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Abstract: Chondrichthyes occupy a key position in the phylogeny of vertebrates. The complete
sequence of the mitochondrial genome (mitogenome) of four species of sharks and five species of
rays was obtained by whole genome sequencing (DNA-seq) in the Illumina HiSeq2500 platform. The
arrangement and features of the genes in the assembled mitogenomes were identical to those found
in vertebrates. Both Maximum Likelihood (ML) and Bayesian Inference (BI) analyses were used to
reconstruct the phylogenetic relationships among 172 species (including 163 mitogenomes retrieved
from GenBank) based on the concatenated dataset of 13 individual protein coding genes. Both ML and
BI analyses did not support the “Hypnosqualea” hypothesis and confirmed the monophyly of sharks
and rays. The broad notion in shark phylogeny, namely the division of sharks into Galeomorphii and
Squalomorphii and the monophyly of the eight shark orders, was also supported. The phylogenetic
placement of all nine species sequenced in this study produced high statistical support values. The
present study expands our knowledge on the systematics, genetic differentiation, and conservation
genetics of the species studied, and contributes to our understanding of the evolutionary history
of Chondrichthyes.
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1. Introduction

Cartilaginous fish (Class Chondrichthyes) consist a group of vertebrates that demon-
strate an old radiation, dating back about 400 million years [1,2]. This lineage has survived
four mass extinction events [1] and most present-day taxa derive from Mesozoic forms [3].
The evolutionary success of Chondrichthyes is partly due to the efficiency of their K-
selective reproductive traits [4], such as large body size, slow growth rate, late maturity,
low fecundity and large offspring size [5-7]. The class Chondrichthyes, which comprises
the most diverse group of large predatory animals, currently includes 14 orders, 60 families
and 198 genera with approximately 1200 species. It is composed of two subclasses, the
Holocephali (chimaeras) including one superorder (Holocephalimorpha with 49 species),
and Elasmobranchii including three superorders: Galeomorphii and Squalomorphii with
347 and 157 shark species, respectively, and Batoidea with 639 species of rays, stingrays,
skates and sawfishes [8-10].

Chondrichthyes play an important ecological role, most notably functioning as either
top predators with top-down control on the size and dynamics of many species [11] or
mesopredators in the marine food webs [12,13] by linking different trophic levels in the
marine ecosystems and contributing to system dynamics and stability [14]. Furthermore,
apart from providing an important perspective to interpreting functional and life-history
evolution as being the sister group to all other extant jawed vertebrates (Gnathostom-
ata) [15], they exhibit a genomic architecture that is likely closer to the ancestral vertebrate
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condition compared to teleosts [16]. Their commercial value, especially of their meat, fin
and liver is increasing as targeted teleost fish become less accessible [17,18]. As a result,
overfishing has profoundly altered shark and ray populations [19-21] and several species
are facing a two-fold higher extinction risk compared to finfish [22]. The International
Union for the Conservation of Nature (IUCN) has assessed the conservation status of
604 out of 1192 taxonomically valid species with 179 chondrichthyans categorized as threat-
ened (Vulnerable—VU; Endangered—EN; Critically Endangered—CR) [2]. Due to the
fact that almost 1/3 of the assessed species face extinction risk [2,23] and further 63 Data
Deficient (DD) species were predicted to be threatened based on correlates of IUCN threat
status, chondrichthyans comprise the most-imperiled class among all vertebrates [23].
This highlights the importance of preserving their biodiversity and shedding light on their
phylogenetic relationships [23] by prioritizing especially threatened species as they embody
significant amounts of unique evolutionary history [2].

In recent years, with the advent of molecular data, there has been a significant effort
towards elucidating the evolutionary history of chondrichthyans [2,15]. However, their
phylogeny is still controversial at all levels, ranging from superorders to genera [24].
A significant obstacle towards resolving their phylogenetic relationships is that several
species are likely to represent complexes of several distinct species that require taxonomic
resolution, for example some dogfishes, eagle rays, and stingrays [24-26]. Moreover,
although the “Hypnosqualea” hypothesis, suggesting that batoids are derived sharks
related intimately to the sawfish and angel sharks [27-30], is no longer supported [31-33]
and it is widely believed that modern sharks (Selachii) are monophyletic, the relationships
among the three main superorders (Galeomorphii, Squalomorphii and Batoidea) and the
arrangement of the orders within these groups remain unsolved [15]. Notably, most of the
phylogenetic studies of chondrichthyans are based on few nuclear and /or mitochondrial
DNA (mtDNA) genes [2,31,34]. Individual mitochondrial markers are widely used to
assess species diversity and population connectivity [35-37] due to the relatively simple
sequencing procedures and the high rates of nucleotide substitution [38].

