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Abstract: Genome-wide association studies (GWASs) have identified more than 500 loci for bone
mineral density (BMD), but functional variants in these loci are less known. The aim of this study was
to identify RNA modification-related SNPs (RNAm-SNPs) for BMD in GWAS loci. We evaluated the
association of RNAm-SNPs with quantitative heel ultrasound BMD (eBMD) in 426,824 individuals,
femoral neck (FN) and lumbar spine (LS) BMD in 32,961 individuals and fracture in ~1.2 million
individuals. Furthermore, we performed functional enrichment, QTL and Mendelian randomization
analyses to support the functionality of the identified RNAm-SNPs. We found 300 RNAm-SNPs
significantly associated with BMD, including 249 m6A-, 28 m1A-, 3 m5C-, 7 m7G- and 13 A-to-I-related
SNPs. m6A-SNPs in OP susceptibility genes, such as WNT4, WLS, SPTBN1, SEM1, FUBP3, LRP5
and JAG1, were identified and functional enrichment for m6A-SNPs in the eBMD GWAS dataset was
detected. eQTL signals were found for nearly half of the identified RNAm-SNPs, and the affected
gene expression was associated with BMD and fracture. The RNAm-SNPs were also associated
with the plasma levels of proteins in cytokine-cytokine receptor interaction, PI3K-Akt signaling,
NF-kappa B signaling and MAPK signaling pathways. Moreover, the plasma levels of proteins
(CCL19, COL1A1, CTSB, EFNA5, IL19, INSR, KDR, LIFR, MET and PLXNB2) in these pathways
were found to be associated with eBMD in Mendelian randomization analysis. This study identified
functional variants and potential causal genes for BMD and fracture in GWAS loci and suggested
that RNA modification may play an important role in osteoporosis.

Keywords: bone mineral density; RNA modification; genome-wide association study; gene
expression

1. Introduction

Osteoporosis (OP) is a chronic disease characterized by decreased bone mass and
damage to bone microstructures, which increases the risk of osteoporotic fracture. Due
to the aging population, OP will become a serious public health problem threatening the
health of middle-aged and elderly people. Bone mineral density (BMD) is an important
indicator for diagnosing OP and predicting the risk of osteoporotic fracture. Calcium,
vitamin D and antioxidants are beneficial to maintain BMD, while smoking and excessive
alcohol consumption have adverse effects on BMD. Changes in physiological mechanisms,
such as hormone levels, oxidative stress and cell apoptosis, also affect BMD levels.

BMD has a strong genetic component at all sites, with estimates of heritability ranging
from 46% to 84% [1,2]. Genome-wide association study (GWAS) is a powerful tool to
identify susceptibility genetic variants of complex diseases. In the past decade, large-scale
GWASs have identified over 500 OP susceptibility loci [3–6]. However, exploring how

Genes 2022, 13, 1892. https://doi.org/10.3390/genes13101892 https://www.mdpi.com/journal/genes

https://doi.org/10.3390/genes13101892
https://doi.org/10.3390/genes13101892
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0000-0001-8956-4918
https://doi.org/10.3390/genes13101892
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes13101892?type=check_update&version=3


Genes 2022, 13, 1892 2 of 15

these genetic variations affect BMD remains a challenge. Delineation of GWAS variants by
distinguishing functional variants from other variants should help with the translation of
GWAS signals into causal mechanisms and clinical applications. One of the most commonly
used strategies in previous studies was applying exome sequencing technologies to detect
potential functional variations that can alter amino acid sequences [7]. In fact, functional
genetic variants may also be those influencing RNA–protein interactions [8] or changing
the splicing sites of exonic splicing enhancers and silencers [9] through RNA editing [10].

RNA modifications that decorate the chemical and topological properties of ribose
nucleotides, thereby executing their biological functions through post-transcriptional regu-
lation, are important resources to increase our understanding of the mechanism of BMD
loss. A wide range of RNA modifications, including m6A (N6-adenosine methylation), m5C
(5-methylcytidin), A-to-I RNA editing, Nm (2′-O-ribose-methylation), Ψ (pseudouridine),
m7G (N7-methylguanosine), and m1A (N1-adenosine methylation), have been studied.
Dysregulation of RNA modifications affects a variety of biological processes, including cell
proliferation, self-renewal procedures, and apoptosis.

In recent years, researchers have shown that genetic variants impact all types of RNA
modifications by changing the nucleotides at which methylation occurs or RNA sequences
around the target sites. Genetic variants may affect the regulation of gene expression
by disturbing RNA modifications and, therefore, the RNA modification-related SNPs
(RNAm-SNPs) may be important functional variants affecting BMD levels. In our previous
study, we showed that m6A-SNPs may be among the functional variants for BMD [11].
Currently, the relationship between RNAm-SNPs and BMD is still less known. Annotating
the functional impacts of RNAm-SNPs on BMD may be a valuable strategy to decipher
its pathogenesis. Luo et al. developed a database called RMVar (http://rmvar.renlab.org
accessed on 3 September 2020) to host genome-wide RNAm-SNPs. This database is helpful
for functional studies on genetic variants affecting BMD.

