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Abstract: In recent years, biofluid has been considered a promising source of non-invasive biomark-
ers for health monitoring and disease diagnosis. However, the expression consistency between
biofluid and human tissue, which is fundamental to RNA biomarker development, has not been
fully evaluated. In this study, we collected expression profiles across 53 human tissues and five main
biofluid types. Utilizing the above dataset, we uncovered a globally positive correlation pattern
between various biofluids (including blood, urine, bile, saliva and stool) and human tissues. How-
ever, significantly varied biofluid–tissue similarity levels and tendencies were observed between
mRNA and lncRNA. Moreover, a higher correlation was found between biofluid types and their
functionally related and anatomically closer tissues. In particular, a highly specific correlation was
discovered between urine and the prostate. The biological sex of the donor was also proved to be
an important influencing factor in biofluid–tissue correlation. Moreover, genes enriched in basic
biological processes were found to display low variability across biofluid types, while genes enriched
in catabolism-associated pathways were identified as highly variable.

Keywords: biofluid; tissue; mRNA; lncRNA; biomarker

1. Introduction

Currently, with the rapid development of the medical industry, the early detection of
diseases, as well as the monitoring of health status, become increasingly applicable and
urgently needed [1]. Traditionally, disease diagnosis is completed through clinical tests
of relevant tissues, which is direct but usually invasive. Multiple tissues participate in
the production, secretion and transportation procedures of biofluids [2]. Human biofluids
refer to biological fluids secreted or excreted from inside body, including but not limited to
blood, urine, sweat, and tears [3]. Compared to tissue samples, biofluids are more easily
obtained clinically, as they can usually be acquired via a needle or swab. Considering the
advantages of a consistently rich source and their ability to be acquired by non-invasive
means, biofluids are believed to be another important source of biomarkers for disease
diagnosis and monitoring [4]. In fact, multiple biofluids have already been proven to be
promising for clinical practice [5], for example, in the detection of Huntington’s Disease
(HD) [6], colorectal cancer (CRC) [7], traumatic brain injury (TBI) [8], etc.

To better understand and guide the clinical application of biofluids, we still need to
ascertain, as the end-point product, to what degree the composition and abundance of
gene expression products agrees between human tissues and biofluids. Here, we focused
on RNA products and compared the expression profiles between various human tissues
and a range of human biofluids. We analyzed the consistency and divergence between
healthy human tissue and biofluids, and factors that might influence their correlation. Our
group had already confirmed the extensive correlation of microRNA expression between
tissues and biofluids [9]. In this study, we further extended the scope to messenger RNAs
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(mRNAs) and long non-coding RNAs (lncRNAs), which are also the main classes of the
human transcriptome. A similar biofluid–tissue correlation pattern was identified for
the whole transcriptome, mRNA and lncRNA. In order to further our understanding,
we identified the top 500 lowly variable genes (LVGs) and top 500 highly variable genes
(HVGs) across the biofluid transcriptomes. To figure out what role was played by the
constant and hypervariable component of the biofluid transcriptome, a corresponding
functional enrichment analysis was also separately performed.

2. Methods
2.1. Data Collection

The expression profiles of 53 healthy human tissues were obtained from the GTEx
dataset (https://www.gtexportal.org/home/datasets, release v7, accessed on January
2021) [10]. The transcriptome profiles of 5 main biofluid types (blood, urine, saliva, bile
and stool) were separately collected from 4 GEO datasets (https://www.ncbi.nlm.nih.gov/
geo/, accessed on January 2021) and the exRNA Atlas database (http://exrna-atlas.org/,
accessed on January 2021) [11]. The data sources for the biofluid transcriptome profiles
are shown in Table S1. Considering that the GTEx dataset only collected healthy donor
genome profiles, the transcriptome profiles of biofluids sampled from individuals with a
disease status were not employed in the subsequent study.

