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Abstract: Zinc-finger proteins are important transcription factors in plants, responding to adversity
and regulating the growth and development of plants. However, the roles of the BBX gene family of
zinc-finger proteins in wintersweet (Chimonanthus praecox) have yet to be elucidated. In this study, a
group IV subfamily BBX gene, CpBBX19, was identified and isolated from wintersweet. Quantitative
real-time PCR (qRT-PCR) analyses revealed that CpBBX19 was expressed in all tissues and that
expression was highest in cotyledons and inner petals. CpBBX19 was also expressed in all flower
development stages, with the highest expression detected in early initiating bloom, followed by late
initiating bloom and bloom. In addition, the expression of CpBBX19 was induced by different abiotic
stress (cold, heat, NaCl, and drought) and hormone (ABA and MeJA) treatments. Heterologous
expression of CpBBX19 in Arabidopsis thaliana (Arabidopsis) enhanced the tolerance of this plant
to salt and drought stress as electrolyte leakage and malondialdehyde (MDA) concentrations in
transgenic Arabidopsis after stress treatments were significantly lower than those in wild-type (WT)
plants. In conclusion, this research demonstrated that CpBBX19 plays a role in the abiotic stress
tolerance of wintersweet. These findings lay a foundation for future studies on the BBX gene
family of wintersweet and enrich understanding of the molecular mechanism of stress resistance
in wintersweet.
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1. Introduction

Wintersweet (Chimonanthus praecox), belonging to the Calycanthaceae family, is native
to China, has a distinct flowering period (from November to March), strong aroma, and
yellow flowers [1,2], and is widely used for cut flowers and as a garden plant in China [3].
In addition, wintersweet is used for aromatic oil extraction, Chinese herbal medicine, and
cosmetics [1,2,4]. The unusual flowering period of wintersweet shows that this species
has a strong ability to tolerate low temperatures [5]. Some genes and transcription factors
have been identified as related to biotic and abiotic stress in wintersweet [6]. For instance,
heterologous expression of CpSIZ1 in Arabidopsis enhanced the cold resistance of transgenic
Arabidopsis (Arabidopsis thaliana) [5], while overexpression of the gene CpLEA5 increased
the ability of transgenic Arabidopsis to resist low temperature and tolerate salt and alkali [7].
In addition, the amino acid sequence of CpFATB has high sequence similarity with the
choroidal palmitoyl acyl carrier protein thioesterase of other plants, and overexpression
of CpFATB in tobacco enhanced the drought tolerance of transgenic tobacco (Nicotiana
tobaccum) [8]. Furthermore, CpCOR413 is a membrane-stable protein related to the cold
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tolerance of wintersweet [9], while overexpression of the gene CpTAF10 increased the
germination rate of transgenic Arabidopsis seeds, and under salt stress, the taproot and
lateral roots of transgenic plants showed certain growth advantages compared with WT
plants [10].

In plants, transcription factors, as key elements of the expression network, participate
in the regulation of expression of numerous genes and are instrumental in regulating
plant growth and development and the response to the external environment, including
biotic and abiotic stresses [10–12]. The BBX gene family, encoding zinc-finger proteins, is
an important family of transcription factors in plants, with functions including response
to environmental changes, and plant growth and development [13,14]. BBX proteins
generally have one or two B-box domains, and some members also have VP domains and
CCT domains [15]. In plants, the B-box domain contains approximately 40 amino acids and
is highly conserved, but there are still some differences among different B-box motifs [16,17].
The B-box domain binds to Zn ions to stabilize its unique tertiary structure [18], which
is involved in protein–protein interactions [13]. For example, BBX1 (CONSTANS), BBX4
(COL3), BBX21 (STH2), BBX22 (STH3), BBX24 (STO), and BBX25 (STH) all interact with
COP1 (CONSTITUTIVE PHOTOMORPHOGENESIS 1) [16,19–22]. The CCT domain of
BBX proteins comprises 42 or 43 conserved amino acids and mainly mediates transcription
regulation and protein transport, but also has a function in positioning. The VP domain is
adjacent to the CCT domain and mainly mediates the interaction with COP1 [17,18,23]. In
Arabidopsis, the BBX protein family is divided into five structural types according to the
number of B-box domains and CCT domains: the first type (BBX1-6) has two tandem B-box
domains, one VP domain, and one CCT domain; the second type (BBX7-13) has two B-box
domains and one CCT domain, but lacks a VP domain; the third type (BBX14-17) contains
one B-box domain and one CCT domain; the fourth type (BBX18-25) only contains two
tandem B-box domains, and the fifth type (BBX26-32) has only one B-box domain [17,18,23].

