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Abstract: Diagnosis of myopathies is challenged by the high genetic heterogeneity and clinical
overlap of the various etiologies. We previously reported a Next-Generation Sequencing strategy to
identify genetic etiology in patients with undiagnosed Limb-Girdle Muscular Dystrophies, Congenital
Myopathies, Congenital Muscular Dystrophies, Distal Myopathies, Myofibrillar Myopathies, and
hyperCKemia or effort intolerance, using a large gene panel including genes classically associated
with other entry diagnostic categories. In this study, we report the comprehensive clinical-biological
strategy used to interpret NGS data in a cohort of 156 pediatric and adult patients, that included
Copy Number Variants search, variants filtering and interpretation according to ACMG guidelines,
segregation studies, deep phenotyping of patients and relatives, transcripts and protein studies,
and multidisciplinary meetings. Genetic etiology was identified in 74 patients, a diagnostic yield
(47.4%) similar to previous studies. We identified 18 patients (10%) with causative variants in
different genes (ACTA1, RYR1, NEB, TTN, TRIP4, CACNA1S, FLNC, TNNT1, and PAPBN1) that
resulted in milder and/or atypical phenotypes, with high intrafamilial variability in some cases.
Mild phenotypes could mostly be explained by a less deleterious effect of variants on the protein.
Detection of inter-individual variability and atypical phenotype-genotype associations is essential for
precision medicine, patient care, and to progress in the understanding of the molecular mechanisms
of myopathies.

Keywords: myopathies; next generation sequencing; deep phenotyping; inter-individual variability;
atypical phenotype-genotype associations

1. Introduction

Inherited myopathies are clinically and genetically heterogeneous diseases, with
13 clinical and/or histological entry diagnosis groups reported in the Gene Table of Neuro-
muscular Disorders, (http://www.musclegenetable.fr, accept on 9 July 2021) [1] More than
200 genes are implicated including the giant and complex titin (TTN) and nebulin (NEB)
genes. The complexity increases with the evolution of knowledge and the identification of
important clinical overlaps between each phenotypic entry. The boundaries of the pheno-
typic entries reported in the classification of myopathies are thus becoming increasingly
ambiguous [2].

Next-generation sequencing (NGS) technologies have emerged as a rapid approach
to simultaneously analyze multiple genes, including very large genes such as TTN and
NEB. Previous NGS studies in muscle diseases showed a variable rate of genetic diagnosis,
ranging from 30 to 50% [3–8], depending on the number of genes included in the panel
and the myopathy classification criteria.

We previously reported the implementation of a targeted NGS strategy and a vari-
ant prioritization tool, the MoBiDiC prioritization algorithm (MPA) to identify variants
in patients with undiagnosed Limb-Girdle Muscular Dystrophies (LGMD), Congenital
Myopathies (CM), Congenital Muscular Dystrophies (CMD), distal myopathies (DM),
Myofibrillar Myopathies (MFM) and hyperCKemia or effort intolerance [9,10]. Because
of the clinical overlap between phenotypic groups, we added additional genes associ-

http://www.musclegenetable.fr
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ated with other entry diagnostic categories (mainly Congenital Myasthenic Syndromes
(CMS), retractile myopathies, and metabolic myopathies) [9], to search for potential atypi-
cal phenotype-genotype associations. We also updated the gene panel to include newly
identified genes, leading to a panel of 185 genes (Supplementary Table S1). Compared to
whole-exome sequencing, gene panel sequencing provides higher read depth and hence
better coverage of all exons, which in addition is useful for better detection of CNV (dele-
tions or duplications), as we previously demonstrated for large genes such as nebulin or
titin [9]. In this study, we report the comprehensive clinical-biological approach we used to
interpret NGS data in a cohort of 156 patients and showed that this strategy is essential to
progress in the understanding of the molecular mechanisms of myopathies, by identifying
inter-individual variability and atypical phenotype-genotype correlations in myopathies.

2. Materials and Methods
2.1. Patients

DNA samples were from a cohort of 156 patients (82 men and 74 women) followed
at the French South-West Reference Center for Neuromuscular Disorders. This cohort
included 88 patients with the pediatric-onset disease (neonatal onset in 36 patients) and
68 adults, all with a genetically unclassified myopathy. Most cases were sporadic. Family
history was reported by 22 patients from 20 different families, with a pattern of inheritance
that was autosomal dominant (AD) in 12 families, autosomal recessive (AR) in 6, and
X-linked in 2 families. In 11 patients, a family history of myopathy was revealed a posteriori
by relatives’ clinical and molecular evaluations.

Based on their clinical phenotype, patients had LGMD (n = 45 patients), CM (n = 76),
CMD (n = 9), DM (n = 13), and hyperCKemia or effort intolerance (n = 13). Clinical,
biochemical, and, when available, radiological and histopathological data were retrieved
for all subjects. Most patients underwent previous phenotype-based genetic tests that
excluded variations in genes frequently involved in myopathies.

The informed consent was signed by all adult patients and the parents (or legal
representatives) for children before molecular genetic testing. The study was approved on
20 July 2021, by the Institutional Review Board of Montpellier University Hospital, with
the IRB project identification code: IRB-MTP_2021_07_202100912.