2.2. Data Preprocess

To reduce any technical bias brought about by gene length and sequence depth, tran-
scripts per million (TPM) normalization was first performed on the RNA-seq expression
profiles included in this study. For this purpose, the human gene annotation file down-
loaded from GENCODE [12] was used as a reference. The expression matrices of all of the
collected biofluids were merged into a single matrix, in which only intersecting genes were
kept. Furthermore, to improve the quality of the analysis, genes expressed in less than
25% of biofluid samples were excluded from the integration matrix. To further mitigate
the batch effect associated with the data sources, the ‘removeBatchEffect’ function of the
limma R package (v3.40.6) was run. Taking GRCh38 release 13 genome (GRCh38.p13) as
the reference, mRNA and lncRNA transcriptomes were next filtered out from the above-
integrated whole transcriptome matrix, resulting in expression profiles for 20,845 unique
ENSGs, covering 15,934 mRNAs and 4555 lncRNAs for later use.

2.3. Statistical Analysis

Statistical analysis was performed using R 3.6.1 (https://www.R-project.org/, ac-
cessed on January 2021) [13]. The correlation between human tissue and the biofluid
transcriptome was evaluated by Spearman’s correlation (‘cor.test’ function, stats R package,
v3.6.3) and defined as the biofluid–tissue similarity index (BTSI). The expression of mRNAs
and lncRNAs in the biofluid and the tissue were correspondingly defined as BF-mRNAs,
BF-lncRNAs, T-mRNAs and T-lncRNAs.

To enable an overview of BTSI between the various biofluids and human tissues, the
average expression value of the genes in all of the GTEx samples, and the samples of each
biofluid type, were calculated and used for BTSI calculation. To investigate the tendency
for biofluid–tissue correlation, the average expression value of the genes in the samples
of each GTEx tissue type and each biofluid type was calculated for the BTSI calculation.
Furthermore, to verify the intended correlation between specific biofluid–tissue pairs, BTSI
values between biofluid–tissue samples and those between biofluid-randomized GTEx
samples (A = 1000) were compared using a t-test, repeated 10 times. Only significant
biofluid–tissue correlations (Spearman’s correlation, p-value < 0.05) with a BTSI higher
than the randomized biofluid–GTEx samples, as well as with a p-value < 0.05 in all of the
above 10 repetitions (t-test), were labeled as intended correlations.

To find out the factors (sex, gene biotype) that might affect the biofluid–tissue correla-
tion, a t-test was performed. Considering the GTEx provided us with the sex information
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of all sample donors. At the same time, a part of the biofluid samples provided the sex
of donors and included samples from both sexes (urine exRNA, stool seRNA). The BTSI
between the biofluid and the tissue sampled from both male, both female and donors of
each different sex were compared using t-test.

In each biofluid sample, the number of genes with an expression level larger than zero
(non-zero gene) was also calculated. To study the effect of the non-zero gene number on
the BTSI level, linear regression was performed (‘lm’ function, VGAM R package, v1.1-5).
Considering most transcriptomes of the biofluids were profiled by RNA-seq and were
all processed via TPM normalization, the array profile of stool-derived eukaryotic RNA
(seRNA) was excluded from this part of the analysis.

2.4. Decomposition of Tissue Component in Biofluid

The deconvolution tool dtangle [14] (R package, v2.0.9) was used to infer the tissue
derivation of RNAs in different biofluids. The transcriptomes of 53 human tissues obtained
from the GTEx dataset were used as a reference panel to deconvolute the tissue components
of various biofluids (i.e., the estimated contribution of each tissue to the transcriptome
of various biofluids). To further verity the dtangle deconvolution result, the cell type
enrichment tool xCell [15] (R package, v1.1.0) was also applied to infer the proportion of
cell types in the biofluid samples.

2.5. Functional Enrichment Analysis of Stable and Variable Components of Biofluid Genome

To identify LVGs and HVGs among biofluids, the ‘FindVariableFeatures’ function
provided by the Seurat R package (v3.2.2) was applied. Generally, the variance of each
gene was calculated based on local polynomial regression (LOESS). Then, the genes with
the top 500 highest and lowest variance values were separately defined as the top 500 HLVs
and LVGs. To explore the roles played by the top 500 HVGs and LVGs, gene ontology
(GO) enrichment analysis was performed via the ‘enrichGO’ function (clusterProfiler R
package, v3.12.0). Using the ‘org.Hs.eg.db’ OrgDb subject for background annotation,
the corresponding enriched GO terms were obtained based on a gene ontology over-
representation test.

