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Abstract: Soil salinity constrains agricultural development in arid regions. Flax is an economically
important crop in many countries, and screening or breeding salinity-resistant flax cultivars is
necessary. Based on the previous screening of flaxseed cultivars C71 (salt-sensitive) and C116 (salt-
tolerant) as test materials, flax seedlings stressed with different concentrations of NaCl (0, 100, 150,
200, and 250 mmol/L) for 21 days were used to investigate the effects of salt stress on the growth
characteristics, osmotic regulators, and antioxidant capacity of these flax seedlings and to reveal the
adaptive responses of flax seedlings to salt stress. The results showed that plant height and root
length of flax were inhibited, with C116 showing lower growth than C71. The concentrations of
osmotic adjustment substances such as soluble sugars, soluble proteins, and proline were higher in
the resistant material, C116, than in the sensitive material, C71, under different concentrations of salt
stress. Consistently, C116 showed a better rapid scavenging ability for reactive oxygen species (ROS)
and maintained higher activities of antioxidant enzymes to balance salt injury stress by inhibiting
growth under salt stress. A transcriptome analysis of flax revealed that genes related to defense
and senescence were significantly upregulated, and genes related to the growth and development
processes were significantly downregulated under salt stress. Our results indicated that one of the
important adaptations to tolerance to high salt stress is complex physiological remediation by rapidly
promoting transcriptional regulation in flax.

Keywords: flax; salt stress; adaptive growth; osmoregulation; antioxidant properties; transcriptome analysis

1. Introduction

Salinity is a major abiotic stress factor that reduces plant growth and productivity [1,2].
More than 200 million hectares of land in East and Central Asia (approximately 22% of
the world’s total saline–alkali land area) are affected by salt build-up, and the salinization
of China’s arable land is estimated at 7.6 million hectares [3,4]. Flax (L. usitatissimum L.)
is an important oil crop widely cultivated in many Asian countries [5,6]. The Food and
Agriculture Organization of the United Nations (FAO) reported that Kazakhstan and Russia
are the newest top five flaxseed producers, just as China and India were [7]. However,
water shortages in these areas increase soil salinity and negatively affect flax yield and
quality [4,8]. The increased number of heat waves and droughts across the globe has
exacerbated the formation of saline–alkali soils and the current food crisis [9,10]. Therefore,
breeding and screening salinity-tolerant flax varieties is a beneficial way to enhance crop
production and utilize salinity in soil and water.

Salt stress causes ion imbalance, osmotic derangement, and the accumulation of toxic
substances, especially reactive oxygen species (ROS), in plants [11,12]. Plants balance
the high density of salt in cells by remodeling relevant transcriptional networks and
generating specific physiological responses [13,14]. Compatible osmolytes, including
charged metabolites (e.g., proline and glycine betaine), polyols (e.g., mannitol and sorbitol),
sugars (e.g., sucrose and fructose), complex sugars (e.g., trehalose and raffinose), and ions
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(e.g., K+), are important for salt-induced osmotic regulation [15–18]. Previous studies have
reported that plants can produce more proline and soluble sugars, whose cell concentrations
are rapidly modified under salt or water stress [15,19]. In addition, salinity increases the
ROS concentration, which has deleterious effects on plant physiology [20,21]. Catalase
(CAT) and superoxide dismutase (SOD) are key proteins involved in ROS scavenging
and are known as the first line of defense against ROS toxicity [22,23]. As a recently
developed tool, transcriptomic analysis has contributed significantly to elucidating adverse
stress responses [24–26]. To date, many studies of salt tolerance have been conducted on
Arabidopsis thaliana [27,28], Oryza sativa [29,30], and other crops [31,32] using RNA-Seq
technology. Physiological and transcriptomic analyses of salt resistance help us understand
plant adaptation mechanisms in severe environments.

