backgrounds producing milk with different compositions (high-
protein/high-fat or low-protein/low-fat milk). Thirty-eight miRNAs were differentially
expressed between the two groups. These miRNAs putatively negatively regulate 253
differentially expressed mRNAs, which are enriched in lipid biosynthesis processes and
amino acid transmembrane transporter activity. Their results suggest that differentially
expressed miRNAs might play roles in milk quality regulation.

Shen et al. [189] performed an original study by using primary mammary epithelial
cells derived from two Chinese Holstein dairy cows with extreme differences in milk fat
percentage. They compared the two miRNomes of these cells and showed that 97 miRNAs
were differentially expressed between the two samples. Among them, three miRNAs
(bta-miR-33a, bta-miR-152, bta-miR-224) have, as predicted, target genes related to the lipid
metabolism pathway. Triglyceride production decreased, and the apoptosis rate increased,
after overexpression of miR-224 in mammary epithelial cells, which probably regulates the
expression of Acyl-CoA dehydrogenase (Acadm) and Aldehyde dehydrogenase 2 (Adlh2) [197].
miR-152 affects the intracellular triacylglycerol content by targeting Ucp3 [191].

7.2. lncRNAs
7.2.1. Characterization of lncRNA in Mammary Gland

In whole-genome tiling arrays, Perez et al. [198] identified a new group of abundantly
expressed lncRNAs and found that a subset of them are highly evolutionarily conserved.
Then, they characterized 15 of them in different human tissues, such as the mammary
gland, by quantitative RT-PCR. In humans, these descriptions by large-scale analyses have
been completed by the SAGE-seq study performed by Maruyama et al. [199].

The panoramic view of lncRNAs in the bovine mammary gland has allowed the
identification of 184 intergenic lncRNAs (lincRNAs) [200]. Many of them are located in
quantitative trait loci (QTLs). In particular, 36 lincRNAs were found in 172 milk-related
QTLs. Further analyses indicate the involvement of lincRNAs in several biological functions
and different pathways. Such extensive annotation of the mammary gland and associated
lincRNAs helps further our understanding of bovine mammary gland biology [200].

To identify lncRNAs involved in mammary gland development, Askarian-Amiri
et al. [201] performed microarray analyses using mouse mammary gland RNA from
different stages of its development (day 15 pregnant, day 7 lactation, and day 2 involution).
In this study, almost 100 lncRNAs with differential expression between the different stages
were identified. As differentially expressed coding genes showing enrichment in genes
involved in regulation of cell growth and size and with response to hormone stimulus, the
authors anticipated that the differentially expressed lncRNAs should be similarly relevant
to the biological processes underlying mammary development.

LncRNAs act as competing endogenous RNAs (ceRNAs) to regulate gene expression.
The interactions of ceRNAs have potential roles in gene expression and cell phenotypes.
Studies have synthesized various expression profile data to construct a network of the
lncRNAs, mRNAs and miRNAs involved in mammary gland biology.

The expression profiles of lncRNAs and mRNAs from the Chinese Holstein mammary
gland in the dry and lactation periods have been studied [202]. In total, 3746 differentially
expressed lncRNAs and 2890 differentially expressed genes were identified. Functional
enrichment analysis of target genes of lncRNAs indicates that these genes are involved in
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lactation-related signalling pathways, including the cell cycle, JAK-STAT, cell adhesion,
and PI3K-Akt signalling pathways.

Yu et al. [203] sequenced mRNA, miRNA and lncRNA in goat mammary tissue at two
periods in lactation (early and mature). Their data show that the ceRNAs (lncRNA-mRNA)
upregulated during the mature lactation stageare associated with milk content synthesis
and their metabolism. These data correlate with the function of this stage - a period in
which a continuous production of large amounts of milk that is rich in proteins, lipids,
amino acids and other nutrients is observed. In contrast, the ceRNAs upregulated during
early lactation are associated with PI3K-AKT pathways and ECM-receptor interactions; this
fulfils the functional role of preparing the mammary gland for full lactation. Together, these
results suggest that ceRNAs have synergistically roles during different developmental
periods to regulate functions which control lactation control.