Under abiotic stresses, such as drought, high and low temperatures, and high salt,
multiple BBX gene family members were strongly induced [17,24,25]. In Arabidopsis, the
thermostability of AtBBX18-RNAi plants was improved, while the thermostability of
AtBBX18 overexpression plants was decreased. In AtBBX18 overexpression plants, heat
stress response genes DGD1, Hsfa2, and Hsp101 were downregulated, suggesting that the
gene BBX18 plays a negative regulatory role in the heat-stress response of Arabidopsis [26].
Under drought stress, multiple MdBBX genes were upregulated in roots and leaves of
apple trees (Malus domestica) [27]. Overexpression of MdBBX10 enhanced the resistance of
transgenic Arabidopsis to drought, salt, and other abiotic stresses, which was closely related
to the enhancement of active oxygen-scavenging ability [28]. High salt and Polyethylene
glycol (PEG) treatment induced SsBBX24 gene expression and protein accumulation in
Solanum sogarandinum [29]. Exogenous hormones treatment, such as abscisic acid (ABA),
gibberellin (GA), ethylene, cytokinin, and auxin, also affected transcriptional levels of BBX
genes [30–32]. The expression level of CmBBX24 was influenced by GA4/7, and suppress-
ing the expression of CmBBX24 reduced cold and drought tolerance of chrysanthemum [33].
Under treatment with GA, Salicylic acid (SA), and Methyl Jasmonate (MeJA) hormones,
expression levels of the genes OsBBX2, OsBBX7, OsBBX17, OsBBX19, and OsBBX24 were
upregulated at different time points [31]. Treatment of Arabidopsis leaves with ABA resulted
in significant upregulation of BBX11, BBX13, and BBX22 gene expression levels, while
BBX2, BBX3, BBX16, BBX18, and BBX19 genes were downregulated by cyclic adenosine
diphosphate ribose (cADPR), which is involved in ABA early signal transduction [34].

Under adversity stress, the permeability of plant cell membranes changed. The degree
of plant cell membrane damage could be judged by measuring the extravasation of cell
electrolytes [35]. Malondialdehyde (MDA) is an important product of membrane lipid
peroxidation and is usually used as an indicator of membrane lipid peroxidation. Therefore,
the changes in electrolyte leakage and MDA content reflect the degree of damage to the
membrane system under adversity conditions, and were widely used in the research of
plant cold resistance, drought resistance, and salt–alkali tolerance [36,37].



Genes 2021, 12, 1456 3 of 15

The BBX protein family was widely reported to be involved in the process of abiotic
stress in plants [10–12]. The functions of BBX zinc-finger proteins have been clarified in
many plants, such as Arabidopsis [26], chrysanthemum [38], and apple [28]. However, the
BBX gene family has not been extensively studied in woody plants such as wintersweet.
According to information from the wintersweet transcriptome database [39], expression of a
new BBX gene, CpBBX19, might be different under abiotic stress. In this study, we identified
and isolated a BBX gene, CpBBX19, in wintersweet, and explored the expression patterns
and function of this gene. CpBBX19 was classified into the IV subfamily of BBX proteins,
and significantly improved the tolerance of transgenic Arabidopsis to salt and drought.

2. Materials and Methods
2.1. Plant Materials

To analyze the expression pattern of the gene CpBBX19 in wintersweet, the roots,
stems, cotyledons, and young and old leaves were collected from six-leaf wintersweet, and
flowers during the full bloom period were collected from five-year-old plants. Using the
wintersweet floral development stages classification method [40], flowers of germination,
flower-bud, petal-display, early initiating bloom, later initiating bloom, blooming, and
withering were collected, respectively. The tissues were rapidly frozen in liquid nitrogen
after collection. Three biological repeats were obtained for each sample.

Wild-type Arabidopsis (ecotype Columbia−0) was used for plant transformation. After
sterilizing in hypochlorite solution, Arabidopsis seeds were sown on solid Murashige and
Skoog (MS) medium, vernalized at 4 ◦C for 3 days, and then grown in an environment
of 22 ± 1 ◦C with a 16 h light/8 h dark photoperiod. After 2 weeks, the seedlings were
transferred into a matrix of vermiculite and peat (1:1 ratio) and cultivated from MS medium
under the same conditions as described above.