2.2. Molecular Analyses

Targeted NGS analyses were performed on DNA using a customized panel of 135 genes
(n = 133 patients) secondarily increased to 185 genes (n = 23 patients) (Supplementary
Table S1), the SeqCap EZ Choice library capture kit (Roche-NimbleGen), and paired-end
sequencing (2 × 150 bp) on a V3 flow-cell using a MiSeq sequencer (Illumina), as previously
reported [9]. Variants identified as possibly pathogenic were confirmed by classical Sanger
sequencing. For variants predicted to affect splicing, cDNA analyses of the specific gene
were performed using mRNA extracted from muscle biopsies, as previously reported [9].

2.3. Bioinformatics

Bioinformatics analyses for single nucleotide variant (SNV) and copy number variant
(CNV) detection were performed as previously described [9]. The generated variant call
files (vcf) were analyzed using an in-house annotation software that is based on ANNO-
VAR [11] and that uses the following databases for variant annotation: RefGen, Knowngene,
clinVar, Kaviar, ExAC03, GnomAD Exome, snp138, dbsnfp, dbscsnv, and spidex.

2.4. Variant Pathogenicity Evaluation

Variants were expected to be present in less than 1% of general population databases
such as the Exome Aggregation Consortium (EXAC) and the Genome Aggregation Database
(GnomAD). The pathogenicity of the identified variants was assessed using the MPA soft-
ware [10] and a set of criteria reported by Zenagui et al. 2018 [9], according to the American
College of Medical Genetics and Genomics (ACMG) guidelines [12]. The MPA software
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provides a prediction score of increasing pathogenicity, where 0 predicts a neutral effect
and 10 a pathogenic effect.

All probable disease-causing variants were then discussed in multidisciplinary meet-
ings to evaluate their pathogenicity by comparison with the patient phenotype and the
suspected mode of inheritance. Further analyses to establish a diagnosis and define
genotype-phenotype correlations included familial segregation studies and detailed phe-
notype analysis through additional clinical examination, whole-body muscle MRI, and
retrieval of data concerning biochemical tests and muscle biopsy findings (histology, im-
munolabeling, and/or electron microscopy).

3. Results

Pathogenic or likely pathogenic variants were detected in 74 of the 156 patients (47.4%)
(Supplementary Table S2). No disease-causing variant was identified in 72 patients, and a
variant of unknown significance (VUS) was detected in 10 patients.

Among the 98 pathogenic or likely pathogenic variants, 36 were described in the
literature as pathogenic, 62 had never been previously reported (Figure 1A). Most of them
were missense variants (59.2%) (Figure 1B). 26 different genes were affected, reflecting the
genetic diversity of hereditary myopathies, with RYR1, NEB, and TTN the most frequent
implicated genes (Figure 1C).
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Figure 1. Diagnostic rate and molecular results. (A) Reported in literature versus not reported
variants. (B) Variant type. (C) Frequency of pathogenic variants by gene. (D) Rate of confirmed
diagnosis according to each phenotype in our study in comparison with scientific literature.
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We could perform variants segregation analyses in 58 families. The variant was de novo
in 13 sporadic cases, mainly ACTA1 (n = 4), FLNC (n = 2), and RYR1 (n = 2), representing
17.6% of all sporadic cases with a positive genetic test.

We performed cDNA studies to analyze the effects on transcripts of CAPN3, TTN, and
NEB variants predicted to affect splicing [9]. This procedure was particularly important to
characterize pathogenicity in complex genes, such as TTN and NEB. We identified exon
skipping in transcripts carrying the splicing variant, and also activation of exonic or intronic
cryptic splice sites, leading to aberrant transcripts (Figure 2, and [13]).
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were analyzed by RT-PCR and sequencing from muscle biopsies of the patient harboring the c.6075+5G>A heterozygous
variant and from a healthy control. Agarose gel electrophoresis shows the RT-PCR products of nebulin exons 46 to 48
transcripts from the muscle of the patient (Lane 2) and the control (Lane 3). Lane 1 represents the molecular weight marker
(100–1000 kb ladder). These analyses showed the presence of three populations of transcripts: a normal product of 415 bases,
a smaller transcript (310 bases) corresponding to exon 47 skipping, and a larger fragment (466 bases). This transcript
corresponds to the retention of 51 nucleotides in intron 47 due to the inactivation of the WT splice site and the activation
of a cryptic donor splice site in intron 47 (green gt). (B) Diagram of the splicing pattern in muscle patient. NEB exons are
shown as boxes. The splicing pattern of the WT RNA is schematically shown in black color and other mutated transcripts in
red (exon 47 skipping) and green (aberrant exon 47 skipping).

3.1. Diagnostic Efficiency in Each Phenotypic Group

We reached a definitive diagnosis for 38 of the 76 patients with CM. We found
pathogenic variants in 12 genes (RYR1, NEB, ACTA1, TTN, MTM1, COL6A1, COL6A3,
MYH7, TNNT1, CACNA1S, TRIP4, and FLNC). In 32 of these patients, the disease had
a neonatal onset. The rate of positive diagnosis was particularly high (82%) in patients
younger than one year with severe neonatal hypotonia and respiratory insufficiency. Re-
markably, only one-third of muscle biopsies performed in patients with the neonatal-onset
disease showed specific histologic abnormalities.

