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Abstract: Fasciola hepatica anthelmintic resistance may be associated with the catalytic activity of
xenobiotic metabolizing enzymes. The gene expression of one of these enzymes, identified as car-
boxylesterase B (CestB), was previously described as inducible in adult parasites under anthelmintic
treatment and exhibited a single nucleotide polymorphism at position 643 that translates into a radical
amino acid substitution at position 215 from Glutamic acid to Lysine. Alphafold 3D models of both
allelic sequences exhibited a significant affinity pocket rearrangement and different ligand-docking
modeling results. Further bioinformatics analysis confirmed that the radical amino acid substitution
is located at the ligand affinity site of the enzyme, affecting its affinity to serine hydrolase inhibitors
and preferences for ester ligands. A field genotyping survey from parasite samples obtained from two
developmental stages isolated from different host species from Argentina and Mexico exhibited a 37%
allele distribution for 215E and a 29% allele distribution for 215K as well as a 34% E/K heterozygous
distribution. No linkage to host species or geographic origin was found in any of the allele variants.

Keywords: SNTP; carboxylesterase; amino acid substitution; Fasciola hepatica; anthelmintic
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1. Introduction

Fasciola hepatica is the causative agent of a global zoonotic disease known as fasciolo-
sis [1], a neglected helminthiasis affecting the liver of several livestock species as well as
humans [2]. This liver parasite causes losses of billions of dollars in the meat, wool, and
milk industry and an even a larger amount invested in public health expenses destined
to treat millions of humans that suffer fasciolosis around the world [3]. Antiparasitic
compounds against F. hepatica include benzimidazole derivatives such as triclabendazole
(TCBZ), a livestock anthelmintic that has been used for several decades as a preventive drug
for the control of parasitic flat worms including F. hepatica [4]. Inevitably, the indiscriminate
use of TCBZ in livestock led to liver fluke resistance and forced livestock producers to use
more expensive treatments, opening the door to multiple anthelmintic resistance [5].

The liver fluke is only one example of a general tendency of parasitic helminths to
evolve anthelmintic resistance by neutralization of anthelmintic compounds toxicity on
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the parasites [5,6]. This biochemical scenario may involve the active role of xenobiotic
metabolizing enzymes (XMEs) which are known to have an active role in the drug resistance
against the antiparasitic effects of man-fabricated chemicals reported in many parasite
species [6].

Carboxylesterases are XMEs commonly found in most eucaryotic species [7]; these
enzymes catalyze the break-down of small molecules that have carboxylic acid ester, amide,
and thioester functional chemical groups into reaction products containing alcohols and
organic acids [8]. The expression and specific enzymatic activity of carboxylesterases play
a significant role in the resistance mechanisms shown in a variety of parasites against
antiparasitic chemicals, such as the paradigmatic resistance of Plasmodium falciparum to
antimalarial compounds [9,10]. Carboxylesterases are also proven to be responsible for
insecticide resistance in blood-sucking insects such as the mosquitoes Anopheles funestus [10],
Culex nigripalpus [11], and the kissing bug Rhodnius prolixus [12].

Adult F. hepatica carboxylesterase type B (CestB) expression was found to be induced
under TCBZ treatment of experimentally parasitized sheep [2]; this serine hydrolase ex-
hibited catalytic enzymatic activity on the synthetic chromogenic substrate x-Naphthyl
acetate (ANA) and monomeric and homodimeric isoforms of CestB were found in crude
extracts and cytosol protein fractions using SDS-PAGE zymograms [3]; ANA esterase
chromogenic substrate may be also useful for ligand-docking 3D modeling by dedicated
algorithms [13,14]. The CestB gene transcript nucleotide sequence codes a 2205 bp open
reading frame that translates into a 735 amino acids protein found to be an integral compo-
nent of the cellular membrane by gene ontology enrichment analysis (GOEA) [1]. Further
bioinformatics analysis indicated that orthologs of this enzyme in other species of helminths
are implicated in drug metabolism and interact with other enzymes that are known to
metabolically modify drugs [3]. The goal of this study is to identify single nucleotide
polymorphisms (SNPs) on the CestB gene obtained from the gene and protein databanks as
well as from DNA obtained from parasite isolates and to make a bioinformatic assessment
of the probable impact of the identified alleles on the structure and enzyme functionality
over anthelmintic metabolites.