This study attempted to evaluate the impact of nine types of RNAm-SNPs on BMD
and identify potential functional genetic variants in gene loci associated with BMD in
GWAS. The impacts of RNAm-SNPs on gene expression were evaluated in quantitative
trait locus (QTL) studies, including mRNA expression QTL (eQTL) and plasma protein
level QTL (pQTL), to support the functionality of the RNAm-SNPs. By applying Mendelian
randomization (MR) analysis, gene expression and plasma protein levels involved in the
regulation of RNAm-SNPs on BMD were identified (Supplementary Figure S1).

2. Methods
2.1. Determination of RNAm-SNPs for BMD

In this study, we used summary-level data from two large-scale BMD GWASs to
determine the potential functionally related RNAm-SNPs [5,6]. Estrada et al. performed a
meta-analysis on lumbar spine (LS) and femoral neck (FN) BMD, including 32,961 individ-
uals of European and east Asian ancestry. They identified 56 loci associated with BMD at
the genome-wide significance level (p < 5.0 × 10−8) [6]. Morris et al. undertook a GWAS
in 426,824 individuals from the UK Biobank and identified 518 genome-wide significance
loci for BMD as estimated by quantitative ultrasound of the heel (eBMD). This study also
identified 13 bone fracture loci, all of which were associated with eBMD, in ~1.2 million
individuals [5]. The BMD GWAS datasets are all publicly available at the GEnetic Fac-
tors for OSteoporosis Consortium (GEFOS) website http://www.gefos.org/.accessed on
21 January 2022.

To identify the RNAm-SNPs in the large number of SNPs from the BMD GWAS, we ob-
tained a set of RNAm-SNPs from the RMVar database (http://rmvar.renlab.org/download.
html accessed on 21 January 2022). The RMVar database contains 1678,126 RNAm-SNPs for
the nine types of RNA modifications (m6A, m6Am, m1A, 2′-O-Me, m5C, m5U, m7G, A-to-I
and pseudouridine). These RNAm SNPs are divided into low (predicted), median and high
confidence levels. The RMVar database characterized 31,076 RNA modification-related
disease-associated variants by integrating the RNAm-SNPs with GWAS and ClinVar data,

http://rmvar.renlab.org
http://www.gefos.org/.accessed
http://rmvar.renlab.org/download.html
http://rmvar.renlab.org/download.html
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which directly provided clues to explore the relationship between RNA modification and
disease of interest. Based on the RNAm-SNP information downloaded from the RMVar
database, we annotated the SNPs in the BMD GWAS. The RNAm-SNPs associated with
BMD were identified (significance level was set to p < 5.0 × 10−8) for further analysis.

2.2. Enrichment of RNAm-SNPs in the BMD GWAS Dataset

Among the BMD-associated SNPs, we determined if RNAm-SNPs were overrepre-
sented compared to what would be expected by chance. We randomly sampled a set
of non-RNAm-SNPs with the same number of RNAm-SNPs from the GWAS dataset for
eBMD and calculated the proportion of SNPs with a p value < 5.0 × 10−8 in this set of
non-RNAm-SNPs. Such an operation was repeated 1000 times. The distribution of the pro-
portions resulting from this procedure was used as a background, and then the proportion
of RNAm-SNPs with a p value < 5.0 × 10−8 was compared with this distribution, and a
p value was reported.

In addition, we performed whole-genome analysis of RNAm SNPs by functional
genome-wide association analysis (FGWAS) as a functional annotation of BMD. FGWAS is
a program that uses association statistics calculated across the genome and incorporates
functional genomic information into a GWAS to estimate the enrichment of GWAS hits
in different annotation types [12]. Compared with existing methods for GWAS, FGWAS
can substantially boost the detection power for discovering important genetic variants
and the gene–environmental interactions influencing phenotypes and related functions. In
addition, simulation studies show that FGWAS outperforms existing GWAS methods for
searching sparse signals in an extremely large search space, while controlling for the family
wise error rate.

2.3. eQTL Analysis for BMD-Associated RNAm-SNPs

RNA modification is important in gene expression regulation and mRNA stability
and homeostasis, so RNAm-SNPs may be associated with mRNA levels. We are interested
in whether the identified BMD-associated RNAm-SNPs affect mRNA expression levels
and whether the affected gene expression was associated with BMD. We performed an
eQTL analysis to identify the associations between RNAm-SNPs and gene expression levels
in different types of cells and tissues. We obtained the eQTL information from a public
database in the HaploReg browser (http://archive.broadinstitute.org/mammals/haploreg/
haploreg.php accessed on 13 March 2022). The HaploReg browser developed by the Broad
Institute can show the effect of SNPs on expression from eQTL studies, predict pathogenic
variation and predict target genes and possible mechanisms of disease-related variation
through systematic data mining. We focused on the association between RNAm-SNPs and
genes located in cis-acting eQTLs.

Integration of GWAS data with eQTL studies is helpful to prioritize functionally
relevant genes in GWAS-identified loci. Zhu et al. proposed an MR method named
“summary data-based Mendelian randomization” (SMR) with this idea. In this study, we
performed an SMR analysis to evaluate the associations between gene expression levels
in five related tissues (whole blood, adipose tissue, skeletal muscle, liver and ovary) and
eBMD and fracture by integrating eQTL data from the GTEx project [13] with BMD GWAS
data described above [5]. A set of cis-eQTL summary data across the five human tissues
from the GTEx project were downloaded from http://cnsgenomics.com/software/smr/
#DataResource, accessed on 17 July 2020.