Among the nine patients with CMD (all sporadic cases), we identified the disease cause
in five patients who harbored pathogenic variants of the LAMA2, LMNA, and FKRP genes.

In patients with LGMD (n = 45), the genetic diagnosis was possible in 18 patients (40%).
We detected pathogenic variants in 14 different genes (DYSF, CAPN3, FKRP, COL6A2,
COL6A3, RYR1, ANO5, LAMA2, DMD, SCGG, GMPPB, MTM1, TTN, and PABPN1). All pa-
tients underwent a muscle biopsy showing histological features of myopathy or dystrophy.
Standard immunohistochemistry studies were performed in 80% of patients, and western
blot (WB) analysis only in 30%. As expected, we detected variants in classical LGMD genes
mainly in patients without comprehensive immunolabelling analyses on muscle biopsy.
In one patient (I24), we identified two variants in the GMPPB gene. WB performed after
the identification of this variant showed a glycosylation defect in alpha-dystroglycan, thus
confirming the implication of the GMPPB variants in the patient’s pathology [14].
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In 8 of the 13 patients with DM, we found a pathogenic variant in four different genes
(NEB, TTN, MYOT, and MYH7). Of special interest was the finding of two pathogenic NEB
variants in three adult patients with isolated distal weakness (see below).

Among the 13 patients with isolated hyperCKemia or effort intolerance, we detected
pathogenic variants in five patients. Interestingly, variants were in genes usually in-
volved in CM (ACTA1), or LGMD (ANO5, DMD, and SCGA) in patients with a pseudo-
metabolic phenotype. One patient harbored a previously reported pathogenic variant in
the STIM1 gene.

In our cohort, many patients had a TTN gene variant. We found five patients with two
pathogenic nonsense, frameshift, and/or splicing TTN variants in trans (Supplementary
Table S2). The clinical picture was heterogeneous, varying from congenital centronuclear
myopathy to congenital distal arthrogryposis or limb-girdle muscular weakness with
cardiomyopathy.

3.2. Atypical Phenotype-Genotype Associations

In 51 patients, the pathogenic variant was in one of the genes associated with the entry-
diagnosis phenotype, whereas 18 patients had a new or very unusual phenotype/genotype
association (Table 1). In some cases, this contributed to expanding the phenotype associated
with a specific gene. In the others, the disease severity or the inheritance mode differed
from the classical clinical descriptions.

3.2.1. Expanded Phenotype-Genotype Associations

We identified a pathogenic variant in the RYR1 gene in two siblings (I152 and his
sister) with the typical LGMD phenotype. Yet, RYR1 is one of the genes most frequently
implicated in CM but is usually not associated with muscular dystrophy. In the two siblings
who developed proximal lower limb weakness in the third decade of life, creatine kinase
(CK) level was very high (x20) and muscle biopsy showed dystrophic features (Figure 3e-h).
The homozygous missense variant identified in the RYR1 gene, c.6617C>T; p. (Thr2206Met)
(SIFT: 0.00; PolyPhen2: 0.998; MPA score: 9), was previously described in malignant hyper-
thermia with AD transmission. This variant has been found, infrequently, also in patients
with typical central core disease (AR transmission), either in a compound heterozygous
state in association with truncating variants [14], or in a homozygous state [15].
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Table 1. Clinical features, muscle MRI and histopathological investigations in patients with new or very unusual phenotype/genotype associations.

Patient Sex,
Age/ Age at Onset Clinical Features CK Muscle Biopsy Muscle MRI Family History Genetic Testing

I298
M, 38y/ neonatal

Neonatal hypotonia
Scoliosis

Progressive myopathy with
contractures

Early-onset cardiomyopathy
Restrictive respiratory syndrome

N Type I fiber predominance.
Cytoplasmic bodies ND Sporadic

c.3557C>T; p.(Ala1186Val) FLNC
NM_001458.4

Missense de novo variant
Absent in Exac and gnomAD

I111
F, 4y/ 1y

Pierre Robin sequence (micrognathia,
glossoptosis, and cleft palate), scoliosis

Feeding difficulties
Severe restrictive cardiomyopathy
Mild proximal and axial weakness

N Type I fiber atrophy Normal Sporadic
c.4927+2T>A FLNC

de novo splicing variant
HSF, MaxEnt: -100%

Absent in Exac and gnomAD

I192
M, 20y/ 20y

Asymptomatic CK elevation
Strictly normal neurological

examination
x20

Some necrotic fibers
Absence of rods Normal Sporadic

c.889G>A; p.(Ala297Thr) ACTA1
NM_001100.3

de novo missense variant. Absent
in Exac and gnomAD

I14
F, 75y/ 60y

Slowly progressive axial weakness with
camptocormia

Mild lower limb proximal weakness
No ptosis, no dysphagia

N
Abnormal myofibrillar network

Rimmed and not rimmed
vacuoles

Paravertebral VL,
AB, AM, SM,

GM, SO
Sporadic c.30_31insGCA; p.(Ala11dup)