Since flax was first cultivated in 9000 BC in Egypt, the crop has shown extensive
variation and is distributed worldwide [5,33]. Rich biodiversity enables the species to
exhibit changeable adaptations with different physiological responses and behavioral
patterns to salt stress [34,35]. Many previous studies have evaluated salt-stress adaptive
changes in flax populations during germination [36,37]. Indicators such as germination
rate, root length, and shoot length effectively reveal the behavioral adaptation of flax to
salt stress during the germination period [38,39]. Abido et al. [40] found that Egyptian flax
cultivars showed wide natural variation in adaptation to salinity, and the Giza11 cultivar
exhibited a higher germination rate and speed at high salinity levels compared with other
cultivars. Li et al. [41] used GWAS to mine an SNP locus associated with salt stress during
flax germination, and a haplotype analysis of alleles based on this SNP showed that flax
accessions containing the GG haplotype were more salt-adapted than those containing the
AA haplotype. Some flax cultivars are salt-tolerant during germination but salt-sensitive
during the vegetative phase [42]. The seedling stage is an important period for crop growth
and yield [8,38]; however, adaptive changes in flax seedlings under salt stress have been
less studied. In particular, no transcriptional profiles other than Wu’s limited study [43],
in which only 42.92% of RNA reads were mapped to the reference genome, have shown
differentially expressed genes (DEGs) to analyze the difference in adaptability between flax
cultivars under salt stress. Therefore, it is necessary to explore the adaptive responses of
flax seedlings to salt stress.

To breed flax cultivars most suitable for growth in northwest China, we collected
thousands of flax cultivars from around the world and constructed a widely representative
core population by analyzing their genetic diversity [33]. The salt tolerance of 200 flax
accessions in the germination stage was evaluated using the D-value, and the salt-tolerant
material C116 and the salt-sensitive material C71 were analyzed [41]. In this study, we
investigated the differences in osmoregulator concentration and antioxidant capacity be-
tween resistant and susceptible materials at the seedling stage. We combined this with
transcriptomic data to elucidate the relationships between physiological responses and
gene expression under salt resistance in flax. Our results provide insights into the salt stress
adaptation mechanisms of flax seedlings with the hope of accelerating the development of
salt-tolerant varieties.

2. Materials and Methods
2.1. Plant Materials and Salt Treatment

Seeds of two flax cultivars, salt-tolerant (C116) and salt-susceptible (C71), were selected
based on salt-tolerance indices [41]. The seeds were collected from the Flax Germplasm
Repository, College of Life Sciences and Technology, Xinjiang University, Xinjiang, China.
Flax seeds were germinated in a moist environment for 7 days. After germination, the
seedlings were transferred to 1/2 Hoagland nutrient solution for 2 weeks before NaCl treat-
ment. Twenty-one-day-old seedlings were treated with 0, 100, 150, 200, and 250 mmol/L
NaCl for seven days. Phenotype data, including survival rate, plant height, root length,
seedling dry weight, and seedling fresh weight, were recorded daily. After salt treatment,
fresh leaves and roots were collected on days 1 and 5. Seedlings were collected after 3 days
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of salt stress and kept at −40 ◦C for all physiological experiments. Each treatment was
performed in triplicate.

2.2. Data Measurement for the Hydroponic Experiment
2.2.1. Seedling Parameters

1. Thirty-six flax seedlings of each of the two cultivars were planted in the same hy-
droponic pot and recorded as replicates. After 5 days of salt stress, the surviving
plants were photographed and counted manually. The experiments were performed
in triplicate.

2. Seedlings for root and shoot growth assays were planted in punched 96-well PCR
plates. For the assessment of plant height and root length, at least 15 seedlings were
measured from three plates in each experiment, and three independent experiments
were performed. The f RPH (relative plant height) and RRL (relative root length)
formulas were used to calculate the relative plant height and relative root length:
RPH = (PT − PC)/PC × 100%, RRL = (RT − RC)/RC × 100%. PT, plant height after
5 days of salt stress; PC, plant height before salt stress; RT, root length after 5 days of
salt stress; RC, root length before salt stress.

3. Whole flax seedlings were selected, the external moisture was removed using ab-
sorbent paper, and the fresh weight (WF) was recorded. The seedlings were then
killed at 105 ◦C for 1 h, followed by drying at 80 ◦C for 8 h, and the dry weight (WD)
was recorded. The RWC formula was used to calculate the relative water content.
RWC = (TWF − TWD)/(CWF − CWD) ×100%. TWF, WF of seedlings after 5 days
of salt stress; CWF, WF of seedlings before salt stress; TWD, WD of seedlings after
5 days of salt stress; CWD, WD of seedlings before salt stress.