We ran SMR (version 0.712) with default parameters in a command-line program. The
genotype data of HapMap r23 CEU were used as the reference panel to calculate the LD
correlation for SMR analysis. The genome-wide significance threshold for the SMR analysis
was set to 5.0 × 10−6. We further conducted the heterogeneity in dependent instruments
(HEIDI) test to test the ‘no horizontal pleiotropy’ assumption, the basic assumption of
the MR study. pHEIDI > 0.05 indicated that there was one single SNP affecting BMD and
gene expression.

http://archive.broadinstitute.org/mammals/haploreg/haploreg.php
http://archive.broadinstitute.org/mammals/haploreg/haploreg.php
http://cnsgenomics.com/software/smr/#DataResource
http://cnsgenomics.com/software/smr/#DataResource
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2.4. pQTL Analysis for the BMD-Associated RNAm-SNPs

We carried out pQTL analysis for the identified RNAm-SNPs to search for plasma
proteins related to BMD. Through pQTL analysis, we identified the proteins associated
with BMD (pleotropic association) to further understand the physiopathology of BMD loss.
The associations between RNAm-SNPs and plasma protein levels were searched in three
pQTL studies. The first pQTL study was a large-scale proteomics GWAS that quantified
539 associations between protein levels and gene variants in a German cohort and replicated
over half of them in an Arab and Asian cohort [14]. The summary data are available in the
pGWAS Server database (http://metabolomics.helmholtz-muenchen.de/pgwas/index.
php?task=download accessed on 13 December 2018). The second pQTL study characterized
the genetic architecture of the human plasma proteome in 3301 participants aged 18 years
or older who were recruited from two cohorts in England. Briefly, this GWAS tested the
association between 10.6 million SNPs and 2994 plasma proteins [15]. The summary data
are publicly available (http://www.phpc.cam.ac.uk/ceu/proteins/, accessed on 15 January
2020). The third pQTL study was a proteomics GWAS that measured 83 plasma proteins
in a cohort of 3394 subjects [16]. The summary SNP data can be downloaded from https:
//zenodo.org/record/264128#.X3u5ga95uUk, accessed on 6 October 2020. In addition, we
looked for associations between RNAm-SNPs and cytokines concentrations. The cytokine
study studied the genetic basis for plasma levels of 41 cytokines in 8293 Finns [17]. The
summary statistics of this study are available at http://www.computationalmedicine.fi/
data#Cytokine_GWAS, accessed on 3 June 2019.

2.5. MR Analysis of Proteins

Horizontal pleiotropy is pervasive in MR analysis and can distort MR tests, leading
to inaccurate causal estimates, loss of statistical power, and potential false positive causal
relationships. To further assess whether there were potential causal effects between proteins
identified by pQTL analysis and BMD, we performed weighted median, inverse-variance
weighted (IVW) MR, MR–Egger, and MR pleiotropy residual sum and outlier (MR-PRESSO)
analyses. The IVW method is a weighted linear regression model that combines the ratio
estimates from each IV in a meta-analysis model. The premise for using this method is
that all genetic variations are valid instrumental variables [18]. To obtain a more reliable
MR estimate, we conducted MR–Egger regression. The MR–Egger method was performed
to account for potential pleiotropy of the genetic variants that would have influenced
the outcome through pathways other than the exposure, as this could have caused bias
to the analytical results [19]. The weighted median, IVW and MR–Egger analyses were
performed by using the Mendelian Randomization R package. MR-PRESSO is a method
that systematically detects and corrects horizontal pleiotropic outliers in MR testing through
three steps: the MR-PRESSO global test, the MR-PRESSO outlier test and the MR-PRESSO
distortion test. The outlying genetic variants were identified by applying this method [20].
The source code and documents for MR-PRESSO are available at https://github.com/
rondolab/MR-PRESSO, accessed on 17 July 2018. The default parameters were used for
the MR-PRESSO analysis.

The requisite data (i.e., SNP rs number, β, standard error, and p value) were extracted
from each of the BMD GWASs and pQTL studies mentioned above and then merged by
SNP to form a plain file with seven columns (i.e., SNP rs number, β for protein, standard
error for protein, p value for protein, β for BMD, standard error for BMD and p value
for BMD) for the MR analysis using the R language. We sorted out the pQTLs with
p values less than 5 × 10−4 as potential instrumental variables. We harmonized the genetic
association between the pQTL and BMD GWAS to ensure that they reflected the same
effect allele. We then conducted LD clumping on these SNPs to obtain the independent
pQTL (LD r2 < 0.001, within 10,000 kb) for each protein. LD clumping was done using
the clump_data function provided by the TwoSampleMR R package with reference to the
1000 Genomes EUR population.

http://metabolomics.helmholtz-muenchen.de/pgwas/index.php?task=download
http://metabolomics.helmholtz-muenchen.de/pgwas/index.php?task=download
http://www.phpc.cam.ac.uk/ceu/proteins/
https://zenodo.org/record/264128#.X3u5ga95uUk
https://zenodo.org/record/264128#.X3u5ga95uUk
http://www.computationalmedicine.fi/data#Cytokine_GWAS
http://www.computationalmedicine.fi/data#Cytokine_GWAS
https://github.com/rondolab/MR-PRESSO
https://github.com/rondolab/MR-PRESSO
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2.6. Functional Enrichment Analysis

KEGG (Kyoto Encyclopedia of Genes and Genomes) is a collection of databases dealing
with genomes, diseases, biological pathways, drugs and chemical materials that can help
us understand the functional interpretation of genes and their products as a whole network.
DAVID (https://david.ncifcrf.gov/ accessed on 13 May 2022) is an online bioinformatics
tool that can provide comprehensive biological function annotation information for large-
scale genes and proteins. In this study, we used the DAVID online tool to gain insights into
the functions of the potential causal proteins.