PAPBN1 NM_004643.3

I303
F, 30y/ neonatal

Neonatal hypotonia with feeding
difficulties and respiratory insufficiency

Progressive improvement
Last follow-up visit: mild axial and

proximal weakness
Gowers +

Distal hyperlaxity
Worsening with fever

N

Non-specific myopathic pattern
with type 1 fiber predominance

and mild myofibrillar
disorganization

Upper and lower
limbs atrophy.
No fat tissue
replacement

AR (deceased
affected brother)

c.2970G>A; p.(Trp990*)
CACNA1S

c.5104C>T; p.(Arg1702*)
CACNA1S NM_000069.2

I164
M, 21y/ neonatal

Neonatal hypotonia, feeding difficulties,
respiratory insufficiency

Last follow-up visit: tongue deviation,
mild bilateral facial paresis, mild

bilateral scapula alata, proximal lower
limb weakness, distal hyperlaxity

N Non-specific myopathic pattern
with type 1 fiber predominance

Tongue
GMax

Pauci
symptomatic

father carries the
variant

c.2447T>G; p.(Leu816Arg)
CACNA1S

Missense variant predicted to be
deleterious

Absent in Exac and gnomAD

I142
F, 40y/ 35y

Bilateral calf and left tibialis anterior
atrophy N

Excessive internal nuclei.
Minicores with NADH

technique
Bilateral GM and

left TA AD del <11-18> exons TTN
NM_001267550.1
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Table 1. Cont.

Patient Sex,
Age/ Age at Onset Clinical Features CK Muscle Biopsy Muscle MRI Family History Genetic Testing

I26
M, 14y/ 3y

Very mild proximal weakness
Mild facial paresis

Moderate restrictive respiratory
syndrome

N

Excessive internal nuclei
resembling centronuclear

myopathy.
Minicores revealed by NADH

staining

Normal Adopted child
c.51437-4_51444del TTN
c.26503A>T; p.(Lys8835*)

TTN

I47
F, 44y/ 4y

Proximal and axial weakness
Wheelchair at the age of 17

Last follow-up visit: severe proximal
and axial weakness,

restrictive respiratory syndrome

N

Excessive internal nuclei
resembling centronuclear

myopathy.
Minicores revealed by NADH

staining

Bilateral SO and
left TA Sporadic

c.65575+2T>G TTN
c.68029A>G; p.(Thr22677Ala)

TTN
Missense variant predicted to

affect splicing

I74, I73
F, 4y/ 3y

Mild proximal and axial weakness
Facial paresis x2

Excessive internal nuclei
Minicores in NADH staining.

Abnormal western blot results:
absence of the C-terminal part

of TTN (anti-TTN M10-1
antibody); absence of calpain

N.D Affected twin
sister

c.106531G>C; p.(Ala35511Pro)
TTN

Missense variant predicted to
affect splicing

c.105036C>A; p.(Tyr35012*) TTN

I76, I77
M, 54y

F, 50y/ 35y

Isolated tibialis anterior weakness
Recently the brother developed finger

extensor and neck flexor weakness
N

Pathological fiber size variation.
Excessive internal nuclei

Absence of rods

Bilateral TA and
GM in both

patients
AR

c.8860delG
p.(Ala2954Profs*8)

NEB NM_001271208.1
c.21928T>C; p.(Ser7310Pro) NEB

I112
M, 60y/ 57y Isolated tibialis anterior weakness N Pathological fiber size variation.

Absence of rods
Bilateral TA and

left SO Sporadic
c.21790G>C p.(Arg7264His)

NEB
c.194C>T p.(Pro65Leu) NEB

I60
M, 61y/ 20y

Axial and proximal weakness
Retrognathia, pectus excavatum Mild

rigid spine
Dilated cardiomyopathy

N Excessive internal nuclei
Minicore-like lesions, rods

Bilateral SM, BF,
SO

Sporadic
(Consang)

del <8-9> homozygous exons
TRIP4 NM_016213.4

In-Frame deletion of exons 8
and 9

I172
F, 11y/ neonatal

Neonatal hypotonia
Proximal and axial weakness in

childhood. Gowers +
Mild tibialis anterior weakness

Scapula alata
Facial paresis

N Excessive internal nuclei
Bilateral GMax,
AM, SM, BF, TA,

SO, P
Sporadic

c.200A>G; p.(His67Arg) TNNT1
NM_003283.5

de novo missense variant
Absent in Exac and gnomAD

I152
M, 35y/ 20y Lower limb-girdle muscular dystrophy x20 Non-specific dystrophic pattern Bilateral VL, AM,