2.2. Gene Isolation

Total RNA was extracted from the wintersweet tissues according to the manufacturer’s
instructions of the RNAprep pure plant total RNA extraction kit (Tiangen, Beijing, China).
To ensure RNA quality and quantity, RNA extracts were visualized by 1% agarose gel
electrophoresis, then a Nano-Drop ND-1000 spectrophotometer (Thermo Fisher Scientific,
Wilmington, MA, USA) was used for quantification at optical densities of 260 and 280 nm.
The cDNA samples were synthesized using a PrimeScript RT reagent kit with gDNA
Eraser (TaKaRa, Otsu, Japan). Each 10 µL contained 2 µL 5 × gDNA Eraser Buffer, 1 µL
gDNA Eraser, and 1µg total RNA. Then, PCR procedure was performed PCR at 42 ◦C
for 2 min; first-strand cDNA was synthesized by reverse transcriptase in 20 µL reaction
system containing 10 µL reaction product from the previous step, 1 µL PrimeScript RT
Enzyme Mix I, 4 µL 5 × PrimeScript Buffer 2, and 4 µL RNase Free dH2O [5]. The process
of PCR was as follows: 37 ◦C for 15 min, then 85 ◦C for 5 s, and end at 4 ◦C. Specific
primers CpBBX19-F/R (Table S1) were designed by Primer Premier 6.0 to clone the DNA
sequence of CpBBX19. The PCR procedure comprised an initial preheating step at 95 ◦C
for 5 min, followed by 27 cycles of denaturation at 95 ◦C for 30 s, annealing at 55 ◦C for
30 s, and extension at 72 ◦C for 45 s, with a final extension at 72 ◦C for 10 min. PCR
amplification products were separated via electrophoresis on a 1% agarose gel, and the
target DNA fragments were recovered using an Agarose Gel DNA extraction kit (Tiangen)
according to the manufacturer’s instructions. The resulting fragments were cloned into the
pMD19-T vector (TakaRa, Dalian, China) and sequenced by TsingKe Company (TsingKe,
Chengdu, China).

BBX19 upstream promoter sequence was cloned using genomic walking method via
Universal Genome WalkerTM 2.0 User Manual kit (Clontech, Mountain View, CA, USA)
by manufacturer’s description. Specific primers (SP1 and SP2) (Table S1) were designed
according to the ORF sequence of CpBBX19. The genomic DNA walking library enzyme
digestion template was established by the following steps: first, digest with EcoRV blunt-
end enzyme, then passivate the digested product, and then ligate with T4-DNA ligase,
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and connect the upstream and downstream genome walking adapters in a 16 ◦C water
bath overnight. The PCR reaction system contained 2.5 µL 10 × buffer, 0.5 µL dNTPs,
0.5 µL primer APF1/2, 0.5 µL primer SP1/2, 0.5 µL Taq DNA polymerase, 1 µL DNA, and
19.5 µL ddH2O. The reaction procedure was carried out according to the Manufacturer’s
instructions. RNA was detected by 1% gel electrophoresis, the target band was recovered,
and it was sequenced to determine the upstream sequence of CpBBX19.

2.3. Bioinformatics Analysis

The sequence of CpBBX19 was determined using the BLAST-Protein program in
the National Center for Biotechnology Information (NCBI) database, available online
https://blast.ncbi.nlm.nih.gov/Blast.cgi (accessed on 25 December 2019). Multiple se-
quence alignments were performed by BioEdit software. The online analysis website
MEME (The MEME Suite 5.3.3) was used for protein motif analysis; motif setting value
was six; available online https://meme-suite.org/meme/info/status?service=MEME&
id=appMEME_5.4.11632023872135256190210 (accessed on 8 July 2021). To understand
the distribution of Cis-acting elements upstream of the CpBBX19 promoter sequence, the
2000-bp sequence upstream of CpBBX19 [41] was analyzed by PLANTCARE, available
online http://bioinformatics.psb.ugent.be/webtools/plantcare/html/ (accessed on 19
March 2021).

2.4. Plant Treatments

Expression profiles of the gene CpBBX19 were determined under different abiotic
and hormonal treatments using the six-leaf plant as the materials [42]. Drought and
NaCl treatments involved the use of 50% PEG-6000 [43] and 300 mM NaCl [31] irrigation,
respectively. Cold and heat stress comprised treatments at 4 ◦C and 42 ◦C [44], respectively.
For exogenous hormone treatment, 50 µM ABA and 100 µM MeJA were sprayed [42],
respectively. There were three biological replicates per treatment. Samples were collected
at 0, 2, 6, 12, and 24 h after treatment and quickly frozen in liquid nitrogen.