3. Results
3.1. BMD-Associated RNAm-SNPs

In the BMD GWAS datasets, a total of 300 RNAm-SNPs that were significantly associ-
ated with eBMD at p < 5.0 × 10−8 were identified, including 249 m6A-, 28 m1A-, 3 m5C-,
7 m7G- and 13 A-to-I-related SNPs (Table 1, Supplementary Table S1). These RNAm-SNPs
mapped to 255 known genes, including 220 protein coding genes (263 RNAm-SNPs) and
35 noncoding genes. The 300 detected RNAm-SNPs located in 243 GWAS identified loci.
Most of these loci each contain only one RNAm-SNP, and 43 loci each contain two or more
RNAm-SNPs. The identified RNAm-SNPs are always not the top significant SNPs in the
loci. Forty-one (13.7%) of the RNAm-SNPs were “functional gain” while 259 (86.3%) were
“functional loss”. These RNAm-SNPs were divided into three categories: 126 (42.0%) were
high confidence, 75 (25.0%) were medium confidence and 99 (33.0%) were low confidence.
Among the 263 RNAm-SNPs located in protein coding genes, 76 (28.9%) were exonic,
53 (20.2%) were in the 3′-UTR, 14 (5.3%) were in the 5′-UTR and 120 (45.6%) were intronic.

Table 1. Proportion of significant RNAm-SNPs in eBMD GWAS dataset.

RNAm
Total RNAm-SNPs

Found in
GWAS Dataset

RNAm-SNPs with
p < 5.0 × 10−8 (%)

Simulated Proportion of
Genome-Wide SNPs with

p < 5.0 × 10−8 (95%CI)
p Value

m6A 18,082 249 (1.38%) 0.52–0.75% 0
m1A 1583 64 (4.02%) 0.25–1.07% 0
m7G 483 7 (1.45%) 0.41–0.83% 0

A-to-I 848 13 (1.53%) 0.47–0.83% 0
m5C 205 3 (1.46%) 0.49–0.98% 6.08 × 10−145

m5U 14 1 (7.14%) - -
m6Am 34 0 - -

2′-O-Me 14 0 - -
pseudouridine 12 0 - -

We found 249 m6A-SNPs that were significantly (p < 5.0 × 10−8) associated with
eBMD (Table 1, Figure 1 and Supplementary Table S1), 215 of which were located in protein
coding genes. One hundred and fifty (60.2%) genome-wide significant eBMD-associated
m6A-SNPs belonged to the high and medium confidence categories. The top signals were
found in the IDUA gene, including associations between rs115790973 (p = 2.90 × 10−119)
and rs6815946 (p = 2.50 × 10−116) and eBMD (Figures 1 and 2). Importantly, m6A-SNPs in
key OP susceptibility genes were identified, including WNT4, WLS, SPTBN1, SEM1, FUBP3,
LRP5 and JAG1 (Figures 1 and 3). The m6A-SNPs rs7536301 in WNT4 (p = 1.50 × 10−22),
rs12044635 in WLS (p = 1.20 × 10−28), rs80233229 in JAG1 (p = 4.70 × 10−38), rs62470375
in SEM1 (p = 8.80 × 10−10), rs10901225 in FUBP3 (p = 2.20 × 10−24), rs73516825 in LRP5
(p = 1.50 × 10−14) and rs2229503 in SPTBN1 (p = 1.70 × 10−50) (Figure 4) were significantly
associated with eBMD.

https://david.ncifcrf.gov/
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Figure 1. Genome-wide distribution of the identified eBMD-associated m6A-SNPs. The Manhattan
plot shows the associations between m6A-SNPs and eBMD. The x-axis indicates chromosome posi-
tions. The y-axis indicates −log10p values of the associations. The red line indicates the genome-wide
significance level of 5.0 × 10−8.

Significant associations between m6A-SNPs and fracture were found, including rs11-
5790973 (p = 1.00 × 10−11) and rs6815946 (p = 3.80 × 10−11) in IDUA (Figure 2), rs1983490
in LINC02594 (p = 3.60 × 10−13), rs2342312 in WHSC1L2P (p = 4.40 × 10−13) and rs8079310
in ATXN7L3 (p = 1.20 × 10−10). The m6A-SNP rs10896350 in PPP6R3 was significantly
associated with LS-BMD (p = 3.68 × 10−11); rs1983490 in LINC02594 was significantly
associated with LS-BMD (p = 2.88 × 10−8) and FN-BMD (p = 6.63 × 10−9). In addition,
nominal significant associations were found for the known OP susceptibility genes, in-
cluding the association between rs7536301 in WNT4 and LS-BMD (p = 8.52 × 10−5), the
association between rs12044635 in WLS and FN-BMD (p = 1.94 × 10−5), the association
between rs62470375 in SEM1 and FN-BMD (p = 7.13 × 10−5), the association between
rs80233229 in JAG1 and LS-BMD (p = 1.77 × 10−6) and the associations between rs273605
in DCDC1 and FN-BMD (p = 1.30 × 10−6) and LS-BMD (p = 3.16 × 10−7).