AB, SM, ST, GM
AR

Affected sister.
Consang

c.6617C>T; p.(Thr2206Met)
Homozygous RYR1

NM_000540.2
Missense variant

AD: Autosomal Dominant; AR: Autosomal recessive; N: Normal. VL: Vastus lateralis; VM: Vastus medialis; AM: Adductor magnus; AB: Adductor brevis; ST: Semitendinosus; SM: Semimembranosus; BF: Rectus
femoris; GMax: Gluteus maximus; GM: Gastrocnemius medialis; TA: Tibialis anterior; P: Peroneus; SO: Soleus; Consang: consanguinity. ND: Not done.
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Figure 3. Clinical features of patients with new genotype/phenotype associations: Severe scoliosis in patient I111 aged
5 years with FLNC variant (A). Tongue fatty replacement inpatient I164 (B1) and his father (B2) with CACNA1S variant.
Hanging big toe and bilateral tibialis anterior and soleus fatty replacement inpatient I76 with two NEB variants (C, D).
Patient I152 with LGMD phenotype and homozygous RYR1 variant with severe quadriceps atrophy (E), fatty replacement
of quadriceps, adductors, semitendinosus, and gastrocnemius muscles in muscular weighted T1 MRI (F) and dystrophic
pattern in muscular biopsy (G, H). The black arrow shows fatty replacement and the blue arrow, fibrosis.

Moreover, we identified a homozygous in-frame deletion of exon 8 and 9 in the TRIP4
gene in an adult patient (I60) with CM from a consanguineous family. TRIP4 encodes one of
the subunits of the tetrameric transcriptional coactivator Activating Signal Co-integrator 1
(ASC-1). In 2016, truncating TRIP4 variants (AR transmission) were implicated in severe
congenital myopathies [15] and spinal muscular atrophy [16]. Patient I60 had a completely
different and milder phenotype with slowly progressive mild proximal and axial weakness
since childhood, associated with later-onset dilated cardiomyopathy (Table 1). Western
blot analysis of ASC-1 expression in the muscle biopsy showed the absence of the full-
length protein [17]. In this patient, we also found a truncating variant in the TTN gene
(c.6379_6380del; p.(Tyr2127Leufs*8). This emphasizes the complexity and the challenge
of NGS data interpretation. Indeed, heterozygous truncating variants in TTN have been
mainly implicated in cardiomyopathy without skeletal muscle involvement. The presence
of the same TTN variant in his older asymptomatic sister identified by segregation studies
also suggested the absence of pathogenicity of this variant alone, at least in the context of
AD transmission.

Finally, we found a (GCN)11 expansion in the PABPN1 gene in a woman with isolated
camptocormia (I14). Unlike the typical presentation of oculopharyngeal muscular dystro-
phy (OPMD) this patient never complained of ptosis or difficulty swallowing. The muscle
biopsy showed features compatible with myofibrillar myopathy and rimmed vacuoles. In
a recent series, only 6 of the 354 patients with OPMD had a (GCN)11 allele [18]. All these
patients had later disease onset and ptosis could be absent. To our knowledge, this is the
first case of isolated camptocormia caused by this expansion.
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3.2.2. Mild Phenotypes

We identified two likely pathogenic variants in the NEB genes in three adults with pure
DM: one patient with sporadic disease (I112) and two siblings (I76, I77) in another family.
NEB variants are usually associated with childhood-onset CM with axial and proximal
weakness. Conversely, these three patients had a late-onset prominent distal weakness, with
isolated bilateral foot drop (Figure 3c,d). Muscle biopsy analysis by optical and electron
microscopy did not find any rod. Patients I76 and I77 had a frameshift deletion in exon 63
(c.8860delG) and a missense variant in trans, c.21928T>C; p.(Ser7310Pro), predicted to alter
nebulin conformation because proline is known to disrupt protein folding [19]. Patient I112
was compound heterozygous for the missense variants c.21790G>C; p.(Asp726His) (SIFT:
0.001; PolyPhen: 0.897; MPA score: 6) and c.194C>T; p.(Pro65Leu) (SIFT: 0.00; PolyPhen:
0.32; MPA score: 4). Despite the inconclusiveness about the pathogenicity of the NEB vari-
ants in this patient, we hypothesized that missense NEB variants could be responsible for a
milder adult-onset phenotype without rods, as reported by Wallgren-Petterson et al. [20].
These authors described four Finnish families with two different homozygous NEB mis-
sense variants and mild distal myopathy. Comparison of the variants found in our three
patients with some previously reported NEB missense variants indicated that they predom-
inantly occur at conserved residues in the NEB repeat motif (Dx2(E/D)x4Kx6(S/N)x3YK),
and that proline mutants cluster at specific sites of this motif (Figure 4).

Figure 4. Alignment of NEB repeat domains The figure represents the alignment of selected
NEB repeats, with conserved residues highlighted in yellow (and/or gray). Residues are in-
dicated by the single-letter amino acid code. “Mutated” residues identified inpatient I112
(p.(Asp7264His)=D7264H, in repeat 201), patients I76,77 (p.(Ser7310Pro)=S7310P, in repeat 202) and
patient I173 (p.(Tyr1680Cys)=Y1680C, in repeat 43) are highlighted in purple. “Mutated” residues
from previously reported NEB patients with missense variants are highlighted in cyan/blue (refer-
ences on the right). Corresponding “mutant” residues (single-letter amino acid code) are indicated at
the top of the figure. The figure shows that almost all pathogenic missense variants cluster either
at the conserved residues of the repeat motif (DX2(E/D)X4KX6(S/N)X3YK) or at 3 specific non-
conserved positions for Proline “mutants” (P, at the top of the figure, and which are notorious fold
disruptive mutants).