2.5. Quantitative Real-Time PCR (qRT-PCR)

CpBBX19 expression patterns were analyzed in different tissues and flowers develop-
ment stages of wintersweet. RNA was extracted from the wintersweet samples according
to the method described in 2.2. The qRT-PCR analyses were performed by Bio-RAD CFX96
(Bio-RAD CFX Manager Software Version 1.6). Specific primers (RT-CpBBX19-F/R) were
used for PCR amplification, and the process of qRT-PCR was performed according to
the method described by Liu et al. [45]. According to the manufacturer’s instructions,
Ssofast EvaGreen Supermix (50 × 20 µL reactions) includes 2× reaction buffer with dNTPs,
Sso7d-fusion polymerase, MgCl2, EvaGreen dye, and stabilizers. Each 10 µL reaction
mixture contained 5 µL Ssofast EvaGreen Supermix (Bio-RAD, Hercules, CA, USA), 0.5 µL
each gene-specific primer, and 3.5 µL nuclease-free water. The PCR program comprised
preheating at 95 ◦C for 30 s, followed by 40 cycles of denaturation at 95 ◦C for 5 s, annealing
at 60 ◦C for 5 s, and extension at 72 ◦C for 5 s. There were three biological replicates for each
experiment and three technical replicates for each sample. CpActin genes were employed as
the internal reference gene of wintersweet [42]. Specific primers required for amplification
were designed by Primer Premier 6.0 software. The qRT-PCR product of CpBBX19 was
150 bp, and the primers (RT-CpBBX19-F/R) are shown in Table S1.

2.6. Construction of Expression Vectors

CpBBX19 was fused in-frame into the pGWB551 vector with the CaMV35S promoter
by Gateway recombination reactions [43] to generate the 35S::CpBBX19 construct. Specific
primers (pGWB551-CpBBX19-F/R) used in the process are shown in Table S1, and the plas-
mid map of the 35S::pGWB551 vector is shown in Figure S1. The resulting 35S::CpBBX19
plasmid was confirmed by sequencing and then transformed into Agrobacterium tumefa-
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ciens (strain GV3101 competent cells) via electroporation to further explore the function
of CpBBX19.

2.7. Generation of Transgenic Arabidopsis and Stress Treatments

Arabidopsis transgenic lines (OE lines) were obtained by transferring the 35S::CpBBX19
recombinant plasmid into wild-type Arabidopsis via the floral dip method [46]. T-0 seeds
were sown on MS medium containing 25 µg/mL hygromycin for transgenic selection. The
method of Khan et al. [47] was used to extract DNA from the leaves of transgenic and
nontransgenic plants (WT), and PCR amplification was performed using the extracted DNA
and CpBBX19 specific primers (CpBBX19-F1/R1) (Table S1). The PCR procedure comprised
an initial preheating step at 95 ◦C for 5 min, followed by 27 cycles of denaturation at 95 ◦C
for 30 s, annealing at 55 ◦C for 30 s, and extension at 72 ◦C for 40 s, with a final extension at
72 ◦C for 10 min. PCR products were detected by 1% gel electrophoresis to confirm the
insertion of CpBBX19 into transgenic plants. qRT-PCR was used to identify the expression
level of CpBBX19 in the transgenic lines, with the AtActin gene [43] used as the internal
reference gene of Arabidopsis. The qRT-PCR product of AtActin was 200 bp. Three T3
transgenic lines (with high, medium, and low expression of CpBBX19, respectively) were
selected for phenotypic investigation; wild-type Arabidopsis (WT) was used as the control.

To determine the salt tolerance of the transgenic lines, WT and transgenic Arabidopsis
were irrigated every 2 days with 300 mM NaCl to ensure that the concentration of NaCl
solution in the tray remained uniform. To test the drought tolerance of the transgenic
lines, WT and transgenic Arabidopsis were irrigated with 30% PEG-6000. MDA content and
electrolyte leakage of transgenic Arabidopsis were detected as indicators of stress tolerance.
MDA content was determined as described by Heath et al. [48], while the method of
electrolyte leakage was stated by Seliem et al. [49].

2.8. Data Analysis

IBM SPSS Statistics 23 software package was used for statistical analysis, and Dun-
can’s multiple range tests were employed to analyze the significance of differences. A
p-value < 0.05 was recognized as statistically significant, and a p-value < 0.01 was classed
as extremely significant.