The recent blooming of Next Generation Sequencing (NGS) methodologies allowed the
reliable and accurate assembly of the complete mtDNA genomes (mitogenomes) for phy-
logenetic analysis [15,23,39]. Currently, the complete mitogenomes have been sequenced,
assembled and annotated from 82 species of sharks, 73 species of rays and 8 species of
chimaeras (Table S1).

In this context, the principal objective of the present study was to sequence and
characterize the complete mitogenome of nine chondrichthyans (four sharks and five
rays) sampled as bycatch by commercial fisheries in Greece. The gene content, organiza-
tion, codon usage and base composition were analyzed in each assembled mitogenome.
The phylogenetic relations of all 172 species (including 163 mitogenomes retrieved from
GenBank) were reconstructed based on Maximum Likelihood and Bayesian Inference
methods that were applied to the concatenated sequences of the 13 protein coding genes of
the mitogenome.

2. Materials and Methods
2.1. Tissue Sampling and DNA Extraction

Individual fin clips were obtained from four shark species (Galeus melastomus, Odon-
taspis ferox, Prionace glauca and Squalus blainville) and five ray species (Bathytoshia centroura,
Dasyatis tortonesei, Gymnura altavela, Raja undulata and Torpedo marmorata) (Table 1). All spec-
imens were incidentally caught by commercial trawlers or long-liners in the Aegean Sea,
Greece and were kindly provided by fishermen. The experimental design was performed
by an accredited researcher (MR: CZ03540) and was approved by the ethical committee
of the Faculty of Science, Charles University, Czech Republic (UKPRF/28830/2021). Fin
samples were preserved in 95% ethanol and stored at —20 °C. Total genomic DNA was
extracted from approximately 25 mg of each sample using the standard protocol of the
DNeasy Tissue kit (Qiagen, Chatsworth, CA, USA). The DNA concentration of each sample
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was estimated using NanoDrop One Spectrophotometer (Thermo Scientific, Wilmington,
DE, USA). DNA fragmentation was checked with 1% agarose gel electrophoresis. Species
identification was initially assessed macroscopically based on standard taxonomic fea-
tures [9] and was confirmed by blasting the obtained cytochrome c oxidase subunit I (COI)
gene from each assembled mitogenome to the homologous sequences deposited in Gen-
Bank, using the Basic Local Alignment Search Tool (BLAST) of the National Center for
Biotechnology Information (NCBI) [40].

Table 1. The complete mitogenome was assembled and annotated from four shark species (Galeus melastomus, Odontaspis

ferox, Prionace glauca and Squalus blainville) and five ray species (Bathytoshia centroura, Dasyatis tortonesei, Gymnura altavela,

Raja undulata and Torpedo marmorata). All information for the mitogenome sequence and annotation is deposited in the
GenBank database under the accession numbers MT274568-MT274576. The IUCN conservation status globally and for the
Mediterranean Sea is indicated per species. Abbreviations: CR, Critically Endangered; DD, Data Deficient; EN, Endangered;
LC, Least Concern; NT, Near Threatened; VU, Vulnerable.

Species Common Name IUCN Conservation Status G?nBank
Globally Mediterranean Sea Accession Number
Bathytoshia centroura Roughtail stingray VU Not evaluated MT274568
Dasyatis tortonesei Tortonese’s stingray DD VU MT274569
Galeus melastomus Blackmouth catshark LC LC MT274570
Gymnura altavela Spiny butterfly ray VU CR MT274571
Odontaspis ferox Smalltooth sand tiger vuU CR MT274572
Prionace glauca Blue shark NT CR MT274573
Raja undulata Undulate ray EN NT MT274574
Squalus blainville Longnose spurdog DD DD MT274575
Torpedo marmorata Marbled electric ray DD LC MT274576

2.2. Sequencing and Mitogenome Assembly

Total DNA sequencing was performed by Novogene Bioinformatics Technology Co.,
Ltd. (Yuen Long, Hong Kong) in Illumina HiSeq2500 platform with 150 base pair per-end
sequencing option. The reads were trimmed for adapters in Trimmomatic [41], checked
for quality in FastQC [42] and mapped against a reference mitogenome from a closely
related species in Geneious Prime software [43]. The reference mitogenomes are pre-
sented in Table S1. Subsequently, the mapped Illumina reads were de novo assembled
with Geneious Prime [43] to reconstruct the complete mitogenome of each species. As
a final step, the total DN A-seq reads were mapped to the assembled mitogenome from
the same species with Geneious Prime [43] to confirm the quality of the assembly, correct
potential assembly gaps, and finally close the circular molecule. The infrastructure of
MetaCentrum (www.metacentrum.cz (accessed on 26 October 2020)) was used for compu-
tational resources.