Similarly, NGS allowed the identification of a de novo variant in ACTA1 [c.889G>A;
p.(Ala297Thr)] in a 20-year-old patient (I192) with asymptomatic CK level elevation and
normal neurological examination. This missense ACTA1 variant is not found in the general
population (ExAC, gnomAD) (Supplementary Table S2). The p.(Ala297Thr) variant is
predicted by the FoldX algorithm to induce a shift of Lysine 326 and Lysine 328, due to
the size and polarity of the mutant threonine side chain (Figure 5). The change in protein
conformation could have an impact on protein function, as Lysine 328 is predicted to
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interact with the myosin head Glu354 residue. This shift induced by the variant could
thus weaken or modify the interaction with the myosin chain. A variant in Lys328 was
also identified as responsible for nemaline myopathy suggesting an important role of this
residue for muscle contraction [21,22]. Mild adult-onset myopathy has been related to
ACTA1 variants [23,24]; however, this is the first description of a subclinical phenotype
characterized by asymptomatic CK elevation. However, we cannot exclude that this might
represent an age-dependent penetrance issue.

Genes 2021, 12, x FOR PEER REVIEW 11 of 16 
 

 

identified as responsible for nemaline myopathy suggesting an important role of this res-
idue for muscle contraction [21,22]. Mild adult-onset myopathy has been related to 
ACTA1 variants [23,24]; however, this is the first description of a subclinical phenotype 
characterized by asymptomatic CK elevation. However, we cannot exclude that this might 
represent an age-dependent penetrance issue. 

 
Figure 5. Structure prediction of the p.(Ala297Thr) variant. Based on the 6BNO PDB structures [25] 
the 297 Alanine residue was mutated in Threonine with the fold X algorithm [26] on YASARA soft-
ware [27]. The p.(Ala297Thr) variant is predicted by fold X to induce a shift of Lysine 326 and Lysine 
328, due to the size and polarity of the mutant threonine side chain. Lysine residues 326 and 328 are 
shown in dark blue, while Ala297 (left panel) was shown in grey and Threonine 297 (right panel) in 
yellow. The molecular surface is colored in a green cloud. 

3.2.3. Recently Identified Phenotype-Genotype Associations 
We found FLNC variants in two patients with CM and cardiomyopathy (I111 and 

I298). Both patients had a similar phenotype with congenital hypotonia, scoliosis, mild 
proximal and axial weakness, and early-onset severe cardiomyopathy (Figure 3A). Patient 
I111 had an FLNC variant in the canonical donor splice site of exon 28 (c.4927+2T>A) that 
is predicted to affect splicing and is not present in the general population. Patient I298 
carried a missense variant in exon 21 [c.3557C>T; p.(Ala1186Val)], previously reported as 
pathogenic [28]. At the time of the identification of these variants, FLNC variants had been 
associated with cardiomyopathy, but not with CM. This changed in 2017, when Janin et 
al described a 10-year-old girl with CM, dysmorphic short neck, cardiomyopathy, and 
reducing bodies in muscle biopsy due to a de novo FLNC variant [p.(Gly1168Asp)] (Neu-
romuscular disorders, Suppl 2, October 2017). More recently, Kiselev et al., [28] reported 
four patients with very early onset CM (mean age at onset: 2.2 years) with proximal weak-
ness, arthrogryposis (in three patients), and restricted cardiomyopathy. Three of them had 
the same FLNC variant as one of our patients [p.(Ala1186Val)]. 

Another example of patients with a recently identified phenotype-genotype associa-
tion concerned two adult patients (I303 and I164) with mild congenital myopathy due to 
pathogenic variants in the CACNA1S gene. Classically, this gene was involved in domi-
nant hypokalemic periodic paralysis but, at the time of our analyses, Schartner et al., [29] 
reported a series of eleven patients with congenital myopathy due to CACNA1S patho-
genic variants with recessive or dominant effects. Our two patients presented phenotypic 
features similar to those described by Schartner et al., particularly severe neonatal hypo-
tonia, respiratory and feeding difficulties, and progressive improvement with age. We 
confirmed the AR transmission inpatient I303 who harbored two in trans nonsense 
CACNA1S variants [c.2970G>A; p.(Trp990*) and c.5104C>T; p.(Arg1702*)]. We found the 
missense variant c.2447T>G; p.(Leu816Arg) inpatient I164. This CACNA1S variant, which 
is absent in the general population, affects a very conserved amino acid residue and is 
predicted to be pathogenic by SIFT (score: 0.0) and PolyPhen2 (score: 0.99). The MPA score 
was 10. The variant was transmitted by the father, who was paucisymptomatic. Familial 

Figure 5. Structure prediction of the p.(Ala297Thr) variant. Based on the 6BNO PDB structures [25] the 297 Alanine residue
was mutated in Threonine with the fold X algorithm [26] on YASARA software [27]. The p.(Ala297Thr) variant is predicted
by fold X to induce a shift of Lysine 326 and Lysine 328, due to the size and polarity of the mutant threonine side chain.
Lysine residues 326 and 328 are shown in dark blue, while Ala297 (left panel) was shown in grey and Threonine 297 (right
panel) in yellow. The molecular surface is colored in a green cloud.