3. Results
3.1. Biofluids and Tissues Exhibit Widely Positive Correlations

A wide range of biofluid transcriptomic expression profiles were collected (Figure 1A,B).
In general, the collected expression profiles contained 444 samples, which mainly consisted of
five biofluid types (blood, urine, stool, saliva and bile) for downstream analysis. The tran-
scriptome profiles of 53 human tissues were obtained from the Genotype-Tissue Expression
(GTEx) dataset [10] for analyzing biofluid–tissue gene expression similarity. In addition, to
study the difference in biofluid–tissue similarity between sequencing methods, we included
the sequencing results of whole component (total RNA), extracellular RNA (exRNA), ex-
tracellular vesicle (EV) RNA and stool-derived eukaryotic RNA (seRNA). In practice, the
biofluid–tissue similarity index (BTSI) was estimated by the Spearman’s correlation between
the transcriptomes of the biofluid and the human tissues.

First, we assessed the correlations between the whole transcriptomes of the biofluid
and tissue. Generally, the healthy human tissue transcriptome presented globally positive
correlations with the various biofluids (Spearman’s correlation, p-value < 0.05; Figure 1C).
However, the corresponding similarity level may vary, ranging from 0.70 (platelet-poor
plasma, p-value = 0.00) to 0.13 (stool seRNA, p-value = 8.97 × 10−85). Overall, the tissue
similarity of biofluid total RNA and biofluid EV RNA were relatively higher than other
components, with a maximum of 0.70 (platelet-poor plasma) and a minimum of 0.47 (saliva
EV, p-value = 0.00). Nevertheless, the correlations between various tissues and biofluid
exRNA profiles were rather weak, ranging from 0.38 (serum exRNA, p-value = 0.00) to
0.17 (bile exRNA, p-value = 2.44 × 10−130). The lowest BTSI was observed in stool seRNA
(Figure 1C), suggesting a loss of the tissue-derived gene expression pattern during the
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process in which enterocytes were exfoliated from the colon lumen and excreted into
the stool [16].
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 Figure 1. Overview of biofluid–tissue expression correlations. (A) Data source of collected biofluid
genome profiles. The number of samples collected from each data source and the proportion of
samples in the whole sample pool (n = 444) are labeled in the inner and outer pies separately.
(B) Frequency of mRNA and lncRNA in transcriptome profile collected from different data sources
and final intersection matrix used for analysis. The color of the bars corresponds to different gene
biotypes. (C) The bar plot shows the tissues of the top 10 highest BTSI value for each biofluid type
from whole transcriptome view. Only tissues significantly correlated with biofluid (Spearman’s
correlation, p-value < 0.05) and presented higher correlation with biofluid samples than randomized
GTEx samples (n = 1000; t-test, 10 times repeat, p-value < 0.05) are labeled using ‘*’. The color of each
bar represents the rank of the tissue BTSI value for the corresponding biofluid.
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3.2. Tendency and Specificity of Biofluid–Tissue Correlation