3. Results
3.1. Isolation and Characterization of CpBBX19

Based on the wintersweet transcriptome sequence in the database [39], a 1536-bp full-
length cDNA of CpBBX19 (accession number MZ740468) was obtained. The 5′ untranslated
region (5′-UTR) and a 3′ untranslated region (3′-UTR) of CpBBX19 were 475 bp and 428 bp,
respectively, and the open reading frame (ORF) of CpBBX19 was 633 bp, encoding 210
amino acids. The predicted molecular weight (MW) of the resulting protein was 23.47 kDa,
and the deduced isoelectric point (PI) and instability index were 5.91 and 56.50, respec-
tively. Subcellular localization prediction analysis of the CpBBX19 gene-encoded protein of
wintersweet showed that the protein was predominantly distributed in the nucleus.

Multiple sequence alignment revealed that the CpBBX19 protein sequence was highly
homologous to the BBX19 protein sequence of Arabidopsis, Gossypium hirsutum, Hibiscus
syriacus, Ziziphus jujuba, and Hevea brasiliensis (Figure 1a), indicating that BBX19 was
conserved in plants. The CpBBX19 protein contained two B-box domains, but lacked the
CCT domain and VP domain at the C-terminus. A phylogenetic tree of CpBBX19 and
Arabidopsis BBX proteins was reconstructed by MEGE 6 (Figure 1b) and showed the five
subfamilies of the BBX protein family; CpBBX19 belonged to the IV subfamily and was
closely related to AtBBX19. In addition, the promoter region 2000 bp upstream of the
CpBBX19 gene was analyzed (Figure 1c and Table S2). The CpBBX19 promoter region
contained one defense and stress responsive element (TC-rich), one element involved
in salicylic acid responsiveness (TAC-element), one MYB binding site (MBS) involved
in drought-inducibility, three elements related to abscisic acid responsiveness (ABRE),
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and four elements involved in MeJA responsiveness (TGACG-motif and CGTCA-motif),
indicating that CpBBX19 might be related to the stress response in plants.

Figure 1. Characterization of CpBBX19. (a) Multiple sequence alignment of CpBBX19 with
BBX19 proteins from Arabidopsis thaliana (accession number NP_001190958.1), Gossypium hirsutum
(XP_016697629.1), Hibiscus syriacus (XP_039058672.1), Ziziphus jujube (XP_015892301.1), and Hevea
brasiliensis (XP_021655083.1). Identical and similar amino acids are shaded in gray and light gray,
respectively, and conserved zinc-finger motifs are marked by red boxes. (b) Phylogenetic analysis
of CpBBX19 and BBX proteins from Arabidopsis. MEGA 6 software with the neighbor-joining (NJ)
method (1000 bootstrap repeats) was used to reconstruct the phylogenetic tree. Accession numbers of
the protein sequences used for phylogenetic analysis are shown in Table S3. (c) Cis-acting elements in
the promoter of CpBBX19.
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As shown in Figure 2, the six conserved motifs in CpBBX19 and the IV subfamily
of Arabidopsis, identified by MEME software, comprised between 8 and 47 amino acids.
Sequence analysis revealed that motif 1 contained the complete structure C-X2-C-X8-C-X7-
C-X2-C-X4-H-X8-H of B-Box1. Motif 2 contained the C-X2-C-X8-C part of B-box2, while
motifs 3 and 4 contained the last histidine (H) of B-box2 and a more conserved amino acid
sequence. Motifs 2, 3, and 4 constituted a relatively complete conserved domain of B-Box2.

Figure 2. Motif distribution in CpBBX19 and the IV subfamily of the BBX family of Arabidopsis.
(a) Motif locations. (b) The width and amino acid sequence of conservative motifs. CpBBX19 is
marked by a red point.

3.2. Tissue-Specific Expression of CpBBX19

qRT-PCR revealed that CpBBX19 was expressed in the root, stem, leaf, and flower
tissues of wintersweet, but the expression levels varied with location. Expression levels of
CpBBX19 were relatively high in cotyledons and inner petals of wintersweet, and in other
floral organs (Figure 3a). The expression patterns of CpBBX19 were also explored during
the different developmental stages of wintersweet flowers (Figure 3b). The highest level
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of CpBBX19 expression was detected in the early initiating bloom stage, followed by late
initiating bloom and bloom, and the lowest levels of expression were present in the stages
of germination, flower-bud, petal-display, and withering.

Figure 3. Expression pattern analysis of CpBBX19 in wintersweet by qRT-PCR. (a) Expression of CpBBX19 in different
tissues of wintersweet. (b) Expression of CpBBX19 in different floral development stages of wintersweet. CpActin was
used as the internal reference gene. Data represent the mean of three biological repeats ± SD. Error bars indicate standard
deviation. Different lowercase letters (a–e, cd) on bars indicate significant differences (p < 0.05).