3.2.3. Recently Identified Phenotype-Genotype Associations

We found FLNC variants in two patients with CM and cardiomyopathy (I111 and
I298). Both patients had a similar phenotype with congenital hypotonia, scoliosis, mild
proximal and axial weakness, and early-onset severe cardiomyopathy (Figure 3A). Patient
I111 had an FLNC variant in the canonical donor splice site of exon 28 (c.4927+2T>A) that
is predicted to affect splicing and is not present in the general population. Patient I298
carried a missense variant in exon 21 [c.3557C>T; p.(Ala1186Val)], previously reported
as pathogenic [28]. At the time of the identification of these variants, FLNC variants had
been associated with cardiomyopathy, but not with CM. This changed in 2017, when
Janin et al described a 10-year-old girl with CM, dysmorphic short neck, cardiomyopathy,
and reducing bodies in muscle biopsy due to a de novo FLNC variant [p.(Gly1168Asp)]
(Neuromuscular disorders, Suppl 2, October 2017). More recently, Kiselev et al., [28]
reported four patients with very early onset CM (mean age at onset: 2.2 years) with
proximal weakness, arthrogryposis (in three patients), and restricted cardiomyopathy.
Three of them had the same FLNC variant as one of our patients [p.(Ala1186Val)].

Another example of patients with a recently identified phenotype-genotype associa-
tion concerned two adult patients (I303 and I164) with mild congenital myopathy due to
pathogenic variants in the CACNA1S gene. Classically, this gene was involved in dominant
hypokalemic periodic paralysis but, at the time of our analyses, Schartner et al., [29] re-
ported a series of eleven patients with congenital myopathy due to CACNA1S pathogenic
variants with recessive or dominant effects. Our two patients presented phenotypic fea-
tures similar to those described by Schartner et al., particularly severe neonatal hypotonia,
respiratory and feeding difficulties, and progressive improvement with age. We confirmed
the AR transmission inpatient I303 who harbored two in trans nonsense CACNA1S variants
[c.2970G>A; p.(Trp990*) and c.5104C>T; p.(Arg1702*)]. We found the missense variant
c.2447T>G; p.(Leu816Arg) inpatient I164. This CACNA1S variant, which is absent in the
general population, affects a very conserved amino acid residue and is predicted to be
pathogenic by SIFT (score: 0.0) and PolyPhen2 (score: 0.99). The MPA score was 10. The
variant was transmitted by the father, who was paucisymptomatic. Familial segregation
analysis revealed the presence of the variant in his father, initially reported as asymptomatic.
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Finally, a detailed clinical examination showed mild clinical signs and MRI highlighted
fatty replacement in the tongue (Figure 3B2), supporting that the variant was pathogenic,
but with variable expressivity.

We identified TNNT1 variants in two patients (I401 and I172). Patient I401 had a
homozygous deletion in the TNNT1 gene (c.192+244_388-1191del), predicted to lead to the
in-frame deletion of exons 8 and 9. Western blot analysis revealed the total absence of the
troponin protein, no smaller band corresponding to the truncated protein was visible [30].
She had a severe phenotype (marked neonatal hypotonia, rods in the muscle biopsy) that
was reminiscent of the previously reported patients with recessive pathogenic variants in
TNNT1 [30,31]. The second patient (I172) had a milder phenotype with proximal and axial
weakness in childhood. Neurological examination showed mild dorsal flexion weakness
of the feet, scapula alata, and facial paresis. We identified a de novo missense dominant
variant: c.200A>G; p.(His67Arg) in exon 8 (SIFT: 0.002; PolyPhen: 0.22; MPA score: 7).
The high MPA score, the absence of this de novo variant in the general population (Exac
and gnomAD), and its localization in the domain of interaction with tropomyosin support
its pathogenic effect. At the time of analysis, only recessive variants in TNNT1 had been
reported (see Discussion).

4. Discussion

Our integrated clinical-biological approach to analyze NGS data in a cohort of 156 pa-
tients with genetically unclassified myopathies allowed the identification of the genetic
defect in 46.7% of patients, and to reveal interindividual variability and atypical phenotype-
genotype associations.