2.3. Annotation and Sequence Analysis

The complete mitogenome of each species was annotated using MitoAnnotator on
the MitoFish website (http://mitofish.aori.u-tokyo.ac.jp/annotation/input.html (accessed
on 26 October 2020)) [44]. The programs RNAmmer (http://www.cbs.dtu.dk/services/
RNAmmer/ (accessed on 26 October 2020)) [45] and tRNA scan-SE (http:/ /lowelab.ucsc.
edu/tRNAscan-SE/ (accessed on 26 October 2020)) [46] were used to confirm the riboso-
mal RNA (rRNA) and the transfer RNAs (tRNAs) annotation results, respectively. The
secondary structures of tRNAs were predicted by MITOS (http:/ /mitos.bioinf.uni-leipzig.
de/help.py (accessed on 26 October 2020)) [47]. The control region was inspected by the
program “Tandem Repeats Finder” (https://tandem.bu.edu/trf/trf.html (accessed on
26 October 2020)) [48]. The boundaries of the protein coding genes (PCGs), rRNA genes
and tRNA genes were refined manually by comparison with the annotated elasmobranch
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mitogenomes from GenBank. The obtained complete mitogenomes were deposited in
GenBank under the accession numbers MT274568-MT274576 (Table 1; Table S1).

The nucleotide composition and the A+T and G+C contents (%) were calculated
for the complete mitogenome and each of the 13 PCGs per species in MEGA v5.1 [49].
The AT skews and GC skews were calculated using the following formulas: AT skew
D (A-T)/(A+T), GC skew D (G-C)/(G+C) [50]. Finally, the codon usage in the mito-
chondrial PCGs was estimated per species by the Sequence Manipulation Suite (http:
/ /www.bioinformatics.uni-muenster.de/tools/sms2/codon_usage.html) [51]. The relative
synonymous codon usage value (RSCU) of a codon, corresponding to the number of times
that a codon appears in a gene in relation to the number of expected occurrences under
an assumption of equal usage of synonymous codons (values less than 1 or more than
1 indicate that the codons are used less or more often than the expected) [52] was calculated
in DNASP v6.12.03 [53].

2.4. Phylogenetic Analysis

For phylogenetic analyses, in addition to the nine assembled mitogenomes, a total
of 163 complete mitochondrial genomes of sharks, rays and chimaeras were retrieved
from GenBank (Table S1). The 13 PCGs were extracted, aligned with the CLUSTAL W
algorithm [54], and concatenated using the software Geneious [43]. The most likely model
of sequence evolution for each dataset (individual PCGs and concatenated dataset) was
selected by JModelTest v2.1.7 [55], based on the Bayesian Information Criterion (Table S2).
The phylogenetic relationships were initially reconstructed with the Maximum Likeli-
hood (ML)-based approach through the online implementation of PhyML v3 provided
by the Montpellier Bioinformatics Platform (http://www.atgc-montpellier.fr (accessed
on 26 October 2020)) [56] with 1000 bootstrap replicates. In addition, a Bayesian Infer-
ence (BI) phylogenetic tree was constructed in MrBayes 3.2.6 [57] on the computer cluster
MetaCentrum (www.metacentrum.cz (accessed on 26 October 2020)). The Bayesian In-
ference method was applied using the Markov Chain Monte Carlo (MCMC) algorithm
from randomly generated starting trees for 5 million generations with trees sampled every
100 generations and 2 runs with 4 chains (2 heated and 2 cold). The first 25% of the trees
were discarded as burn-in, and the remaining sampled trees were used to estimate the 50%
majority rule consensus tree and the Bayesian posterior probabilities. For the concatenated
analysis, the matrix was partitioned by gene to include gene-specific models of substitution.
ML and Bayesian analyses were carried out for each individual PCG and the concatenated
dataset of all 13 PCGs under the evolutionary models presented in Table S2. The Maximum
Likelihood (ML) and Bayesian Inference (BI) trees were visualized and edited in FigTree
v1.4.3 [58].