3.3. Expression Profiles of CpBBX19 under Abiotic Stresses and Hormone Treatments

To explore the effect of stresses and exogenous hormones on CpBBX17 expression,
qRT-PCR was used to determine the transcription level of CpBBX19 in wintersweet under
different abiotic stresses (drought, salt, cold, and heat) and hormone treatments (ABA and
MeJA). These treatments were selected based on the cis-acting elements in the CpBBX19
promoter region (Table S1). For the ABA, MeJA, and NaCl treatments, expression of
CpBBX19 was induced and peaked at 2 h (Figure 4a,b,e). For heat treatment, CpBBX19
expression increased and reached a peak at 2 h, then gradually decreased and was lower
than that of the control (untreated; CK) at 24 h. (Figure 4c). For cold treatment, the
expression of CpBBX19 was significantly higher than that of the untreated control at 6 h
and 12 h (Figure 4d). Under PEG-6000 treatment, expression of CpBBX19 was induced and
increased between 2 h and 6 h, then decreased from 6 h to 12 h, before increasing again and
peaking at 24 h (Figure 4f).

3.4. Overexpression of CpBBX19 Improves Tolerance to Salt and Drought Stress in Arabidopsis

To further study the function of CpBBX19, the expression vector pGWB551-CpBBX19
was constructed and then transferred into wild-type Arabidopsis thaliana (WT). Using the
leaves DNA of the T2 lines as templates, the CpBBX19 overexpression lines were identified
by PCR (Figure S2), and WT was used as control. Three lines with high, medium, and low
expression levels of CpBBX19 (namely, OE-2, OE-5, and OE-9; Figure 5) were selected for
further functional analysis. The relative expression levels of OE-2, OE-5, and OE-9 were
1.104 ± 0.080, 0.460 ± 0.019, and 0.211 ± 0.029, respectively. Wild-type plants (WT) were
used as a control.
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Figure 4. Expression profiles of CpBBX19 in response to abiotic stress and hormone treatments.
Six-leaf stage wintersweet was exposed to (a) 50 µM ABA, (b) 100 µM MeJA, (c) 42 ◦C, (d) 4 ◦C,
(e) 300 mM NaCl, and (f) 50% PEG-6000 treatments. RNA was extracted from the leaves at 0, 2, 6, 12,
and 24 h after treatment. CpActin was used as the internal reference gene. Data represent the mean of
three biological repeats ± SD. Error bars indicate standard deviation. * p < 0.05, ** p < 0.01.

Figure 5. qRT-PCR identification of CpBBX19 transcript levels in the leaves of nine overexpressing
Arabidopsis lines and WT plants. AtActin was used as the internal reference gene. Bars indicate the SE
of the mean from three technical replicates and three biological replicates.
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To determine the response of CpBBX19 overexpression to NaCl stress, the three trans-
genic lines and WT plants were irrigated with 300 mM NaCl solution. After 4 days, WT and
transgenic lines all showed obvious wilting, but the growth status of the transgenic lines
was slightly better than that of WT (Figure 6a). Electrolyte leakage and malondialdehyde
(MDA) are reference indicators of the degree of plant damage [48,49]. Electrolyte leakage
of the three transgenic lines was 65.24%, 68.76%, and 69.35%, respectively, all significantly
lower than that of WT (85.27%) (Figure 6b). In addition, MDA molar concentrations of the
transgenic lines (0.409, 0.6785, and 0.701 µmol/g·Fw, respectively) were markedly lower
than that of WT (0.929 µmol/g·Fw) (Figure 6c). Therefore, transgenic lines have better
resistance to damage under salt stress compared with WT plants.

Figure 6. Heterologous expression of CpBBX19 enhanced salt tolerance of transgenic Arabidopsis
plants. (a) Performance of Arabidopsis overexpressing CpBBX19 (OE lines) under NaCl treatment. Bar
denotes 1 cm. (b) Electrolyte leakage of WT and OE lines under NaCl treatment. (c) MDA content of
WT and OE lines under NaCl treatment. Data represent the mean of three biological repeats ± SD.
Error bars indicate standard deviation. Different lowercase letters (a, b, c) on bars indicate significant
differences (p < 0.05).