Next, we investigated if there were any tendencies in the above biofluid–tissue cor-
relations. Whole transcriptome BTSIs between 53 tissue types and 5 main biofluids were
calculated (Figure 1C). Urine and urine EV presented relatively stronger correlations with
prostate (BTSI = 0.77, p-value = 0.00; BTSI = 0.77, p-value = 0.00), pancreas (BTSI = 0.76,
p-value = 0.00; BTSI = 0.76, p-value = 0.00), and bladder tissue (BTSI = 0.75, p-value = 0.00;
BTSI = 0.76, p-value = 0.00), suggesting their potential application in relevant diseases.
This finding is in line with previous studies, which reported that urine screening had
great potential for pancreatic adenocarcinoma risk prediction [17] and prostate cancer
diagnosis [18]. Nevertheless, the phenomenon observed in urine exRNA was not exactly
the same. A relatively higher BTSI was still found between urine exRNA and prostate
tissue (BTSI = 0.18, p-value = 6.46 × 10−168). Additionally, we calculated the BTSI between
prostate tissue and urine sampled from male and female donors separately to exclude poten-
tial sex bias. The results showed a high correlation with prostate tissue in the urine of both
male (BTSI = 0.19, p-value = 8.97 × 10−68) and female (BTSI = 0.20, p-value = 1.91 × 10−185)
donors. However, only a weak correlation was observed between the urine exRNA and
pancreas (BTSI = 0.18, p-value = 2.96 × 10−157) or bladder (BTSI = 0.17, p-value = 1.13
× 10−140). Thus, urine exRNA seemed not to be an optimal choice for broad urogenital
system disease biomarker development. In addition, blood samples (serum and plasma)
generally showed a stronger correlation with spleen, lung and adipose (Figure 1C). All
of these tissues are major participants in cardiovascular diseases and the hematopoiesis
bioprocess [19]. The only exception was the plasma exRNA, which only presented higher
correlation with the spleen (BTSI = 0.42, p-value = 0.00), and thus might not be an appropri-
ate choice for the development of cardiovascular disease biomarkers. Bile exRNA showed
a comparatively stronger correlation with the spleen (BTSI = 0.16, p-value = 1.11 × 10−125).
Intriguingly, the saliva EV exhibited a relatively high correlation with esophagus mucosa
(BTSI = 0.48, p-value = 0.00) and the stomach (BTSI = 0.47, p-value = 0.00). At the same time,
the stool seRNA presented comparatively strong correlations with the digestive organs,
including the transverse colon (BTSI = 0.15, p-value = 9.26 × 10−103) and the small intestine
(BTSI = 0.14, p-value = 1.03 × 10−95). Accordingly, we postulate that RNAs in saliva EVs
might be suitable biomarkers for the screening of upper digestive tract diseases, while
the stool seRNA might be a better candidate for lower digestive tract diseases. The above
results appear to imply a tendency toward biofluid–tissue correlation. Generally, from the
view of whole transcriptome, biofluids show stronger correlations with the tissues that
are involved in their production or bioprocess, and the tissues that are anatomically closer
to them.

The dtangle [14] deconvolution method was next used to further explore the contribu-
tion of tissues to RNA abundances in various biofluids. Using a reference panel constructed
with 53 tissues obtained from the GTEx dataset, the tissue compositions of the biofluids
were estimated. Interestingly, a highly specific tissue composition was observed for urine.
It seemed that almost all tissue components (99.98%) of urine should be attributed to the
prostate (Figure 2A). The same phenomenon was not identified in the urine EV or the
urine exRNA, implying a deficiency of this specificity in the cell-free urine component. The
gene signature-based method xCell [15] was also used to estimate the cell-type-specific
enrichment score of each biofluid. The result showed a high enrichment score for smooth
muscle (xCell enrichment score = 0.88), which is the main component of the human prostate
gland stroma [20], in the urine sample (Figure 2B). Combined with the high similarity
previously observed between the whole transcriptome of the urine and prostate, the urine
total RNA seemed to be a promising biomarker source for prostatic diseases.

3.3. Biofluid-Derived mRNAs Show Stronger Correlation with Healthy Tissues Than
Biofluid-Derived lncRNAs

For a deeper understanding of biofluid–tissue correlations, we next extracted the
mRNA and lncRNA transcriptomes separately for BTSI calculation and analysis. In this part
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of the study, 15,934 mRNAs and 4555 lncRNAs were included. Overall, BF-mRNAs and BF-
lncRNAs also presented globally positive correlations with the gene expression pattern in
tissues (Figure 3A). The only exception was found in the stool-derived eukaryotic lncRNAs,
which showed a non-significant negative correlation with human tissues (BTSI = −0.01,
p-value = 0.68), suggesting an extreme lack of biofluid–tissue similarity in stool lncRNAs.

Figure 2. Estimated mixture components of biofluids. (A) Heatmap describing the dtangle estimated tissue composition of
each biofluid type. (B) Heatmap describing the 67 cell-type-specific enrichment scores of each biofluid type.