2. Materials and Methods
2.1. Protein Sequences

UniProt amino acid sequences AOA8A1L7B4 and AOA4E(0S0]7 and their respective
Alphafold 3D model in PDB files were downloaded from www.uniprot.org (accessed on
10 September 2022) [14] and https:/ /alphafold.com (accessed on 10 September 2022) [15].
Additionally, complementary GenBank amino acid sequences MT843326, MW655750,
D915_000180, and THD28967.1 were obtained from www.ncbi.nlm.nih.gov (accessed on
10 September 2022).

2.2. Protein 3D Modeling

Protein 3D modeling was performed by using the Mol* online algorithm [16] (https:
/ /molstar.org) (accessed on 10 September 2022). Ligand docking and ligand binding
site identification and 3D modeling of the ligand-binding site were performed by the
Coach-D online algorithm [17,18] https:/ /yanglab.nankai.edu.cn/COACH-D/) (accessed
on 10 September 2022).

2.3. Parasite Material

Adult E. hepatica were recovered from the bile ducts of bovine, ovine, and equine
hosts raised in Argentina and Mexico. The parasites were rinsed extensively with sterile
phosphate saline solution (PBS; NaCl 137 mM, KC1 2.7 mM, Na,HPO4 10 mM, KH,PO4
1.8 mM) pH 7.2 at 37 °C to remove bile and/or adhering materials. An egg-free section
from the parasites was dissected and preserved in RNAlater® (ThermoFisher, Waltham,
MA, USA) until nucleic acid extraction according to a previous report [2]. Fecal samples
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were collected from cattle-grazing areas and processed for F. hepatica egg identification and
DNA isolation from 2000 egg aliquots according to a previous report [19].

2.4. DNA Extraction

The genomic DNA of each fragment of a single adult parasite sample was isolated
following the standard phenol—chloroform procedure [20,21]. Fecal egg DNA isolation was
performed on 2000 egg aliquots according to a previous report [19].

2.5. PCR Conditions

A set of primers (forward: FExon1CestB 5'-CGGGTCCAAGCAAGGATGAG-3'; re-
verse: RExonl1CestB 5-CTCTCCTCCGACCATCAAATTC-3') was designed using the Gen-
Bank nucleotide sequence of CestB entries MT843326 and MW655750 and assessed for the
amplification of exon one spanning from nucleotide 99 to 1042 in the CestB gene [3] using
the Priming design tool algorithm at NCBI (https://www.ncbi.nlm.nih.gov/tools/primer-
blast/) (accessed on 10 September 2022). A polymerase chain reaction (PCR) was carried
out in 20 uL of total volume containing 4 puL, Promega PCR master Mix 5x, 0.5 uL of each
primer at 1 uM, 1 uL DNA 20 ng/pL, and 14 uL H,O. The PCR amplifications were carried
out as follows: 3 min of denaturation at 95 °C followed by 10 cycles at 94 °C for 15 s, 65 °C
for 30 s, and 72 °C for 30 s and programing the thermocycler to subtract 1 °C from each
cycle to the annealing step. This was followed by 15 cycles of 93 °C denaturation for 30 s,
60 °C annealing for 30 s and 72 °C extension for 40 s and a final extension step of 72 °C
for 5 min. Duplicate PCRs on each individual template DNA were performed to test the
reproducibility of the individual DNA bands. In all PCRs, a negative control was included
containing the reaction components except for the DNA template.

2.6. Sanger Amplicon Sequencing

Amplicons were cleaned by the Wizard Gel and PCR Clean-Up system Promega®
and submitted for Sanger sequencing at the IBT-UNAM. The obtained DNA sequences
were translated to the respective amino acid sequences by ORFinder at NCBI (https://
www.ncbi.nlm.nih.gov/orffinder/) (accessed on 10 September 2022). The Clustal Omega
online algorithm was used for a multiple sequence alignment of both DNA and amino acid
sequences obtained, and localization of SNP 643 and amino acid substitution at position
215 (https:/ /www.ebi.ac.uk/Tools/msa/clustalo/) (accessed on 10 September 2022).