For m1A-SNPs, we identified 34 functional loss m1A-SNPs that were significantly
associated with eBMD. These 34 m1A-SNPs belong to the high and medium confidence
categories (Supplementary Table S1). The top signal was found for rs227584 in HROB
(p = 1.70 × 10−41), followed by the association between rs643892 in LRP5 and eBMD
(p = 9.00 × 10−31). The m1A-SNP rs227584 in HROB was also significantly associated
with fracture (p = 6.90 × 10−11). The association between rs643892 in LRP5 and LS-BMD
was marginally significant (p = 8.63 × 10−5).
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Figure 2. Association between the IDUA gene and eBMD. The m6A-SNP rs6815946 in the IDUA gene
was associated with eBMD and fracture. The expression levels of the FGFRL1 gene in skeletal muscle
were associated with eBMD and fracture.

Four functional loss m7G-SNPs belonging to the medium confidence category were
significantly associated with eBMD (Supplementary Table S1). Six functional loss A-to-I-
SNPs belonging to the high confidence category were significantly associated with eBMD
(Supplementary Table S1). For m5C modification, three functional loss m5C-SNPs belong-
ing to the high confidence category were significantly associated with eBMD, including
rs2229503 in SPTBN1 (p = 1.70 × 10−50), rs11247975 in SPON2 (p = 1.60 × 10−23) and
rs9986596 in ZKSCAN4 (p = 9.60 × 10−9). The m5C-SNP rs2229503 in SPTBN1 is a synony-
mous variant and is also a m6A-SNP; rs11247975 in SPON2 and rs9986596 in ZKSCAN4 are
missense variants.
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Figure 3. Association signals of m6A-SNPs with eBMD. The six regional association plots show the
associations between m6A-SNPs in key OP susceptibility genes and eBMD. The m6A-SNPs in each
gene locus are annotated in the plot.
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Figure 4. Association between the SPTBN1 gene and eBMD. The m6A-SNP rs2229503 in the SPTBN1
gene was associated with eBMD. The expression levels of the SPTBN1 gene in adipose tissue and
whole blood were associated with eBMD.
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3.2. Enrichment of RNAm-SNPs in the BMD GWAS Dataset

The proportion of m6A-SNPs, m1A-SNPs, m7G-SNPs, A-to-I-SNPs and m5C-SNPs
that have GWAS p values < 5.0 × 10−8 for eBMD was significantly greater than that of the
non-RNAm-SNPs (Table 1). We could not test the remaining four types of RNA methylation
because of the lack of data. With the FGWAS method, it was found that SNPs associated
with (p < 5.0 × 10−8) eBMD were significantly enriched with m6A-SNPs (log2 enrichment
of 2.17, 95% CI: [1.00, 2.84]). Functional enrichments for the other types of RNA methylation
in the eBMD GWAS dataset were not detected by using FGWAS software.

3.3. Gene Expression Associated with BMD

To further clarify the possible functional mechanisms underlying the identified RNAm-
SNPs in association with BMD, we investigated whether they were associated with gene
expression. We identified 253 BMD-associated RNAm-SNPs that showed effects in different
cells or tissues, and cis-eQTL signals with corresponding local genes were found for
119 RNAm-SNPs (47.0%). Some identified RNAm-SNPs affect the expression of key OP
susceptibility genes (Supplementary Table S2). Rs2229503, which is an m6A-SNP and
m5C-SNP of SPTBN1, affects the expression of SPTBN1. The m1A-SNP rs643892 in LRP5
is associated with the expression of LRP5. Four m6A-SNPs at 4p16.3 are associated with
the expression of FGFRL1. The m1A-SNP rs227584 in HROB and the m6A-SNP rs8079310
in ATXN7L3 are associated with the expression of HDAC5. Three m6A-SNPs (rs76324150,
rs4792891 and rs17650901) in MAPT and m7G-SNP rs7350928 and m6A-SNP rs17574425 in
KANSL1 are associated with the expression of WNT3. The m6A-SNP rs978572 in RELCH is
associated with the expression of TNFRSF11A.

In SMR analysis of integration of BMD GWAS with eQTL data from the GTEx project,
we detected significant associations between gene expression in five related tissue types
(whole blood, adipose, skeletal muscle, liver and ovary) and eBMD and fracture. A total
of 142 significant pleotropic associations were detected for 23 of the genes containing
RNAm-SNPs (SMR p < 5.0 × 10−6) (Supplementary Table S3). The number of significant
associations found in each tissue was 77 in whole blood, 37 in adipose tissue, 19 in skeletal
muscle, 4 in liver and 4 in ovary. In SMR analysis, we found that the expression levels of
some OP susceptibility genes were significantly associated with eBMD in the five related
tissue types. The expression of FGFRL1 was associated with eBMD (p = 1.61 × 10−8) and
fracture (p = 1.24 × 10−5) in skeletal muscle (Figure 2); the expression levels of SPTBN1
were associated with eBMD in whole blood and adipose tissue (p = 3.15 × 10−16 and
6.55 × 10−10, respectively) (Figure 4).