The global diagnosis rate is similar to that of previous studies on myopathies (from 30
to 50% [3–8,32]) (Figure 1A), whereas preliminary tests (immunolabelling, sequencing of
few genes) had excluded the most common muscle disorders, thus constituting a selection
bias. This was obvious for LGMD patients in whom muscle immunohistochemical analyses
and sequencing of few genes (mainly CAPN3, ANO5, and FHSD) were usually performed
as a first-line, probably explaining the lower rate of positive diagnosis (40%) than the
other studies (51.2% in the series by Savarese et al., [6]). In most patients where we
found LGMD gene variants, retrospective analysis of the muscle biopsy showed that
immunolabelling studies were incompletely or not performed. Interestingly, we detected
variants in genes that are not usually reported in LGMD (LAMA2, RYR1, or PAPBN2).
Unlike other studies, we did not detect any GAA gene variant because, in France, maltase
acid activity is measured systematically in most patients suspected to have a myopathy
before genetic testing. On the other hand, the genetic diagnosis rate was particularly high
(82%) in patients with severe neonatal congenital myopathy and respiratory insufficiency
who showed marked genetic heterogeneity. The clinical phenotype is of limited value
for the diagnosis in these patients because most neonates with congenital myopathy
share common clinical features of hypotonia, poor feeding, and frequently, respiratory
insufficiency. Moreover, muscle biopsies performed during the first months of life were
often not informative for a specific subtype of myopathy. Consequently, we propose
that targeted NGS should be the first diagnostic test for this group of patients to avoid
unnecessary muscle biopsies. Furthermore, the high rate of positive results allows us to
offer appropriate genetic counseling to the families.

The comprehensive clinical biological diagnostic methodology used in this work
could explain the remarkably high percentage of new or unusual phenotype-genotype
associations (more than 10% of cases). Indeed, in addition to in silico predictions and famil-
ial segregation studies of variants, the procedure for validating the association between
atypical or incomplete phenotypes and genetic variants included also deep phenotyping
(i.e., detailed clinical examination, whole-body muscle MRI, and additional techniques for
muscular biopsy analysis, such as electron microscopy), multidisciplinary concertation,
exhaustive and continuous literature update and if necessary, advice from international
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laboratories that are experts in specific genes. For some cases, functional studies (transcripts
and protein) were needed to confirm these correlations (Figure 6).
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Mild phenotypes could be explained by a less deleterious effect of variants on the
protein. For instance, in inpatient I14, with a diagnosis of OPMD, the presence of the
(GCN)11 expansion in PABPN1 (only one repeat above the normal limit of ten) might
have caused a milder phenotype compared with other patients, due to a less toxic gain-of-
function effect. On the other hand, inpatient I192 with asymptomatic CK elevation and
a de novo ACTA1 missense variant p.(Ala297Thr), three-dimensional studies predicted a
change in the conformation of alpha-actin that might affect its function by modifying the
interaction with the myosin chain, and not by interfering with actin polymerization as
reported for classical phenotypes [33,34].

Our study also highlights the importance of clinical and radiological investigations of
the patient’s relatives, in order to assess variable expressivity and incomplete penetrance,
frequently seen in dominant diseases, as illustrated for patient I164 and his father. The
detailed histological description also is fundamental to confirm the deleterious role of
a variant. For instance, in patients I142 and I162, NGS analysis identified the presence
of a TTN deletion with the dominant transmission in the family. The presence of histo-
logical features that are classically associated with TTN variants (nuclear internalization
and minicores), although not specific, and the typical fatty replacement in the semitendi-
nosus muscle observed by MRI were supplementary evidence in support of the variant
pathogenicity (submitted).

To date, only a limited number of patients with nemaline myopathy caused by TNNT1
variants have been reported in the literature. Initially, the disease was identified in the
Amish population in Pennsylvania (homozygous nonsense founder variant c.538G>T;
p.(Glu180*)). Later, other AR cases were described in other populations [31,35,36]. We
identified TNNT1 variants in two patients with CM. One of them (I172) had a heterozygous
de novo missense variant. Recently, Konersman et al., [37] reported a large family with
nemaline myopathy caused by a heterozygous missense variant (c.311A>T); p.(Glu104Val)
in exon 9 of TNNT1 that segregates as an AD variant. This clinical description brought
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some insights into the pathogenic role of the heterozygous variant found in our patient.
Moreover, our variant is localized in the same domain of interaction between TNNT1 and
tropomyosin, with a possible effect on the protein affinity.

Reporting new patients with recently described phenotype-genotype associations
in TNNT1, CACNA1S, and FLNC genes is important to better define the clinical features
and inheritance pattern of these disorders. Moreover, the availability of more information
has highlighted the wide overlap among the clinical phenotypes of different muscular
disorders. The NGS technology should significantly contribute to redefining MD classifi-
cation through extensive gene analysis and detailed phenotype-genotype correlations. In
patients without a genetic diagnosis despite targeted NGS analysis, whole exome or whole
genome sequencing, possibly complemented by RNAseq studies, will allow identifying
the causative variant either in genes already associated with myopathies (e.g., intronic
variants) or in genes that have not been implicated in such disorders. A better knowledge
of the genetic bases of muscular disorders will contribute to improving our knowledge
about the gene and protein functions in normal muscle and pathological conditions.

5. Conclusions

We showed that this approach is essential to progress in the understanding of the
molecular mechanisms of myopathies, by identifying inter-individual variability and
atypical phenotype-genotype correlations in myopathies. Moreover, our results illustrate
that NGS analyses, clinical and radiological examination of relatives are essential to identify
pauci-symptomatic relatives and then improve diagnosis and appropriate care in families.
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