3. Results
3.1. Protein Sequence Properties

F. hepatica carboxylesterase B nucleotide and amino acid sequences were downloaded
from the GenBank and UniProt databases as Fasta files, and links to the respective Alphafold
3D model were used to download their respective 3D model in PDB format. All basic
protein properties, such as GOEA and Kegg orthologs, demonstrated that CestB is a
serine hydrolase type B, closely related to acetylcholinesterase, neuroligin, and neurexin; it
contains a catalytic serine at the active site and is capable of hydrolyzing small synthetic
substrates. The enzyme properties, protein domains, and cell location predictions are
summarized in Table 1.
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Table 1. Protein—enzyme characteristics of CestB obtained by bioinformatics. CestB E215 allele
A0A8A1L7B4 and K215 allele AOA4E0SQ]7 sequences were downloaded from www.uniprot.org
(accessed on 10 September 2022). Gene Ontology Enrichment analysis (GO) was obtained from
geneontology.org (accessed on 10 September 2022). KEEG orthology links were obtained from
www.genome.jp/kegg/ko.html (accessed on 10 September 2022). Protein domains were obtained
from www.ebi.ac.uk/interpro/ (accessed on 10 September 2022).

Cestb genbank/Uniprot Accession Numbers MT843326/A0A8A1L7B4
Genbank/Uniprot Identity to other Proteins AO0A4E0S0]7, QSS48625, THD28967, MW 655750, D915_000180
KEGG K03927/ / carboxylesterase 2 [EC:3.1.1.1 3.1.1.84 3.1.1.56]; K07378/ /neuroligin;

K01050/ /cholinesterase [EC:3.1.1.8]; K07377/ /neurexin

GO 0016021/ /integral component of membrane

AAs 141-184, 214-281 o-3 hydrolase
AAs 197-681 Carboxylesterase type B
AAs 1-73 Cytoplasmatic Domain
AAs 93-735 Extracellular Domain
AAs 172-672 Carboxylesterase
AAs 73-93 Transmembranal Helix
AAs 74-95 Transmembranal Peptide

Interpro
Protein Domains

Literature Description [2,3]

3.2. Protein 3D Modeling

Alphafold 3D models showed links to identical proteins that were downloaded as
PDB files and used for subsequent multiple 3D alignment comparison using the Mol*
algorithm, and the results showed a significant structural rearrangement in the overall
protein structure (Figure 1).

Transmembrane
Domain

Extracellular
Domain

Cytoplamatic
Domain

Figure 1. Three-dimensional alleles models for E215 green and K215 red. A significantly different
structural configuration is obtained by a single radical amino acid substitution at position 215.

3.3. Ligand-Binding Modeling

The Coach-D algorithm identified the amino acids Lysine 210, Asparagine 211,
Glycine 214, Glutamic acid 215, Leucine 216, Valine 217, Glycine 256, Leucine 259, Ty-
rosine 284, Serine 336, and Threonine 339 at the E215 allele ligand-binding site, whereas the
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K215 allele identified a ligand-binding site Lysine 215, Tyrosine 258, Isoleucine 340, and
Asparagine 735 that were not present in E215 allele. The results are summarized in Table 2.

Table 2. Ligand-binding site identification and ligand-preference prediction. CestB 3D models
for both types of amino acid substitutions were analyzed using the Coach-D algorithm to find the
amino acids that constitute the ligand-binding site, additionally the ligand preference prediction was

obtained during the analysis and summarized.

AA Substitution E215 K215
Bindine Site AA Predicti K210, N211, G214, E215, 1216, V217, G256, L259, Y284, $336, K210, N211, G214, K215, L216, V217, G256, Y258, 1.259,
nding site rediction T339, 1340 $336, T339, 1340, N735

Predicted 5336 Hydrogen Bonds to
Adjacent AAs

G256, 1259, Y284, T339, 1340

G256, 1259, Y258, T339, 1340, N735

Predicted Hydrophobic Bonds at
Catalytic Site

'Y284-1340
1340-L259
1.259-1375

N735-Y258

Ligand Affinity Prediction/
Ligand description

Ethyl hydrogen propylamidophosphate/serine
hydrolase inhibitor
Naphthyl acetate/synthetic esterase substrate
N-acetylneuraminic acid /neurone membrane component
Cyclohexyl (s)-methylphosphonofluoridate/
ww2 cyclosarin
Ethyl hydrogen phosphonate/serine hydrolase inhibitor
1-(2-nitrophenyl)-2,2,2-trifluoroethyl]-
arsenocholine /neurotransmiter analogous
Choline/neurotransmitter precursor
Edrophonium) /serine hydrolase inhibitor