2.2.2. Chemical Molecule Analysis

1. The proline content in this study was quantified using a proline assay kit (A107-
1-1; Nanjing Jiancheng Bioengineering Institute, Nanjing, China). Seedling roots
(0.1 g) were ground in liquid nitrogen, and the proline concentration was determined
according to the manufacturer’s protocol.

2. The soluble sugar content was quantified using a plant soluble sugar content test kit
(A107-1-1; Nanjing Jiancheng Bioengineering Institute, Nanjing, China). Seedling
roots (0.1 g) were ground in liquid nitrogen, and the concentration of soluble sugars
was determined according to the manufacturer’s protocol.

3. The soluble protein determination was conducted using a previously reported
method [44]. The seedling roots were used in this study. Soluble proteins were
quantified using a spectrophotometer (595 nm) and expressed on a fresh-matter basis.
Bovine serum albumin was used as the standard.

4. The SOD activity was determined using a total superoxide dismutase assay kit (A007-
1-1; Nanjing Jiancheng Bioengineering Institute, Nanjing, China). One unit of SOD
activity was defined as the amount of enzyme required for 1 g of tissue in 1 mL of
a reaction mixture SOD inhibition ratio of 50% as monitored at 550 nm. The SOD
activity was expressed as U/g fresh weight.

5. CAT activity was determined using a catalase assay kit (A007-1-1; Nanjing Jiancheng
Bioengineering Institute, Nanjing, China). One unit of CAT activity was defined as
1 mg tissue proteins consuming 1 µmol H2O2 at 405 nm for 1 s. The CAT activity was
expressed as U/mg of protein.

2.2.3. Reactive Oxygen Species (ROS) Staining

Nitro blue tetrazolium chloride (NBT, Sigma-Aldrich, St. Louis, MO, USA, N6876)
and 3,3′-Diaminobenzidine (DAB, Sigma-Aldrich, St. Louis, MO, USA, D8001) were freshly
prepared by dissolving them in phosphate buffer (pH 3.8) at a final concentration of
1 mg/mL. We used young leaves and roots after 3 days of salt stress according to the
method outlined in a previous study [45]. The two staining protocols were similar. Briefly,



Genes 2022, 13, 1904 4 of 15

the leaves and roots were incubated in the staining solution for 4 h at 37 ◦C, the solution
was removed, and the leaves were boiled for 30 min in an ethanol solution. After cooling,
leaves and roots were placed under a stereomicroscope and photographed using a scanner.

2.3. RNA-Seq Data Analysis

RNA-seq data analysis methods were referenced from Qi et al. [46], with some modifi-
cations. Briefly, we downloaded the raw transcriptome data, PRJNA860005, from NCBI
using the same tools. Next, we used fastp for quality control, filtered the raw data, and
obtained the Q20, Q30, and clean data. The similarity between the data and samples can be
obtained by comparing them with the published schedules. The paired-end clean reads
were then aligned to the “L. usitatissimum cv. longya10” flax genome using Hisat2 v2.1.0
to generate mapping results. Subsequently, featureCounts v1.6.0 was used to count the
read numbers mapped to each gene [47]. The transcripts per kilobase of million mapped
reads (TPM) for each gene were calculated based on the length of the gene and the read
count mapped to this gene. The limma program was used to correct the results obtained
in the previous step and obtain the TPM and trimmed mean of M values (TMM) two-fold
normalized matrices for gene expression data [48].

2.4. Screening of DEGs and Enrichment Analysis

Differential expression analysis was performed using the DESeq2 R package (1.20.0) [49].
The p-values were adjusted using the Benjamini–Hochberg method to control the false
discovery rate. A corrected p-value of 0.05 and log2 (fold change) of 2 were set as the
threshold for significantly differential expression.