To explore the role of CpBBX19 in drought stress, WT plants and the three transgenic
lines were irrigated with 30% PEG. After 36 h, WT plants were markedly wilted compared
with transgenic plants (Figure 7a). Measurement of electrolyte leakage showed that WT was
the most damaged (67.37% electrolyte leakage) among the analyzed plants, and this mea-
surement was significantly different from that of the three transgenic lines (31.81%, 48.87%,
and 62.30%, respectively) (Figure 7b). MDA content in WT plants (0.678 µmol/g·Fw)
was almost three times that of OE-2 plants (0.226 µmol/g·Fw), and twice that of OE-5
(0.360 µmol/g·Fw) and OE-9 (0.430 µmol/g·Fw) plants (Figure 7c). In summary, overex-
pression of CpBBX19 improved the drought tolerance of transgenic Arabidopsis.

Figure 7. Heterologous expression of CpBBX19 enhanced drought tolerance of transgenic Arabidopsis.
(a) Performance of Arabidopsis overexpressing CpBBX19 (OE lines) under 30% PEG-6000 treatment.
Bar denotes 1 cm. (b) Electrolyte leakage of WT and OE lines under 30% PEG-6000 treatment. (c)
MDA content of WT and OE lines under 30% PEG-6000 treatment. Data represent the mean of three
biological repeats ± SD. Error bars indicate standard deviation. Different lowercase letters (a, b, c) on
bars indicate significant differences (p < 0.05).
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4. Discussion

Transcription factor regulation is a crucial link in gene expression. B-box-like zinc-
finger proteins in animal cells are involved in many cellular processes, such as apoptosis,
cell cycle regulation, virus response, and other intracellular physiological processes [50,51].
Research on the structure and function of B-box-like proteins in plants has also made
some progress. BBX family members have been identified in Arabidopsis [16], rice [30],
apple [27], Toona Sinens [24], wheat [52], pear [25], and Petunia hybrida [53], with the number
of BBX members varying among different species. Wintersweet is an ornamental plant
that blossoms in winter in China. However, there are no reports on BBX transcription
factors of wintersweet. In this study, a novel BBX transcription factor gene, CpBBX19, was
isolated based on information from the wintersweet transcriptome database [39]. Multiple
sequence alignment revealed that CpBBX19 protein shared a high sequence similarity with
the BBX19 protein sequences of other plants. Two B-box domain motifs were found in the
CpBBX19 sequence (Figure 1a), which was consistent with the characteristics of group IV
members of BBX proteins. Phylogenetic analysis showed that CpBBX19 clustered with
group IV BBX proteins and was closely related to AtBBX19 (Figure 1b). Prediction of the
subcellular localization of protein CpBBX19 indicated that it was located in the nucleus,
and it was speculated that this transcription factor might be involved in the transcription
level of other genes.

Gene function can be reflected by the expression patterns of a gene to a certain
degree [42]. OsBBX13 had the highest expression in leaves, then in roots, and lower
expression in stems and young panicles [44]. CmBBX19 had higher transcript contents
in leaves, flowers, and stems, but lower levels in roots [54]. PuBBX24 was expressed in
the roots, stems, leaves, flowers, and fruits of Pyrus ussuriensis, but expression levels were
highest in stems and lowest in leaves [55]. In the current study, CpBBX19 was expressed
in the stems, roots, leaves, and flowers of wintersweet, with highest expression found in
cotyledons and inner petals and lower expression detected in roots, stems, and old leaves.
The expression patterns of PuBBX24, CmBBX19, and OsBBX13 were slightly different from
that of CpBBX19, but all four genes exhibited higher expression in leaves and flowers
and lower expression in roots. We speculated that the gene CpBBX19 may be involved
in leaf morphogenesis and may play a role in the inner petal formation of wintersweet
flowers. At the stage of floral development, the highest expression of CpBBX19 was in the
early flowering stage, followed by late initiating bloom and bloom, and the lowest level
of expression was detected in the stages of germination, flower-bud, petal-display, and
withering. As wintersweet blossoms in cold winter and high expression of CpBBX19 was
detected in the early initiating bloom stage, this gene may be related to the stress-resistant
protection mechanism of wintersweet against adverse environments. CpBBX19 may be
involved in initiating the relevant regulatory network to enhance the stress resistance of
floral organs.