3.4. Plasma Proteins Related to the RNAm-SNPs

We attempted to find plasma proteins that were related to the identified RNAm-SNPs.
We found 340 significant pQTL signals (p < 5.0 × 10−5) for 96 RNAm-SNPs that were
significantly associated with eBMD (p < 5.0 × 10−8) (Supplementary Table S4). A total of
180 proteins were detected, and these proteins were enriched in specific KEGG pathways,
such as cytokine-cytokine receptor interaction (p = 6.30 × 10−4), the PI3K-Akt signaling
pathway (p = 8.20 × 10−4), the NF-kappa B signaling pathway (p = 1.30 × 10−3) and
the MAPK signaling pathway (p = 2.20 × 10−3) (Figure 5). Most of the pQTL signals
were in trans effect, while rs12660627, rs8898, rs6815946 and rs28379706 were associated
with plasma levels of proteins encoded by their local genes (CD109, CTSB, IDUA and
PLXNB2, respectively). Most of these signals were found in the INTERVAL study, and
signals for proteins encoded by CTSB, IL6ST, SELP, ICAM1 and MBL2 were found in more
than one pQTL study. The m6A-SNP rs739468 in CACFD1 was associated with plasma
levels of 45 proteins. Other SNPs, such as rs41302673, rs2517719, rs200991, rs35835721,
rs9986596, rs36019691 and rs56405707, were associated with plasma levels of more than
10 proteins. The top signal was the association between rs2645429 and plasma levels of
CTSB, followed by the association between rs739468 and plasma levels of SELE. We also
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found that RNAm-SNPs were significantly associated with proteins encoded by COL1A1,
DOCK9, IBSP, MSRA, PILRA and PTHLH, which are known to be important in OP.
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3.5. Proteins Causally Associated with BMD

pQTL analysis showed that RNAm-SNPs were associated with plasma protein levels.
To support the functional role of RNAm-SNPs in BMD, we still need to demonstrate that
the plasma proteins affected by the RNAm-SNPs were associated with BMD. We chose
proteins for MR analysis from three aspects based on the findings of the pQTL analysis.
First, CTSB, IL6ST, SELP, ICAM1 and MBL2 showed significant signals in more than one
pQTL study. Second, CTF1, IL1R1, IL19, LIFR, IL1B, IL3RA, CCL4, CCL3, CCL1, TNFSF8,
CCL19, IL6ST, CCL28, LY96, TLR4, ICAM1, C4B, C4A, IRF1, FLT4, INSR, FN1, FLT3LG,
EFNA5, COL1A1, IBSP, AKT2, KDR, MET, FGFR3 and CACNA2D3, which were enriched
in specific KEGG pathways, were considered to be important. Third, CD109, COL1A1,
DOCK9, IBSP, IDUA, MSRA, PILRA, PLXNB2, PRSS3 and PTHLH were also considered
because RNAm-SNPs located in these genes affect plasma levels of proteins encoded by
the local genes or because of their well-known roles in OP. Therefore, we tested whether
these 42 proteins were genetically associated with eBMD using several MR methods.

For the five proteins that showed significant signals in more than one pQTL study, sig-
nificant associations of CTSB with eBMD were detected using data from both the KORA and
INTERVAL studies (Table 2). By using data from the KORA study, the plasma level of CTSB
was associated with eBMD in weighted medium (p = 3.51 × 10−10), IVW (p = 5.82 × 10−3)
and MR–Egger (p = 4.17 × 10−6) analyses. We found that the plasma level of CTSB was
associated with eBMD in IVW (p = 4.41 × 10−2) and MR–Egger (p = 6.09 × 10−4) analyses
using data from the INTERVAL study. The plasma level of MBL2 was associated with
eBMD in weighted medium (p = 9.86 × 10−12) and MR–Egger (p = 2.41 × 10−3) analyses
using data from the INTERVAL study, but the association may be due to pleiotropic effects
because significant associations were not detected in MR-PRESSO analysis.

For the 31 proteins that were enriched in KEGG pathways, the plasma levels of IL19,
LIFR, CCL1, CCL19, INSR, EFNA5, KDR and MET were found to be associated with
eBMD in the MR analyses. For the remaining proteins, associations between plasma
levels of CD109, COL1A1, DOCK9, PILRA, PLXNB2 and eBMD were found. However,
the associations between plasma levels of CD109 and PILRA and eBMD may be due
to pleiotropic effects because significant associations were not detected in MR-PRESSO
analysis. Causal evidence was strong for the associations between plasma levels of COL1A1,
IL19, KDR, MET and PLXNB2 and eBMD because the associations passed all four MR
analysis tests and the intercepts of MR–Egger analyses were not significant.
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Table 2. Association between circulating protein levels and eBMD.