As for the biofluid–tissue correlation tendency, a pattern similar to that found in
the biofluid whole transcriptome could still be observed for most of the BF-mRNAs and
BF-lncRNAs (Figures S1 and S2). However, BF-lncRNAs correlated with T-lncRNAs of
different tissues at relatively equal levels, making the tendency not as evident. In particular,
for the BF-lncRNAs in the exRNA of serum and plasma, when verified using the above-
mentioned t-test, an intended correlation with the spleen tissue could not be identified
(t-test, repeated 10 times, p-value > 0.05).

Moreover, BF-mRNAs and T-mRNAs globally present a higher similarity than BF-lncRNAs
and T-lncRNAs (t-test, p-value < 2.2 × 10−16; Figure 3B). Only in the bile exRNA and urine
exRNA did the BF-lncRNAs demonstrate a higher BTSI (t-test, p-value < 2.2 × 10−16). Consid-
ering the result might be affected by non-zero gene number, using 68 as a median expression
level in all biofluid samples, we separately filtered out 50 mRNAs and 50 lncRNAs with an
average expression value larger than 0 in the samples of each biofluid type for further compari-
son. After correction, a higher BF-lncRNA T-lncRNA correlation was also found in the serum
exRNA (p-value = 2.70 × 10−9; Figure 3B). As we already know, lncRNAs exert their functions
mainly through various direct and indirect means, such as regulating protein activity, genomic
targeting and antisense interference [21]. Combined with the above findings, it seemed that the
regulation function carried out by BF-lncRNAs are essential for the bile exRNA, urine exRNA
and serum exRNA, even though this regulation might be common and has a negligible tissue
correlation tendency.



Genes 2021, 12, 935 7 of 11

Figure 3. Biofluid–tissue correlation in mRNA and lncRNA view. (A) The bar plot at the top and heatmap at the bottom
separately describe the BTSI levels between biofluids and all human tissues, as well as each human tissue in mRNA (left)
and lncRNA (right). (B) The half violin plots show the comparison results of the BTSI levels between BF-mRNAs, T-mRNAs,
BF-lncRNAs and T-lncRNAs before (left) and after correction (right); the dot represents the corresponding average BTSI
value. ****, ** and * are used to label the p-values of the t-test results (p-value < 0.0001, p-value < 0.01, p-value < 0.05). (C) The
scatter plot demonstrates the correlation between BTSI and the non-zero gene number of the biofluid samples in the whole
transcriptome (left), mRNA (middle) and lncRNA (right). The R2 and p-values of the linear regression results are labeled.



Genes 2021, 12, 935 8 of 11

Using linear regression analysis, we also found that BTSI has a significant linear relation-
ship with the non-zero gene number of biofluid samples, in the no-matter-BF whole transcrip-
tome (R2 = 0.13, p-value = 6.51 × 10−12), BF-mRNAs (R 2 = 0.02, p-value = 4.71 × 10−3), or
BF-lncRNAs (R 2 = 0.63, p-value < 2.2 × 10−16; Figure 3C). For convenience, this part of the
analysis utilized only the RNA-seq profiles of biofluids. This result indicated that higher se-
quencing depth might facilitate us obtaining more tissue-related information from the biofluid
transcriptome. Considering the highest R2 found in the lncRNA linear regression result,
increasing the sequence depth might benefit a biofluid lncRNA biomarker-related study.

3.4. Various Factors Influence Biofluid–Tissue Correlation

Given the interindividual variation in the human genome and transcriptome [22], we
continued to study whether the biological sex of the sample donors might influence the
biofluid–tissue correlation. We first extracted the biofluid transcriptome profiles, which
provide sex information from both sexes, including urine exRNA profiles (36 female
samples and 34 male samples) and stool seRNA profiles (45 female samples and 66 male
samples). Then, we separately calculated and compared the BTSIs between biofluid and
tissue sampled from both females, both males and different sexes (female biofluid ~ male
tissue, and male biofluid ~ female tissue). The results showed a significantly different BTSI
between females and males (t-test, p-value < 0.02; Figure 4), indicating an overall sex bias
in biofluid–tissue correlation. In the stool seRNA and the urine exRNA, a significantly
higher BTSI was observed in female samples compared to that in male samples.