Ethyl hydrogen propylamidophosphate/serine
hydrolase inhibitor
Naphthyl acetate/synthetic esterase substrate
N-ethoxyphosphonoyl-n-methyl-methanamine/serine
hydrolase inhibitor
Sialic acid /neurone membrane component
(4r)-4-hydroxy-n,n,n-trimethylpentan-1-
aminium/cholinesterase inhibitor
Butyric acid/fatty acid
1-(2-nitrophenyl)-2,2,2-trifluoroethyl]-
arsenocholine/cholinesterase inhibitor
Ethyl hydrogen diethylamidophosphate/serine
hydrolase inhibitor
Tacrine/cholinesterase inhibitor
Methylphosphonic acid ester/cholinesterae inhibitor

Huperzine/alkaloid
3-[(1s)-1-(dimethylamino)ethyl]phenol /
cholinesterase inhibitor
Galanthamine/cholinesterase inhibitor

3.4. Ligand Docking Visualization

The ligand-docking 3D models were downloaded as PDB files and visualized in Mol*
to identify the amino acids at the catalytic site using the ANA ligand as an indicator of the
relative position of the catalytic serine (Figures 2 and 3).

Figure 2. Ligand-docking modeling identifies the amino acids at the binding site in the CestB enzyme.
In both alleles the amino acid at position 215 is part of the binding site and a structural reconfiguration
takes place depending on the amino acid substitution, relevantly N735 is interacting via hydrogen
bond with the catalytic Serine 336 in K215, (right subfigure red arrow), whereas such interaction is
only partially replaced by 1375 in E215 substitution (left subfigure red arrow). ANA ligand (Lig) was
used to locate the position of the catalytic serine within the enzyme active site.
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E215 K215

35

Figure 3. Close-up of the catalytic site 3D structure identified in CestB amino acid sequence. The 5336
was identified as the catalytic serine within the active site and different configurations are detected by
the two different alleles originated by substitution of amino acid 215, which according to the models,
are not in close proximity to the catalytic Serine 336 and out of the structure shown in the figure;
nevertheless, this substitution induces a structural reconfiguration at the core of the catalytic site,
notably, the absence of the hydrogen bond interaction between N735 and the catalytic S336. The
adjacent T339 in allele K215 (red arrow) is partially displaced by 1375 and in the context of this allele
only interacts with L259 but not with S336 (red arrow). ANA ligand (Lig) was used to locate the
position of the catalytic serine within the active site.

3.5. PCR Amplicon Sequencing

The Sanger-sequenced amplicons were analyzed for the SNPs at position 643 and
translated to their respective amino acid sequences, and the amino acid at position 215 was
identified by Clustal Omega multiple sequence alignment. The results are summarized
according to species and geographical origin in Table 3, Figure 4.

Table 3. Summary of allelic distribution in parasites obtained from different host species and
geographical origins. CestB sequences from Mexico (Mex.) and Argentina (Arg.), were obtained from
parasites isolated from different host species and the SNP at position 653 as well as the amino acid
substitution in position 215 were indicated. Isolates coordinates were included as location reference.