Proteins Estimate ¶ Standard
Error ¶

p Values

MR-
PRESSO IVW Weighted

Median MR-Egger Intercept

CTSB −0.0311 0.0113 5.1 × 10−2 5.82 × 10−3 3.51 × 10−10 4.14 × 10−6 2.30 × 10−3

CCL1 −0.0134 0.0055 3.25 × 10−2 1.45 × 10−2 2.69 × 10−2 2.91 × 10−1 9.39 × 10−1

CCL19 0.0118 0.0037 6.11 × 10−3 1.82 × 10−1 2.03 × 10−2 5.80 × 10−2 1.28 × 10−1

CD109 −0.0190 0.0104 8.94 × 10−2 6.80 × 10−2 3.16 × 10−2 1.63 × 10−2 9.36 × 10−2

COL1A1 −0.0215 0.0060 4.06 × 10−3 2.27 × 10−2 5.34 × 10−6 5.96 × 10−2 8.10 × 10−1

CTSB −0.0197 0.0098 6.02 × 10−2 4.41 × 10−2 1.49 × 10−1 6.09 × 10−4 7.29 × 10−3

DOCK9 0.0187 0.0060 7.98 × 10−3 1.75 × 10−3 7.40 × 10−5 3.96 × 10−1 7.15 × 10−1

EFNA5 0.0124 0.0049 2.73 × 10−2 4.03 × 10−2 6.06 × 10−3 3.07 × 10−3 3.78 × 10−2

IL19 −0.0133 0.0031 8.18 × 10−4 1.36 × 10−3 1.17 × 10−6 3.48 × 10−7 7.52 × 10−1

INSR 0.0249 0.0083 1.13 × 10−2 2.81 × 10−3 1.40 × 10−3 1.55 × 10−7 4.09 × 10−4

KDR 0.0143 0.0042 4.43 × 10−3 8.82 × 10−5 1.50 × 10−2 3.30 × 10−3 5.09 × 10−1

LIFR 0.0357 0.0155 4.94 × 10−2 2.07 × 10−2 5.27 × 10−2 8.53 × 10−3 6.99 × 10−2

MBL2 −0.0034 0.0047 4.82 × 10−1 2.61 × 10−1 9.86 × 10−12 2.41 × 10−3 5.12 × 10−3

MET 0.0385 0.0132 1.52 × 10−2 3.45 × 10−3 1.59 × 10−2 9.08 × 10−3 1.30 × 10−1

PILRA −0.0103 0.0051 5.98 × 10−2 4.18 × 10−2 1.23 × 10−2 5.59 × 10−1 1.03 × 10−1

PLXNB2 −0.0156 0.0063 2.99 × 10−2 1.38 × 10−2 8.94 × 10−9 2.45 × 10−2 2.83 × 10−1

¶: The effect estimation was derived from the MR-PRESSO analysis.

According to the MR analyses, the plasma levels of ten proteins (CCL19, COL1A1,
CTSB, EFNA5, IL19, INSR, KDR, LIFR, MET and PLXNB2) were associated with eBMD.
We performed a functional enrichment for these ten proteins and found that these proteins
were enriched in KEGG pathways of the PI3K-Akt signaling pathway (COL1A1, INSR,
KDR, EFNA5 and MET), the Rap1 signaling pathway (INSR, KDR, EFNA5 and MET), the
Ras signaling pathway (INSR, KDR, EFNA5 and MET) and the MAPK signaling pathway
(INSR, KDR, EFNA5 and MET) (Figure 5).

4. Discussion

This study examined the association between RNAm-SNPs and BMD and showed
that many BMD-associated SNPs in important genes identified by GWAS were related
to RNA modification types of m6A, m1A, m5C, m7G and A-to-I. The findings indicate
that RNA modification may play a role in OP, as the enrichment analysis showed that
GWAS signals were significantly enriched with m6A-SNPs. Some of the identified RNAm-
SNPs were located in well-known OP susceptibility genes and pathways. These SNPs
showed cis-acting eQTL effects in relevant tissues, and some of them were found to be
associated with proteins that were enriched in specific pathways. Moreover, the affected
gene expression and protein levels were found to be associated with BMD. The results
suggest a relationship among genetic variants, gene expression and BMD, i.e., the RNAm-
SNPs affect RNA modification, which controls mRNA expression, and the altered mRNA
expression or protein levels result in abnormal BMD.

Great efforts have been made to explore the relationship between genetic variations
and diseases. However, distinguishing pathogenic variants from a large number of genetic
variants remains a challenge. Most of the identified variants are functionally neutral, and
only a few can cause disease. Increasing evidence shows that mRNA modifications play
a critical role in modulating biological processes such as gene expression [21], mRNA
stability [22] and homeostasis [23]. Annotating the functional effects of gene variants on
RNA modification may be a valuable strategy to decipher the pathogenic mechanism
of diseases. It is possible to determine the causal variants by measuring RNAm-SNPs
associated with BMD. In this study, we demonstrated that searching for SNPs with specific
functions in BMD-associated loci was essential for a better understanding of GWAS signals.
We annotated many RNAm-SNPs related to BMD and showed that RNAm-SNPs may be
involved in the pathogenesis of OP. Many of the identified BMD-associated RNAm-SNPs
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were involved in critical BMD genes and pathways. Well-known BMD genes, such as WNT4,
WLS, SPTBN1, SEM1, FUBP3, LRP5 and JAG1, contain RNAm-SNPs. We found evidence to
show that the RNAm-SNPs may have impacts on the expression of these modifiable genes
at both the mRNA and protein levels, and the affected gene expression was associated with
BMD. Our research demonstrated how to refine the associated signals from the RNAm-
SNPs identified in the GWAS dataset. The findings indicated that RNA modification may
play a role in OP, as these key BMD genes were affected by RNA modification. Thus far,
it is not clear how RNA modification affects these genes and contributes to OP, and its
underlying mechanisms need to be clarified.