3. Results and Discussion
3.1. Genome Organization

The size of the assembled mitogenomes ranged from 16,682 bp in Odontaspis ferox
to 19,472 bp in Gymnura altavela and was within the expected size range of the complete
mtDNA sequences retrieved from GenBank (Table S1). To date the smallest mitogenome has
been reported for the Chilean devil ray Mobula tarapacana (Philippi, 1892) [59] (15,686 bp;
Accession number: MH669414) and the largest for the Pacific spookfish Rhinochimaera
pacifica (Mitsukuri, 1895) (24,889 bp; Accession number: HM147141) [60]. The differences
in the mtDNA genome size among elasmobranchs correspond mainly to the high content
of tandem repeats in the control region [24].

The gene order and content of all the nine assembled mitogenomes was the typical
expected for vertebrates [61]. Specifically, the mitogenome of each species contained 13 pro-
tein coding genes (PCGs), 2 ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes,
the control region (D-loop) and several small noncoding regions. The analytical description
of each of the nine assembled mitogenomes is presented in Table S3. Additionally, the gene
map and a short description of each assembled mitogenome are presented in Figures S1-59.
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3.2. Protein-Coding Genes and Codon Usage

The mitogenome of each species encoded a typical full set of 13 proteins. The majority
of the PCGs were transcribed from the heavy (H) strand, except for the ND6 gene and
eight out of the 22 tRNA genes (tRNAGIn, tRNAAla, tRNAAsn, tRNACys, tRNATyr,
RNASer, tRNAGIu and tRNAPro), which were transcribed from the light (L) strand. The
start codons were the typical ATG codon of all PCGs, regardless of the species with some
exceptions: the COI gene was initiated by a GTG codon, ATP6 gene was initiated by a GTG
codon only in Torpedo marmorata, and the ND6 gene was initiated by a CTA or TTA codon.
Among the mitochondrial PCGs, the ND5 was the longest, while the ATP8 was the shortest,
in all species. Most of the PCGs were terminated by a complete (TAA/TAG), while the
incomplete termination codon (TA/T) was found in 5 out of the 13 PCGs. Such incomplete
termination codons (TA/T) are a common phenomenon in metazoan mitogenomes and can
be extended to a complete TAA termination codon through polyadenylation of the 3’-end
of the mRNA, which occurs after transcription [62]. These features of the initial and stop
codons are commonly observed in elasmobranchs [39,63] and are similar to the majority of
the vertebrate mitochondrial PCGs [64].

The base composition and the RSCU values of the mitochondrial PCGs are presented
per species in Tables 5S4 and S5. Each PCG and the complete mitogenome of all species were
rich in the A+T content, resulting in a strong bias towards A+T rich codons in the codon
usage, which appears to be a shared feature in vertebrates [61]. The most frequently used
codons across species were: TTALeu (average = 4.21%), TTTPhe (average = 3.17%), CTALeu
(average = 3.14%), TATTyr (average = 2.90%), CTTLeu (average = 2.79%), CCTPro (average
=2.65%), ACAThr (average = 2.59%) and ATAMet (average = 2.54%). The codons with the
highest RSCU values that were found in the PCGs from the nine assembled mitogenomes
were TTALeu (RSCU average = 1.76), GCCAla (average = 1.56), TCTSer (average = 1.55),
TCASer (average = 1.52) and AAALys (average = 1.52) (Table S5).

3.3. rRNA and tRNA Genes

The mitogenome of each species contained 22 tRNA genes interspersed along the
genome, the small subunit of rRNA (125 rRNA) and the large subunit of rRNA (165 rRNA).
They were transcribed in the same direction on the H-strand and separated by tRNAVal.
The size in base pairs (bp) of all tRNA and rRNA genes is presented in Table S2. All tRNA
genes could fold into a distinctive cloverleaf secondary structure except tRNASer(AGY),
which contained a simple loop without making the dihydrouridine arm, similarly to many
metazoan mitogenomes [64,65] (Figure S10).