Isolate Location/Coordinates Host Species Parasite Stage SNP643 AA215
MEX. 19.3026° N 98.5500 W Bos taurus 1 Adult A K
MEX. 19.5032° N 98.5846° W B. taurus 2 Eggs R E/K
MEX. 18.5454° N 98.2723° W B. taurus 3 Adult A K
MEX. 20.0623° N 98.4548° W Ouis aries 1 Eggs G E
MEX. 20.0737° N 98.4012° W O. aries 2 Eggs R E/K
MEX. 20.1304° N 98.3459° W O. aries 3 Eggs R E/K
MEX. 19.6861° N 98.8116° W B. taurus 4 Adult R E/K
MEX. 19.4942° N 99.1220° W O. aries 4 Eggs R E/K
MEX. 20.0619° N 98.2333° W O. aries 5 Eggs A K
MEX. 18.5939° N 99.0322° W B. taurus 5 Eggs R E/K
MEX. 18.8892° N, 99.0626° W B. taurus 6 Eggs G E
MEX.18.8126° N, 98.9548° W B. taurus 7 Eggs G E
MEX. 18.8995° N, 99.1733° W B. taurus 8 Eggs G E
ARG. 33.0500° S 68.5300° W Equus africanus 7 Adult G E
ARG. 33.0500° S 68.5300° W E. africanus 8 Adult A K
ARG. 33.0500° S 68.5300° W E. africanus 9 Adult G E
ARG. 33.0500° S 68.5300° W E. africanus 10 Adult G E
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Table 3. Cont.
Isolate Location/Coordinates Host Species Parasite Stage SNP643 AA215
ARG. 33.0500° S 68.5300° W E. africanus 12 Adult G E
ARG. 33.0500° S 68.5300° W E. africanus 13 Adult A K
ARG. 33.0500° S 68.5300° W E. africanus 14 Adult G E
ARG. 33.0500° S 68.5300° W O. aries 6 Adult R E/K
ARG. 33.0500° S 68.5300° W E. africanus 15 Adult G E
ARG. 33.0500° S 68.5300° W E. africanus 17 Adult R E/K
ARG. 33.0500° S 68.5300° W E. africanus 19 Adult R E/K
ARG. 33.0500° S 68.5300° W E. africanus 21 Adult A K
ALLELE DISTRIBUTION/HOST SPECIES
= Bos tourus Ovis aries Equus africanus
TOTAL E215 K215 E/K215

Figure 4. Allele distribution of amino acid substitution at position 215 in three different host species.
The genomic DNA from two different developmental stages of F. hepatica, were submitted to PCR
amplification of CestB gene and the resulting amplicons were sequenced and translated to their AA
sequence and the amino acid located at position 215 determined as indicated above. The parasites
obtained from B. taurus are represented by blue bars, those obtained from O. aries are represented by
orange bars and the grey bars represent those parasites obtained from E. africanus.

3.6. Allele Distribution by Species

The PCR-sequenced amplicons obtained from parasitic samples and translation to
amino acid sequence at position 215 are graphically represented according to species
distribution in Figure 4

4. Discussion

Although amino acid 215 is relatively far from the catalytic serine at the core of the
enzyme active site, it was identified by the Coach-D algorithm as part of the ligand affinity
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site (Table 1, Figure 2). The 3D model of both allelic sequences allowed us to identify several
structural configurations that affect both the affinity site and overall protein structure, as
well as the ligand affinity preference of the two different alleles. The effect of the amino
acid substitutions extends to catalytic S336 at the core of the catalytic site, affecting the
hydrogen bonds and the hydrophobic interactions between the amino acids at the binding
site (Figures 2 and 3).

5336 was identified as the catalytic amino acid of the active site, and 3D modeling
indicated that both alleles had a different interaction of the amino acids of the active
site with the catalytic serine at position 336. The allele K215 exhibited hydrogen bonds
with Glycine 256, Tyrosine 258, Leucine 259, Threonine 339, Isoleucine 340, and notably
Asparagine 735, the most distal amino acid in the sequence (Table 2, Figure 4), whereas the
catalytic serine in allele E215 exhibited hydrogen bonds with Glycine 256, Tyrosine 258,
Leucine 259, Threonine 339, and Isoleucine 340. Remarkably, the interaction of Asparagine
735 at the active site and catalytic Serine 336 disappeared, explaining the affinity shift for
small ligand preferences in the catalytic pocket, as summarized in Table 3.

The ligand ANA was always positioned by the modeling algorithm near Serine 336,
suggesting that this is the location of the catalytic serine that every serine hydrolase contains
within its catalytic site (Figure 4) [22]. This was corroborated by the significant number
of hydrogen bonds from Serine 336 to its neighboring AAs (Table 1, Figure 3). A notable
difference was the hydrogen bonds of Leucine 259 and Tyrosine 284 that were present only
in the E215 allele and the hydrogen bonds of Tyrosine 258 and Asparagine 735 that were
present only in K215. These differences may also have affected the observed differences
in ligand preferences predicted by the Coach-D algorithm, which showed that among the
21 small ligands tested only two of them shared affinity among both alleles (Table 2). The
ligands predicted by the algorithm are well-known irreversible serine hydrolase inhibitors,
such as organophosphorus compounds that are widely used in enzyme studies for the
identification of different types of serine hydrolases [8]. These families of inhibitors bind
covalently to serine at the active site of serine hydrolases, blocking their enzymatic function
effectively and irreversibly [23]. Notably, this group of ligands identified by Coach-D
includes Sarin, the chemical proposed as a weapon-of-mass destruction during the WWII
conflict [24].