For rapid GO and KEGG enrichment analyses, it was necessary to construct a flax-
specific Orgdb annotation package. Fast annotation of flax protein sequences was per-
formed using EGGNOG-Mapper (http://eggnog-mapper.embl.de/, accessed on 16 October
2022) to obtain annotation files, followed by the AnnotationForge package to build Orgdb
packages exclusive to flax. The Orgdb annotation package can assist clusterProfiler in
performing GO and KEGG enrichment analyses quickly. For gene expression profiling
analysis, functional assignments were mapped to GO terms [50]. Significantly enriched
pathways were identified according to p-values and enrichment factors [51].

2.5. Quantitative Real-Time PCR Validation

DEGs found in the transcriptome sequencing analysis were verified using quantitative
real-time PCR (qRT-PCR) to support the findings of the RNA-Seq study of gene expres-
sion. Six genes (Lus10012145, Lus10031258, Lus10029081, Lus10002083, Lus10005114, and
Lus10041534) were randomly selected to analyze expression levels in flax treated with
NaCl solution exposure times of 24 h and 72 h using L. usitatissimum ACT1 (GenBank
accession no. AY857865) as the internal reference gene. cDNA was synthesized using 5X
All-In-One RT MasterMix (with the AccuRT Genomic DNA Removal Kit). Primer sets
were designed using Primer Premier v6.25 (http://www.premierbiosoft.com/crm/jsp/
com/pbi/crm/clientside/ProductList.jsp, accessed on 16 October 2022) and are listed in
Supplementary Table S1. qRT-PCR assays were performed using an ABI PRISM 7500 real-
time PCR system (USA). A standard curve was used to estimate mRNA expression levels
using critical thresholds. Data for each sample were corrected for loading with LusAct1 as
an internal reference gene using the 2−∆∆Ct method [52]. The PCR program was as follows:
95 ◦C for 3 min, followed by 40 cycles of 95 ◦C for 15 s and 60 ◦C for 60 s. All samples were
tested in triplicate.

2.6. Statistical Analysis

Statistical analysis of the corresponding experimental data was conducted using R
version 4.0.4 and SPSS Version 20.0. The repeatability of RNA-seq samples was calculated
using Pearson correlation coefficients (R2) based on the TMM value in R. Phenotypes and
physiological data were analyzed using SPSS. Differences between survival rates were

http://eggnog-mapper.embl.de/
http://www.premierbiosoft.com/crm/jsp/com/pbi/crm/clientside/ProductList.jsp
http://www.premierbiosoft.com/crm/jsp/com/pbi/crm/clientside/ProductList.jsp


Genes 2022, 13, 1904 5 of 15

statistically analyzed using an unpaired two-tailed Student’s t-test. The mean values of
the RWC, SOD, and CAT data were used to match the corresponding regression models
and coefficients of determination. Other data were subjected to a one-way analysis of
variance (ANOVA). Duncan’s new multiple range test (MRT) was applied when one-way
ANOVA revealed significant differences. The average ± SD was used for phenotypic and
physiological data analyses.

3. Results
3.1. Changes in the Growth of Flax under Salt Stress

The results showed that salt stress reduced the growth of both cultivars (Supplemen-
tary Table S2). The effect of increasing salt differed between the cultivars. When treated
with 0, 100, 150, 200, or 250 mmol/L NaCl, the most obvious phenotypic differences were
observed under 200 mmol/L NaCl stress (Figure 1A). After treatment with 200 mmol/L
NaCl for half an hour, C116 showed head bending and lodging. The leaves of C71 began to
wilt after 3 days of 200 mmol/L NaCl stress, and the seedlings completely wilted and died
after 5 days. C116 had a significantly higher survival rate than C71 on day 7 (Figure 1B).
This result was consistent with previous population screening results [41], which indicated
that C116 plants were more tolerant to salt stress than C71 plants.
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Figure 1. Statistical changes in the growth of flax under different salt concentrations. (A) Phenotypes
(left: C116, right: C71; seedlings of the two concentrations were combined in water pots and pho-
tographed; scalebar = 1 cm). (B) Survival rates of the two species after 7 days of 200 mmol/L NaCl
stress. Statistical differences between C116 and C71 survival rates were detected using Student’s t-test;
*** p < 0.001. (C) Relative plant height and (D) relative root length under different salt concentration
treatments. Error bars represent mean ± SD (n > 3), MRT; adjusted p < 0.001 is indicated by different
lowercase letters.