The RNA expression profiles at peak and late lactation have been characterized using
RNA sequencing technology in cow mammary glands [204]. Functional lncRNA-mRNA
coexpression pairs were constructed to infer the function of lncRNAs. More than 1000
putative lncRNAs were identified, 117 of which were differentially expressed between peak
and late lactation stages. Seventy-two differentially expressed lncRNAs were coexpressed,
along with 340 different protein-coding genes. The KEGG pathway analysis shows that
target mRNAs for differentially expressed lncRNAs are mainly related to lipid and glucose
metabolism, including the PPAR and 5′adenosine monophosphate-activated protein kinase
signalling pathways. Further bioinformatics and integrated analyses revealed that 12 differ-
entially expressed lncRNAs (XLOC_000752, XLOC_306924, XLOC_274111, XLOC_517858,
XLOC_518578, XLOC_555176, XLOC_626085, XLOC_000752, XLOC_306924, XLOC_274111,
XLOC_518578, and XLOC_626085) may play important roles in bovine lactation [204].

Recently, Ji et al. [205] profiled lncRNA expression in the mammary gland tissue of
Laoshan dairy goats from three different lactation periods (early, peak and late lactation).
A total of 39,863 transcripts were detected, including 37,249 coding mRNAs and 2614
lncRNAs. Among these lncRNAs, 21 lncRNAs (six known and 15 novel lncRNAs) were
identified as precursors for 461 known miRNAs. In total, 2381 lncRNAs are expressed
in at least one of the three mammary gland lactation periods. They are found 573 dif-
ferentially expressed lncRNAs and 1237 differentially expressed mRNAs in mammary
gland development. The functions of lncRNAs and the corresponding genes have been
predicted: 489 genes are annotated with biological processes, specifically, cellular processes,
single-organism processes, biological regulation, metabolic processes, response to stimuli,
developmental processes, multicellular organismal processes, organization or biogenesis,
and localization.

The differentiation of the breast induced by the hormones of pregnancy plays a major
role in breast cancer protection, the identification of differentiation-associated molecular
changes, which persist in the breast until menopause, has been performed [206]. Tran-
scriptome analyses of the breasts of 42 nulliparous and 71 parous postmenopausal women
revealed upregulated genes controlling chromatin organization, transcription regulation,
splicing machinery, and mRNA processing, as well as lncRNAs such as XIST, NETA1,
MALAT-1, CXorf50B, NCRNA00173 and NCRNA00201. These lncRNAs are known to
recruit polycomb proteins that lead to the condensation of chromatin.

In 2018, Cai et al. [207] performed the first study on global expression profiling of
lncRNAs and mRNAs related to milk protein traits by studying mammary tissue samples
from Holstein cows with extremely high or low milk protein percentage phenotypes. They
identified 6450 lncRNAs, among which 31 lncRNAs were identified to be differentially
expressed, and 8 and 10 lncRNAs were expressed in only the high milk protein or in
only the low milk protein groups, respectively. To better understand the relationship
between lncRNAs and milk protein traits, they selectively analysed the 2868 lncRNA-
mRNA pairs in which both lncRNAs and their neighbouring or expression correlated
genes are differentially expressed between high milk protein and low milk protein groups.
According to the integrated study, 30 lncRNAs potentially regulate 34 genes that are
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involved in milk protein synthesis. For example, they proposed that XLOC_059976 acts
as a regulatory molecule by enhancing the expression of ciliary neurotrophic factor receptor
(Cntfr) and affecting the secretion of milk proteins.

These results provide a resource for lncRNA research in the mammary gland, with
important information and insights into the synthesis of milk proteins, as well as potential
targets for the future improvement of milk quality.