A second group of ligands includes choline derivatives analogous to acetyl choline,
the most abundant excitatory neurotransmitter in the arthropod central nervous system
and the one that induces muscular contractions in mammals [23]. These ligand families
and affinities corroborate the results found using gene ontology enrichment analysis,
which show that CestB is closely related to acetylcholinesterase, another carboxylesterase
B that hydrolyzes the neurotransmitter acetylcholine in the neuromuscular junction, thus
permitting muscular relaxation after neurotransmitter release [8]. It is well-known that
carboxylesterases, such as CestB, and cholinesterase share affinity to common synthetic
enzymatic substrates [25].

Other ligands include small ester synthetic ligands, such as naphthyl acetate (ANA),
which are used as esterase chromogenic substrates in histochemical analysis in the labo-
ratory [26]. ANA ligand is a widely used small synthetic esterase substrate in analytical
enzymatic kinetics assays as well as zymogram chromogenic enzymatic staining [25]. Dur-
ing our research, we used ANA for zymograms on SDS-PAGE to detect esterase activity
on F. hepatica protein extracts and linked the molecular mass detected by zymograms to its
corresponding transcript as a cDNA sequence [2,3], and its molecular interaction with the
catalytic serine at the serine hydrolase catalytic site is well-understood [22].

During our study, another approach was to use the ANA 3D model to locate the
catalytic serine at the active site within the CestB 3D modeling. The results always indi-
cated that serine 336 was in close proximity to the ANA ligand (Figures 2 and 3); there-
fore, we considered it the most likely candidate to be the catalytic serine of CestB serine
hydrolase. Additionally, the catalytic nature of S336 was confirmed by the consensus
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catalytic site pattern of serine AB hydrolase at PROSITE (prosite.expasy.org) (accessed on
10 September 2022).

The worldwide allele distribution in different hosts of the CestB amino acid substi-
tution at position 215 suggests that the two allelic variations are equally important for
the parasite, with a slight predominance of E215 over K215, with 36 and 28 percentage
points of prevalence, respectively (Table 3, Figure 4). We were unable to identify an allele
preference or correlation showing any linkage to a host species or country from which
the parasites were obtained; however, the Sanger automatic sequence of PCR amplicons
was able to detect a heterozygous condition at SNP 643, assigning an R that represents
either a G or an A in equal proportions at nucleotide position 643 (Table 3, Figure 4). The
fact that samples from egg-free portions from individual adult parasites presented both
alleles demonstrates that heterozygous individuals exist [27]. Previous studies showed
an exhaustive search of F. hepatica complete genomes to determine if there are multiple
copies of CestB, but concluded that only one copy of CestB exists for every F. hepatica set of
chromosomes [3]. However, the liver fluke is a diploid organism; therefore, we expect there
are heterozygous individuals who transmit the different alleles present in the population
according to the mechanisms of Mendelian and population genetics [28].

CestB was identified as an inducible adult F. hepatica carboxylesterase during TCBZ
treatment of experimental parasitized sheep [2]. The gene sequence was determined from
a F. hepatica transcriptome, and the basic protein and enzymatic properties established
by GOEA and KEGG describe it as a drug-metabolizing enzyme [3]. Previous studies
found that anthelmintics or their metabolites were probable targets for CestB; however,
during this study, we found no connection or relationship to a particular drug in the sets of
drug-like ligand affinity identified by the algorithms. There remains a possibility that there
is a limited set of available ligands, and we ignored a possible interaction of CestB with
TCBZ secondary metabolites. This anthelmintic compound was designed to be oxidized by
monoaminoxidases to become toxic to the parasite [5], and further chemical modifications
may be achieved by other enzymes before it becomes activated and acquires anthelmintic
activity. Further studies and a broader set of ligands are necessary to identify other potential
substrates for CestB.
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