Rs2229503 in SPTBN1, rs7536301 in WNT4, rs76324150, rs4792891 and rs17650901 in
MAPT, rs7350928 and rs17574425 in KANSL1, and rs643892 and rs73516825 in LRP5 are
RNAm-SNPs significantly associated with eBMD. Based on the RMVar database, rs2229503
is a m6A- and m5C-related SNP in SPTBN1. According to the HaploReg database, rs2229503
shows a cis-acting eQTL effect on the SPTBN1 gene. SPTBN1 is a candidate causal gene for
BMD. Several GWASs have identified the relationship between SPTBN1 and BMD [5,6],
and functional studies have also suggested its functional relevance to the regulation of bone
mass, supporting SPTBN1 as a promising gene in the field of OP [24–27]. Upregulation
of SPTBN1 inhibited STAT3 signaling, whereas STAT3 was reported to be negative for
bone homeostasis. Zhang et al. demonstrated that STAT3-deficient mice were prone to
developing OP. In this way, SPTBN1 suppressed STAT3 signaling, which led to decreased
BMD and bone loss. SPTBN1 passed the SMR analysis, which indicated that the expression
level of SPTBN1 was associated with BMD. Rs643892 is the m1A RNAm-SNP of LRP5, a
component of the Wnt signaling pathway. According to HaploReg datasets, rs643892 is an
eQTL SNP, showing a cis-acting eQTL effect on the LRP5 gene. There is increasing evidence
regarding the key role of the LRP5 gene in regulating bone metabolism. The Wnt pathway
plays a key role in bone metabolism [28]. It influences the differentiation and function of
osteoblasts and osteoclasts, and its dysregulation leads to various forms of inherited bone
mass disorders. RNAm-SNPs in WNT4, WNT2B and APC were associated with eBMD.
RNAm-SNPs in MAPT and KANSL1 were associated with the expression levels of WNT3.
In addition to these genes, the expression levels of many genes affected by the RNAm-SNPs
were found to be associated with BMD in relevant tissues. These RNAm-SNPs may be
noteworthy functional SNPs. Modification of these sites may affect gene expression and
disturb bone metabolism.

RNAm-SNPs may also affect gene expression at the protein level associated with BMD.
According to pQTL analysis, RNAm-SNPs are pQTLs in genes known to be important in
OP, including COL1A1, DOCK9, IBSP, MSRA, PILRA and PTHLH. The identified proteins
also pointed to biological pathways highly related to OP, e.g., cytokine-cytokine receptor
interaction, the PI3K-Akt signaling pathway, the NF-kappa B signaling pathway and the
MAPK signaling pathway [29,30]. Most importantly, these proteins were found to be
causally associated with BMD in MR analysis. The MR analysis highlighted proteins in the
PI3K-Akt signaling pathway (COL1A1, INSR, KDR, EFNA5 and MET), the Rap1 signaling
pathway (INSR, KDR, EFNA5 and MET), the Ras signaling pathway (INSR, KDR, EFNA5
and MET) and the MAPK signaling pathway (INSR, KDR, EFNA5 and MET), that may
be candidate targets for OP. The relationships between many of the identified proteins,
such as COL1A1, INSR, KDR and MET, and bone metabolism have been widely studied.
MR analysis determined the risk factors for OP, and the results suggest that genes in the
PI3K-Akt signaling pathway, the Rap1 signaling pathway, the Ras signaling pathway and
the MAPK signaling pathway play functional roles in OP. The findings also indicate that
RNAm-SNPs and RNA modification may play roles in OP through specific pathways.

This study has some potential limitations. First, the m6A-SNP set was large, but data
for other types of RNA modification were very rare, so few RNAm-SNPs of these types
were identified. Second, the functional effects of RNAm-SNPs on BMD were not examined
experimentally. Further experiments in OP-related cells are needed to test their function.
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5. Conclusions

This study annotated many RNAm-SNPs in many BMD-associated loci in GWAS, and
elucidated the relationship between the SNPs and BMD-associated gene expression and
protein levels. The findings of this study increase our understanding of the associations
identified in BMD GWAS. The results suggest that RNA modification may be involved in
the pathogenesis of OP. The RNAm-SNPs in BMD loci were associated with gene expression,
including mRNA levels and protein levels, and the gene expression was associated with
BMD, indicating that these genes may be causal factors for OP. No previous study has
shown the relationship between these kinds of RNA modification and BMD. Therefore,
this study may add valuable clues for further understanding the functional mechanism
underlying the development of hypertension.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/genes13101892/s1, Figure S1: Flow chart of the study design; Table S1:
RNAm-SNPs identified for eBMD and fracture; Table S2: RNAm-SNPs affected expression of key
OP susceptibility genes; Table S3: Gene expression associated with BMD in SMR analysis; Table S4:
RNAm-SNPs affected circulating protein levels.
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