7.2.2. Roles of lncRNA in Mammary Gland

The role of lncRNAs in mammary gland biology remains largely unexplored. In
comparison with proteins and miRNAs, lncRNAs are relatively poorly annotated and
characterized. However, a few lncRNAs have been documented in the literature as having
potential roles in mammary gland development (Figure 4); these are presented below.

Standaert’s [208] study unequivocally identified the first physiological function of
one of the most abundant lncRNAs, Nuclear Paraspeckle Assembly Transcript 1 (Neat1), in
mammary gland development and lactation. The ablation of Neat1 results in abnormal
mammary gland morphogenesis as well as additional defects in lactation. This phenotype
is caused by the decreased ability of cells to sustain high rates of proliferation during lobulo-
alveolar development. Neat1 is required for mammary gland branching morphogenesis,
lobular-alveolar development, and lactation.

HOX transcript antisense intergenic RNA (HOTAIR) is localized within the HoxC gene
cluster and is regulated by estrogen. HOTAIR downregulates HoxD gene expression,
which is necessary for the mammary epithelium ductal system differentiation during preg-
nancy [209]. PRC2 recruitment to the genomic regions of target genes, repressing gene
transcription is increased by HOTAIR [210]. eEven though the PRC2 complex has been pre-
dicted to maintain differentiated alveolar cells in the involuted gland, knockout of HOTAIR
does not showed phenotype modification. The role of HOTAIR remain controversial, and
its specific function remains to determined.

Epithelial cell Program Regulator (EPR), an intergenic lncRNA expressed in epithelial
tissues, is downregulated by TGF-β.Its expression largely changes the transcriptome, by
increasing the acquisition of epithelial traits, and by reducing cell proliferation. These data
were observed in mammary cells culture, and after murine transplantation. EPR produces
a small peptide localized to epithelial cell junctions, but the RNA molecule provokesthe
vast majority of EPR-induced gene expression changes. EPR interacts with chromatin and
modifies Cdkn1a gene expression by affecting its transcription and mRNA decay. EPR
enables to control proliferation of epithelial cells by modulating waves of gene expression
in response to TGF-β [211].

Steroid Receptor RNA activator 1 (SRA1) is a lncRNA that acts as a nuclear coactivator
of steroid hormone receptors [212,213] as well as non-steroid receptors and transcription
factors. To assess its function in vivo, a transgenic mouse model was generated to enable
robust human SRA expression. No change is observed during early development, but in
virgin transgenic mice, elevated proliferation and apoptosis in the mammary gland are
observed. Activation of SRA1 leads to an increase in cell proliferation and differentiation
and to abnormally early development of the ductal epithelium. SRA1 also regulates cell
death, as epithelial hyperplasia is found to be accompanied by increased apoptosis [214].
A relationship between the roles of SRA1 and steroid hormone receptors is underlined in
mammary gland development, as well as a role in the maintain of healthy breast function
by regulating apoptosis.

ZNFX1 antisense RNA 1 (Zfas1), an antisense lncRNA that overlaps with the promoter
region of the gene ZNFX1, is one of the most highly and differentially expressed lncRNAs
during mammary gland mouse development [201] and is localized to the ducts and alveoli
of the mammary gland. Its knockdown in a mouse mammary epithelial cell line highlights
its dual role in cellular proliferation and differentiation.

Pregnancy-induced noncoding RNA (PINC) is differentially expressed in the mammary
gland; it is upregulated in alveolar cells during pregnancy and downregulated during
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the transition from late pregnancy to early lactation, periods of terminal differentiation of
epithelial cell to cells which milk product, and it is again elevated during involution. PINC
regulates cell cycle progression [215] and inhibits differentiation [216]. It interacts with a
component of PRC2, Retinoblastoma associated protein 46 (RbAp46), suggesting that PINC
may affect its role in differentiation through modification of chromatin [216].