3.4. Noncoding Regions

The noncoding regions included the origin of light strand replication (OL), one puta-
tive control region (D-loop) and intergenic spacers, namely some overlapping nucleotides
and gaps between PCGs or between PCGs and tRNAs (Table S2). In each assembled
mitogenomes the OL region was located between the tRNAAsn and tRNACys genes and
the control region was located between the tRNAPro and tRNAPhe genes. The OL region
ranged in size from 32 bp in Raja undulata to 41 bp in Galeus melastomus. Moreover, the
control region exhibited significant size variation among the studied species, ranging in
size from 1068 bp in Prionace glauca to 3768 bp in Gymnura altavela, and was enriched in
tandem repeat sequences in all species, except Squalus blainville. This finding confirms
the fact that the control region exhibits extensive nucleotide and size polymorphism, as
it has been shown in several elasmobranchs [66-68] and teleosts [69-71]. An analytical
description of the tandem repeats is presented in Table Sé.

3.5. Phylogenetic Inference

Both ML and BI phylogenetic analyses supported the division of the class Chon-
drichthyes into four superorders (Galeomorphii, Squalomorphii, Batoidea and Holocephal-
imorpha) (Figures 1a,b and 2a,b), but not the “Hypnosqualea” hypothesis, which, based on
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morphological traits, suggests that Batoidea is part of the shark group [27-30]. The mono-
phyly of modern sharks has been proposed previously by Maisey [72] who morphologically
identified three groups of Chondrichthyes, the first showing an orbitostylic jaw suspension
(Hexanchiformes, Squaliformes, Pristiophoriformes and Squatiniformes), the second group
represented by the galeomorphs (Heterodontiformes, Orectolobiformes, Lamniformes and Car-
charhiniformes) and the third group with all batoids. Such classification was further supported
by morphological [73,74] and recently, by molecular studies [2,8,15,31-34,75-77], reinforcing
the scenario that the “Hypnosqualea” morphological traits could be regarded as homoplasy,
due to the convergent adaptation to the benthic life [31,75].

The phylogenetic placement of the studied species was supported with high boot-
strap and posterior probability values based on both ML and BI phylogenetic analyses
(Figures 1a,b and 2a,b), and notably corresponds to their reproductive mode. Galeus melas-
tomus was placed within Pentanchidae (Carcharhiniformes) with oviparity as mode of
reproduction [4]. Prionace glauca was placed within Carcharhinidae (Carcharhiniformes)
with placental viviparity as mode of reproduction [4]. Odontaspis ferox was placed within
the order Lanmniformes with oophagy (type of aplacental viviparity supported by yolk and
maternal contribution) as the sole mode of reproduction [78]. Squalus blainville was placed
within Squalidae (Squaliformes) with yolk sac viviparity (a type of aplacental viviparity
where embryos feed solely on yolk) as the mode of reproduction of all Squalomorphii [4].
Bathytoshia centroura (Dasyatidae), Dasyatis tortonesei (Dasyatidae) and Gymnura altavela
(Gymnuridae) were placed within Myliobatiformes with istotrophy (a type of aplacental
viviparity supported by yolk and uterine milk) as the sole mode of reproduction [79].
Finally, Torpedo marmorata was placed within Torpedinidae (Torpediniformes) reproducing
with istotrophy [80] and as a sister taxon to Narcinidae (Torpediniformes) reproducing
with yolk sac viviparity with other maternal contribution [81]. The effect of the repro-
ductive mode on the phylogenetic placement of elasmobranchs has also been supported
by Hull et al. [82] who showed that Mustelus mustelus was phylogenetically closer to the
placental species Mustelus griseus, both of which are viviparous placental, in contrast to
Mustelus manazo, which is aplacental [83,84]. Furthermore, given that oviparity is the
sole reproductive mode for all Chimaeriformes and Heterondontiformes species, and for
some families of Orectolobiformes (Parascylliidae, Hemiscylliidae and Stegostomatidae),
Carcharhiniformes (Scyliorhinidae and Proscyllidae) and Rajiformes (Rajidae) [4], earlier
suggestions that egg-laying oviparous sharks are ancestral [81,85,86] are confirmed.