Cis-acting elements play a key role in gene transcription and expression [41]. Most of
the cis-acting elements with biological functions are predominantly active 50 bp upstream
of the transcription start site (TSS), and most of the transcription factor binding sites (TFBSs)
are in the region from −1000 bp to +200 bp with respect to the TSS [56]. Analysis of the
promoter of CpBBX19 revealed the presence of a TATA-box, which is a core promoter
element usually located 25–35 bp upstream of the TSS [57–60]. The promoter of CpBBX19
also contained a CAAT-box, which also commonly exists in promoters and is usually
located 75 bp upstream of TSS [57–60]. Many cis-acting elements of abiotic stresses and
hormone responses, such as ABRE, ARE, MBS, MYB, MYC, TC-rich, TCA-element, and
TGACG-motif, were also present. These observations indicated that CpBBX19 may be
involved in abiotic stress and hormone responses. Expression of the BBX gene family
members SlBBX7, SlBBX9, and SlBBX20 was induced by cold stress in tomato [61], and
there were differences in the expression of some GhBBX genes after ABA treatment in
Gossypium hirsutum [62]. PavBBX6 and PavBBX9 showed strong induction under ABA,
GA, and BR treatment in sweet cherry fruit [63]. Furthermore, abiotic stress such as
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drought, low temperature, and salt stress strongly induced expression of OsBBX1, OsBBX2,
OsBBX8, OsBBX19, and OsBBX24 [31], and expression of OsBBX2, OsBBX7, OsBBX17,
OsBBX19, and OsBBX24 was upregulated by GA, SA, and MeJA hormones at different
time points [31]. These results are consistent with those of CpBBX19, with the expression
of CpBBX19 being induced by abiotic stress (drought, salt, cold, and heat) and exogenous
hormones (ABA and MeJA) (Figure 4) in the current study. Therefore, CpBBX19 may
be involved in the response of wintersweet to drought, salt, cold, heat, ABA, and MeJA.
However, the expression pattern of BBX genes in some plants was opposite to the above
pattern. For example, expression of CmBBX19 was downregulated by drought stress and
ABA treatment [54], and the expression of GhBBX5, GhBBX23, and GhBBX28 in cotton was
continuously downregulated after PEG treatment for 1 h, reaching the lowest expression
point at 12 h, and then increased at 24 h [62]. These differences suggested that BBX genes
have different expression patterns in different plants.

Electrolyte leakage and MDA content, as an important index of plant stress resistance,
can reflect the degree of damage of the plant cell membrane system under adversity [64].
The increase of electrolyte leakage and MDA content indicates the cell membrane structure
damage and intensified membrane permeability [65]. To verify our hypothesis and facilitate
understanding of the functions of CpBBX19, Arabidopsis plants overexpressing CpBBX19
were obtained. Growth of the transgenic lines was better than that of WT lines under
drought stress, and the electrolyte leakage and MDA content of these transgenic lines
were much lower than those of WT lines. Under salt stress, all plants (WT and OE lines)
were obviously withering, but the electrolyte leakage and MDA content of OE lines were
significantly lower than those of WT. This indicated that the transgenic Arabidopsis plants
had enhanced salt and drought resistance compared with the WT plants. Some functions
of BBX genes have been verified. For example, CmBBX24 transgenic Arabidopsis was more
tolerant to low temperature and drought stress than the WT lines were [66]; transgenic
CmBBX22 in Arabidopsis improved the drought resistance of Arabidopsis [38]; heterologous
expression of MdBBX10 enhanced the tolerance of transgenic Arabidopsis to salt and drought
stress [28], and compared with WT plants, overexpression of AtBBX24 could improve the
tolerance of Arabidopsis to salt stress [67]. However, because of the inclusion of an EAR
motif in CmBBX19, the drought tolerance of CmBBX19-overexpressing (CmBBX19-OX) lines
was lower than that of WT [54]. In plants, proteins containing an EAR motif have been
proven to be transcriptional repressors and are instrumental in many biological processes,
including responses to hormones and biotic and abiotic stresses, floral transition, and
meristem maintenance [68,69]. In general, different BBX transcription factors have complex
roles in plant responses to environmental stresses.

5. Conclusions

To date, there are no reports on the BBX gene family in wintersweet. In this study,
CpBBX19 from wintersweet was isolated and its expression pattern and functional char-
acterization were investigated. Expression of CpBBX19 was induced by multiple abiotic
stresses (drought, salt, cold, and heat), as well as by hormone treatments (ABA and MeJA).
Heterologous expression of CpBBX19 in Arabidopsis enhanced tolerance to drought and
salt stresses. These findings indicate that CpBBX19 plays a role in drought and salt stress
responses. Moreover, this study also lays a strong foundation for further investigations
into BBX genes of wintersweet and enriches understanding of the molecular mechanism of
stress resistance in wintersweet.
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