The imprinted lncRNA H19 is induced by estrogen in the mouse mammary gland. Its
expression decreases during prepubertal development, increases during both puberty and
pregnancy, decreases during lactation and then increases once again during involution,
indicating that it is not necessary for terminal differentiation but may instead function
in proliferation, migration, and preterminal differentiation [217]. It is expressed in TEBs
during puberty and in alveolar cells during pregnancy, and its expression is controlled
by steroid hormones [218]. Knocking down the H19 gene in ERα-positive human lumi-
nal progenitors decreased their colony-forming potential, a phenotype that could not be
rescued by the addition of estrogen, showing that the estrogen–ERα–H19 signalling axis
is involved in the regulation of the proliferation and differentiation potentials of luminal
progenitors [219].

7.3. miRNA-lncRNA Interactions

miRNAs are regulated transcriptionally and post-transcriptionally by a class of lncR-
NAs known as ceRNAs. They act as sponges or decoys to titrate miRNAs away from their
target mRNAs and inhibe their activity [220]. Paci et al. [221] performed computational
analyses to assess whether specific lncRNAs function as miRNA decoys in the breast
epithelium. They built networks of miRNA-mediated sponge interactions by multivariate
analysis. Complex regulatory networks of miRNA-mediated interactions were found to
bridge target mRNAs and lncRNAs. In the network, the authors found clear separation
into two internally well-connected components: a larger component (1354 nodes and
32,375 edges) mainly dominated by miR-200 family members and a smaller component
(378 nodes and 954 edges) mainly controlled by miR-452. In terms of functional annotation,
the larger sub-network is enriched in cell-cell adhesion, whereas the smaller sub-network
is enriched in cellular metabolic processes. These authors therefore proposed the compo-
nents to represent pure sponge and mixed TF-sponge modules. The first module employs
PTENP1, a growth-suppressive lncRNA that appears to regulate the expression of a mem-
ber of the HRAS-like suppressor family (HRASLS5), by antagonizing miR-135b. The second
engages PVT1 as a competitor of CDH1 for binding to the miR-200 family and ZEB1 as
both a transcriptional repressor of CDH1 and a target of the miR-200 family.

Yang et al. [202], by studying the expression profiles of lncRNAs and miRNAs from
the Chinese Holstein mammary gland in the dry and lactation periods, identified the
interaction between lncRNAs and their potential miRNAs. They found that miR-221
might interact with the lncRNAs TCONS_00040268, TCONS_00137654, TCONS_00071659
and TCONS_00000352, revealing that these lncRNAs might be important regulators of
the lactation.

Cai et al. [207] performed a study on the profil of expressed lncRNAs related to milk
protein composition by studying mammary samples from Holstein cows with extremely
high or low milk protein percentage phenotypes. They identified a total of 4972 lncRNA
transcripts predicted to be targeted by 788 bovine miRNAs. Among them, 206 lncRNAs
were targeted by miR-15a, miR-486, miR-135, miR-101a, miR-152 and miR-139, which are
reportedly involved in milk protein synthesis. One differentially expressed lncRNA,
XLOC_059976, was predicted to be targeted by miR-139 and miR-152, which implies that
XLOC_059976 could be a regulator for the milk protein synthesis.

The lncRNA NONBTAT017009.2 was found to interact with miR-21-3p and function
as a ceRNA to upregulate the expression of Igfbp5 while inhibiting the expression of
miR-21-3p [160].
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7.4. Circular RNA

RNA-seq has been used to characterize the circRNAs in the human mammary gland [222],
at two different lactation stages in rats [223] and bovines [224], and in two breeds of sheep
with different milk production characteristics [125].

Xu et al. [222] found that the number of circRNAs in human mammary gland tissue
is higher than that in other adult tissues, demonstrating the tissue-specific expression of
circRNAs.

In rat mammary glands at two different lactation stages, 6824 and 4523 circRNAs
were identified [223]. Only 1314 circRNAs are expressed at the two stages and numerous
circRNAs are specifically expressed at different lactation stages. The majority of the
candidate circRNAs map to intergenic regions and noncoding intronic. An enrichment
of protein kinases and related proteins among the set of genes encoding circRNAs were
revealed by DAVID analysis. Interestingly, four protein-coding genes (Rev3l, IGSF11,
MAML2, and LPP) that also transcribe high levels of circRNAs have been reported to be
involved in cancer.