Within Selachii, the phylogenetic analysis recovered the eight well-known shark orders
divided into two distinct clades, the Squalomorphii and the Galeomorphii, being consistent with
previous morphological [30-37] and molecular divisions [2,8,15,24,31-33,75,77]. The Squalo-
morphii was represented by four orders. According to the Bayesian mitogenomic phylogeny
(Figure 1a), the monophyletic Hexanchiformes was placed at the most basal position and sequen-
tially followed by Squatiniformes placed as sister taxon to Pristiophoriformes, and the mono-
phyletic Squaliformes that was placed as a sister taxon to the Squatiniformes-Pristiophoriformes
group. The proposed topology is supported with high posterior probability values and is
consistent with previous molecular studies [15,24,31-34,87]. Molecular [77] and morpholog-
ical studies [88] have placed Squaliformes as a sister taxon to Pristiophoriformes, while
Heinicke et al. [8] suggested a sister relationship between Squaliformes and Squatiniformes.
Pristiophoriformes are strongly supported as squaloid-like sharks based on morphological
studies [27-29] by lacking the eight batoid synapomorphies [89]. Our findings also support
the placement of Squatiniformes within squalimorphs, in contrast to Compagno [90] who
proposed four superorders (Galeomorphii, Squalomorphii, Squatinimorphii and Batoidea).
The placement of Squatiniformes and Pristiophoriformes within squalimorphs has been
supported since the first extensive molecular phylogeny of Douady et al. [31], based on a
fragment of the mitochondrial 125, 16S and transfer RNA valine genes (2400 nucleotides)
from over 20 elasmobranchs, until more recent studies that analyzed the complete mi-
togenome of more than 70 elasmobranchs [15,77].
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Figure 1. (a) Bayesian mitogenomic phylogeny of Selachii based on the concatenated dataset of 13 protein-coding genes.
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genes. Posterior probabilities are presented next to the nodes. The complete phylogeny is illustrated in the miniphoto.
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Figure 2. (a) Maximum Likelihood mitogenomic phylogeny of Selachii based on the concatenated dataset of 13 protein-

coding genes. (b) Maximum Likelihood mitogenomic phylogeny of Batoidea and Holocephali, based on the concatenated

dataset of 13 protein-coding genes. Bootstrap values are presented next to the nodes. The complete phylogeny is illustrated

in the miniphoto. Mitogenomes assembled for the first time in this study are indicated by an asterisk (*).

Within Hexanchiformes, Hexanchinidae was placed as a sister taxon to Chlamy-

doselachidae. Within Squatiniformes, the basal Squatina squatina was grouped with Squatina
japonica and sequentially by Squatina nebulosa which was placed as sister species to Squatina
formosa. Squatinidae was placed as a sister taxon to Pristiophoridae represented by Pristio-
phorus japonicus.

Within Squaliformes, Etmopteridae was placed as a sister taxon to Dalatiidae, and

both families were at the most basal position of the order. Somniosidae was placed
as a sister taxon to Squalidae. Squalidae showed monophyly as in Vélez-Zuazo and
Agnarsson [33] where Squalimorphii were represented by more species and families.
According to Vélez-Zuazo and Agnarsson [33] Somniosidae, Dalatiidae and Etmopteridae
showed paraphyly, a notion that was not confirmed in the present study, probably due
to the different representation of the families. Vélez-Zuazo and Agnarsson [33] observed
poor support for most of the relationships among the families of Squaliformes, while in the
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present study they were strongly supported. Notably, a distinct phylogenetic placement of
Squalus species was supported by high posterior probability values, with Squalus acanthias
recovered as the basal taxon within Squalidae. Squaliformes comprise the second most
diverse order of sharks with taxonomic uncertainties within the genus Squalus [37]. Thus, by
providing the complete mitogenome of Squalus blainville, the present study could support
future phylogenetic studies with the scope to resolve these uncertainties.

The Galeomorphii was represented by four monophyletic orders (Figure 1a). The basal
Heterodontiformes followed by Orectolobiformes and, sequentially, by the Carcharhiniformes—
Lamniformes group, a topology previously supported by morphological [28,29] and molec-
ular studies [2,8,15,24,77]. Nevertheless, based on ML tree topology, Orectolobiformes was
placed at the most basal position of a group including all of the sharks’ orders (Figure 2a).
Based on BI analysis, the phylogenetic placement of Heterodontiformes as sister taxon
to all other galeomorphs has already been reported [8,15,29,77,88] and opposes the close
relationship between Heterodontiformes and squalimorphs suggested by Mallatt and
Winchell [87] and Human et al. [32]. Moreover, the basal placement of Heterodontiformes
represented by the monophyletic genus Heterodontus, opposes previous studies suggesting
the galeomorph Heterodontus and the squalimorph Chlamydoselachus as basal neoselachi-
ans or nonneoselachian sharks [91,92]. Additionally, the Lamniformes-Carcharhiniformes
grouping opposes the Lamniformes—Orectolobiformes grouping that was suggested based
on sequences of the mtDNA and/or nuclear genes [31-33,76,77,87]. Winchell et al. [75]
used nuclear major and minor rRNA subunits to relate the Lamniformes—Orectolobiformes
group to the Isurida group that was initially proposed based on morphological similar-
ities [93], a view not corroborated by Compagno [88]. Most of these similarities were
considered by Winchell et al. [75] as homoplasy and were treated as convergent adaptations
for pelagic carnivory, a view that cannot be confirmed in recent molecular phylogenetic
studies [2,15,24,77].