Figure 4. Potential influencing factor of biofluid–tissue correlation. Boxplot depicting the comparison results of the BTSI
levels between biofluids and tissues taken from female donors and male donors from the whole transcriptome (A), mRNA
(B) and lncRNA (C); the middle line of each box represents the corresponding median BTSI value. The colors of each boxplot
indicate biological sexes of biofluid and tissue donors, including both female (F~F), both male (M~M) and different sexes
(female biofluid~male tissue or male biofluid~female tissue, F~M). Relevant comparisons were performed with t-test, and
the resulting p-values are provided at the top of each boxplot.

3.5. Function Played by Highly and Lowly Variable Component of Biofluid Transcriptome

Recently, researchers proposed the classification of HVGs and LVGs. The basic as-
sumption is that HVGs (or LVGs) are important components of transcriptomes in which the
expression variability may (or may not) be explained by biological heterogeneity among
samples [23]. Here, we filtered out the top 500 HVGs as well as the top 500 LVGs across the
transcriptomes of various biofluids. Functional enrichment analysis was performed on the
identified HVGs and LVGs to explore their biological functions. It seemed that LVGs are
enriched in basic biological process-associated pathways, including RNA splicing, protein
stability regulation and histone modification (Figure 5A), while HVGs are mostly enriched
in pathways relevant to material metabolism, including organic acid catabolism, carboxylic
acid catabolism and amino acid metabolism (Figure 5B). Thus, we infer that the material
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catabolic and metabolic processes differ among various biofluids, while basic biological
processes are stable and conserved among various biofluids.

Figure 5. Functional enrichment analysis of highly variable genes (HVGs) and lowly variable genes (LVGs) across biofluid
transcriptomes. The bar plots depict functional enrichment results of the top 500 HVGs (A) and LVGs (B) across the merged
biofluid gene expression profiles. The colors of each bar represent different GO items, including the biological process (BP)
and cellular component (CC).

4. Discussion

In conclusion, we revealed positive global correlations between various biofluids and
human tissues, in no-matter whole transcriptome, mRNA or lncRNA view. In addition,
biofluids tend to have stronger correlations with tissues relevant to biofluid production,
secretion and transportation, especially with anatomically closer tissues. Most intrigu-
ingly, we identified a highly specific correlation between urine and prostate tissue that is
supported by both a high BTSI and a high proportion of prostate cells in the urine.

However, significantly stronger correlations were found between BF-mRNAs and T-
mRNAs compared to those between BF-lncRNAs and T-lncRNAs. The reverse situation was
only observed in bile exRNA, urine exRNA and serum exRNA. Additionally, the biofluid–
tissue correlations were presented consistently with respect to whole transcriptomes and
mRNAs, but not lncRNAs. Generally, correlations between BF-lncRNAs and different
tissues are distributed in a relatively equal fashion.

In addition, our results also suggested the presence of a sex bias in the biofluid–tissue
correlations. In the stool seRNA and urine exRNA, the BTSI is higher between the biofluid
and the tissue of female donors compared to that of male donors. The above results may
help select appropriate biofluid donors for disease biomarker development.

Moreover, we identified the top 500 HVGs and LVGs among the biofluid transcrip-
tomes. The functional enrichment analysis results revealed that the top 500 HVGs are en-
riched in functions relevant to material catabolism and metabolism, while the top 500 LVGs
are enriched in pathways associated with basic biological processes.

In summary, the above findings provide supporting evidence of the potential of
various biofluids to be reasonable sources of non-invasive biomarkers. It is also worth
noting that factors including the biofluid type, RNA subtype, sequencing depth and donor
sex might influence the degree to which we can obtain tissue-associated information
from biofluid transcriptomes. We believe a comprehensive evaluation of biofluid–tissue
correlations could facilitate the development of biofluid-derived biomarkers for disease
diagnosis and investigation.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes12060935/s1, Figure S1: Tendency in BF-mRNAs T-mRNAs correlation, Figure S2:
Tendency in BF-lncRNAs T-lncRNAs correlation, Table S1: Data source of collected biofluid transcrip-
tome profile.
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