In the cow mammary gland on day 90 and day 250 postpartum, 4804 and 4048 circRNAs
were identified, respectively. Among them 2231 circRNAs were co-expressed at both stages,
suggesting high stage specificity in the circRNAs [224]. The enrichment of some Gene
Ontology terms for the circRNA genes was different between lactation stages. Among the
top 10 enriched Gene Ontology terms, vesicle, endoplasmic reticulum, and mitochondrial
lumen were more common on lactation day 90. In bovine mammary glands, 80 circRNAs
were produced by the four casein-coding genes (Csn1S1, Csn1S2, Csn2, and Csn3) CircRNAs
from Csn1S1 were very abundant, and three of them correspond to 36% of all the circRNAs
expressed in the mammary gland on lactation day 90. Three circRNAs from Csn1S1, one
from Csn1S2, and one from Csn2 were all more highly expressed on lactation day 90 than
on lactation day 250. These circRNAs have several targets in the miR-2284 family and are
predicted to target Csn1S1 and Csn2 mRNA, suggesting their potential involvement in
regulating the expression of casein genes.

By comparing the expression profiles of circRNAs in mammary glands from sheep
with different milk yields and components, Hao et al. [125] found 4906 circRNAs, among
which 33 were differentially expressed between the two breeds. The parental genes of
differentially expressed circRNAs were mainly enriched in heterocyclic compound bind-
ing, kinase activity, adherens junctions, the TGF-β signalling pathway, and the MAPK
signalling pathway.

7.5. miRNA-circRNA Interactions

For the 33 differentially expressed mammary circRNAs identified by comparing two
sheep breeds by Hao et al. [125], 1200 pairs of circRNA-miRNA interactions were predicted
by bioinformatics. Some target miRNAs of circRNAs have been previously associated with
bovine mammary gland development.

Zhang et al. [225] described a circRNA-miR-gene axis. They showed that miR-574-5p,
which is differentially expressed during the colostrum and peak lactation stages, induces the
downregulation of Ecotropic Viral Integration site 5-like (EVI5L) expression, while circRNA-
006258 relieves the inhibitory effect by adsorbing miR-574-5p. Since EVI5L promotes cell
growth, inhibits apoptosis and is involved in triacylglycerol production, the circRNA–
006258/miR-574-5p/EVI5L axis could regulate the cell growth and milk synthesis of goat
mammary epithelial cells by sponging miR-574-5p.

8. Conclusions

At present, the importance of epigenetic mechanisms on mammary gland develop-
ment and milk production is clearly established, even if all epigenetic pathways are far
from fully clear. An increasing understanding of the epigenetic machinery underlying
mammary gland development and function is still necessary, and future studies focusing
on the crosstalk between epigenetic marks, gene expression regulation, and the signalling



Genes 2021, 12, 231 24 of 33

pathways involved will open the door to understanding mammary gland biology in molec-
ular detail.

To date, the different types of epigenetic modulations have been studied indepen-
dently; however, the targets of different pathways appear to interact, thereby constituting
regulatory networks. In the future, it will be important to continue to understand the
roles of each type of epigenetic factor as well as the interrelationships between different
epigenetic mechanisms.

Moreover, obtaining knowledge on the epigenetic level of regulatory control may lead
to new insights into mammary gland function that may lead to improvements in milk
production and quality.

Mammary gland development, lactation, and milk production could be negatively
impacted by the environment, as well as the health status and diet of the female. The
evaluation of the roles of epigenetic mechanisms in these disruptions will be possible only
if epigenetic regulation in a normal environment is characterized.

Moreover, knowledge of miRNAs is particularly useful since the miRNAs present
in milk are linked to miRNA expression in the mammary gland and are easily analysed.
Therefore, they could be used as biomarkers of changes in animal status and of the effects
of environmental modifications on females during lactation.
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