Within Orectolobiformes, Orectolobidae was placed in a basal position related to the
group formed by all other families similarly to previous studies [15,24,77]. Stegostom-
atidae was placed as a sister taxon to the Rhincodontidae-Ginglymostomatidae group
and Hemiscylliidae was placed as a sister taxon to the Stegostomatidae—Rhincodontidae-
Ginglymostomatidae group. An identical placement of the families within Orectolobi-
formes has been found in previous phylogenetic studies [15,33,77].

Lamniformes was represented by seven families, including the paraphyletic Alopiidae
and Odontaspididae (Figure 1a). Mitsukurinidae was placed at the most basal position of all
lamniforms divided into two groups: the first group formed by the basal Odontaspididae
(Carcharias taurus), Cetorhinidae and Lamnidae and the second group formed by the basal
Alopias superciliosus placed as a sister taxon to a group subdivided to the other representa-
tives of the Alopiidae family and the Pseudocarcharidae-Odontaspididae-Megachasmidae
group. On the contrary, Alopiidae was recovered as monophyletic and sister taxon of the
Megachasmidae-Pseudocarcharidae group in Amaral et al. [77]. Our study supports the
monophyly of Lamnidae as shown in previous phylogenetic studies [15,24,33,77]. The
genus Lamna was placed as a sister taxon to the most nested taxa of Carcharodon and Isu-
rus, a topology supported by both morphological [94] and molecular data [15,24,33,77].
Moreover, previous morphological and molecular studies [28,95] placed Mitsukuridae
basal to all other Lamniformes similarly to our findings. However, in Amaral et al. [77],
Mitsukurinidae was placed either as a basal sister taxon to the Alopiidae-Megachasmidae—
Pseudocarcharidae group in the ML tree topology or as basal taxon to all Lamniformes in
the BI tree topology.

According to the Bayesian mitogenomic phylogeny (Figure 1a), Carcharhiniformes was
represented by seven families, with Carcharhinidae showing paraphyly and Scyliorhinidae
placed at the most basal position of this order, similarly to previous molecular stud-
ies [15,24,33,77]. Scyliorhinidae was followed by Proscylliidae, which was sequenced
by Pentanchidae and later by Triakidae and Hemigaleidae, with a grouping between
Sphyrnidae and Carcharhinidae in the most nested position. The embedment of Sphyrnidae
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within Carcharhiniformes was also supported by Vélez-Zuazo and Agnarsson [33] based
on nuclear and mitochondrial genes, and by Da Cunha et al. [15] based on complete
mitogenomic analysis. Our results enhance previous morphological studies in which
Scyliorhinidae represented the basal lineage followed by Triakidae and the clade formed
by the derived Sphyrnidae and Carcharhinidae [88,92]. The phylogenetic placement of
all families with Carcharhiniformes was supported by high posterior probability values.
The only exception was in the case of Sphyrnidae (represented by Sphyrna and Eusphyrna
species) that was grouped within Carcharhinidae (represented by Carcharhinus, Glyphis,
Lammniopsis, Prionace and Triaenodon species) with 0.64 probability. A second group of Car-
charhinidae was represented by Loxodon macrorhinus basal to the Rhizoprionodon-Scoliodon
group, and it was recovered following Galeocerdo cuvier with high posterior probability
value (1.0). Similarly, to our results, Vélez-Zuazo and Agnarsson [33] assigned Scoliodon as
the sister genus of Rhizoprionodon but no Loxodon species was included in their analysis,
while Naylor et al. [96] assigned Scoliodon deeply nested within the Carcharhinidae, as the
sister genus of Loxodon in a group with Rhizoprionodon as the basal genus. Paraphyly
within Carcharhinidae is commonly observed in phylogenetic studies with differences
attributed to the selected genes or the number of species included in the analysis [33,77,96].
Actually, lack of monophyly has been observed in almost all of the families within Car-
charhiniformes, in a variety of studies using a different combination of molecular markers,
most of them from the mtDNA [32,33,97]. In the present study, most of Carcharhinus species
were placed within Carcharhinidae with medium probability values based on BI analysis
but showed polytomy in ML analysis (Figures 1a and 2a). A similar pattern of polytomy
within Carcharhinidae has previously been observed [15] and related to the low levels of
intrinsic genetic variability of sharks [98].

The Batoidea were split to four monophyletic orders. Based on the BI analysis, a
basal division was found between a first group recovered with medium support (0.71)
and formed by Rajiformes placed as a sister taxon to Torpediniformes, and a second
group recovered with strong support (1.00) and formed by Rhinopristiformes placed as
a sister taxon to Myliobatiformes (Figure 1b). Rajiformes were placed as a sister taxon
to Torpediniformes, similarly to the results Da Cunha [15] and Amaral et al. [77]. A low
support regarding the division of Torpediniformes from other batoids was also recovered
in Amaral et al. [77] where only Narcine entemedor was included in the analysis, but also
in Gaitdn-Espitia et al. [99] presenting the most complete phylogeny of Torpediniformes
based on 11 PCGs and including 6 species from the genera Torpedo, Typhlonarke and Narcine.
It is worth mentioning that based on the ML analysis, Torpediniformes was placed with
low support (46) as a basal taxon to the Rhinopristiformes-Myliobatiformes group, and
all these three orders were placed as a sister group to Rajiformes (Figure 2b). According
to the Bayesian mitogenomic phylogeny (Figure 1b), Rajiformes was represented by three
families, the basal Anacanthobatidae, Arhynchobatidae and Rajidae. Within Rajiformes, all
families formed monophyletic groups with species of the genus Bathyraja (Arhynchobati-
dae) being involved in a large polytomy. Torpediniformes was represented by two families,
the Torpedinidae, represented by Torpedo marmorata, which was placed as a sister and
basal taxon to Narcinidae represented by three Narcine species. Rhinopristiformes was
represented by four families out of which Rhinobatidae was monophyletic. Zapteryx exas-
perata was placed at the most basal position of the order and followed by a group formed
by two Rhinobatos species. Following this, the monophyletic Pristidae was placed as a
sister taxon to the Rhinobatidae-Rhinidae-Rhynchobatidae group. Myliobatiformes was
represented by five families with Aetobatus flagellum (Myliobatidae) placed at the most
basal position. The topology of all families within Myliobatiformes was highly supported
with only Myliobatidae showing paraphyly. Dasyatidae was recovered as sister family to
Potamotrygonidae similarly with Amaral et al. [77]. Finally, Gymnuridae was recovered as
a sister taxon to Pleisiobatidae, and both families were more closely related to Myliobatidae
than Dasyatidae.
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4. Conclusions

Elasmobranchs consist one of the most diverse groups, represented by almost 1200 tax-
onomically valid species, and at the same time are among the most vulnerable taxa to
exploitation [23]. The present study describes analytically for the first time the com-
plete mitogenome of nine elasmobranchs, namely Bathytoshia centroura, Dasyatis tortonesei,
Galeus melastomus, Gymnura altavela, Odontaspis ferox, Prionace glauca, Raja undulata, Squalus
blainville and Torpedo marmorata. The phylogenetic placement of these species among
modern elasmobranchs was highly supported based on both ML and BI phylogenetic
analyses, also showing an effect of their reproductive mode. The phylogenetic tree re-
constructions confirmed the monophyly of Selachii and Batoidea similarly to the most
recent elasmobranch phylogenies. The tree topologies supported the division of Selachii
to Squalomorphii and Galeomorphii, as well as the monophyly of the eight shark orders.
Differences found regarding the phylogenetic placement at family or species level among
modern elasmobranch phylogenies were mainly related to the variation in taxonomic
sampling. This highlights the need to target taxonomic sampling in particular regions of
the topology by prioritizing especially threatened species that embody significant amounts
of unique evolutionary history [2]. As mitogenomic data from different taxa become avail-
able, evolutionary questions concerning Chondrichthyes are likely to be answered. In
this respect, present findings contribute towards a more comprehensive understanding
of the relationships among elasmobranchs and establishing conservation priorities, given
that information about species’” evolutionary history and the status of their close relatives,
can impact conservation planning, especially for those species already identified as being
under some level of threat.
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