Plant height and root length are common indicators of plant growth and were used
in this experiment. The 21 days after the germination of flax is considered a transitional
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period for seedlings from slow growth to fast growth [53]. We found that the plant height
and root length of flax increased by an average of 1–2 cm per day during this period
(Supplementary Table S2). This is a critical period for flax growth and development. We
selected two fiber flax varieties; therefore, plant height can be used as an important factor
to evaluate flax growth. With an increasing salt concentration, the RPH of C116 plants was
significantly lower than that of C71 plants (Figure 1C). Salt stress inhibits the elongation of
plant roots and whole-plant growth; therefore, root length changes can directly indicate
the level of inhibition from salt stress [54]. Although the root growth rate of both cultivars
showed a decreasing trend with increasing salt concentration, the roots of C116 were more
sensitive to salt stress than those of C71. C116 showed short roots and slower root growth
rates, whereas C71 roots grew faster (Figure 1D). The results for root and plant height
showed that the growth of C116 was more severely inhibited under salt stress than that
of C71.

3.2. Effect of Salt Stress on Osmoregulatory Substance Concentration

Excessive external salt concentrations can cause plant cells to lose water, resulting
in physiological drought [35,55]. Both regression equations revealed a linear relationship
between salt concentration and RWC, and the regression coefficient for C71 was lower
than that of C116 (Figure 2A). When compared with the normal condition, the relative
water content of C71 and C116 under 200 mmol/L NaCl stress decreased by an average
of 7.21% and 4.21%, respectively. This indicated that C116 had a stronger water retention
capacity than C71 under salt stress. The accumulation of osmoregulatory substances, such
as proline, soluble sugars, and soluble proteins, can effectively balance intracellular and
external water potentials to achieve water retention [56]. In the roots, the detection of
relevant osmoregulatory substances showed that the concentrations of soluble sugars,
soluble protein, and proline in C116 were significantly higher than those of C71 under
200 mmol/L NaCl stress. However, no difference was observed under lower salt concentra-
tions (Figure 2B–D). The relative water content of C116 and C71 was almost the same under
200 mmol/L NaCl stress, and C116 mobilized more osmotic regulators in response to salt
stress (Supplementary Table S3). We speculated that C116 improves the water retention
capacity of flax by mobilizing osmoregulatory substances under high salt stress, thereby
alleviating the corresponding osmotic pressure.

3.3. Effect of Salt Stress on the Accumulation and Scavenging of ROS

Excessive accumulation of ROS, especially H2O2 and O2
•−, can disrupt cell membrane

permeability and integrity and cellular compartmentalization [11]. We performed the NBT
and DAB staining of flax roots and leaves for the preliminary determination of O2

•− and
H2O2, respectively (Figure 3A–D). NBT and DAB staining showed that the staining of the
treated roots and leaves of C71 was more intense than those of C116, indicating that C71
accumulated more O2

•− and H2O2 under salt stress, especially in leaves. Oxidative damage
under salt stress can be alleviated by the expression of enzymatic and non-enzymatic free
radical scavengers, with SOD being the main scavenging enzyme for O2

•− and CAT being
the main scavenging enzyme for H2O2 [22]. The SOD and CAT activities showed nonlinear
correlations with the salt concentration, and all tended to increase and then decrease with
an increasing salt concentration (Figure 3E,F). The SOD activity of C71 was higher under
low salt stress than that of C116, whereas the opposite was true under moderate-to-high
salt stress. The SOD activity of C116 under 200 mmol/L NaCl stress was 2.3-fold higher
than that of the control, whereas the SOD activity of C71 increased by only 0.43-fold. The
overall CAT activity of C116 was higher than that of C71, and the differences in enzyme
activity between the two cultivars under 200 mmol/L NaCl stress and 250 mmol/L NaCl
stress were 39.4% and 48.2%, respectively (Supplementary Table S3). Both staining and
enzyme activity assays indicated that the accumulation and scavenging of H2O2 may be
one of the reasons for the difference in salt tolerance between the two cultivars.
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Figure 2. Accounting for variations in osmoregulatory substances under different salt concentrations.
(A) The trend lines for RWC in both materials under salt stress: linear regression, coefficient of
determination (R2); y and x are the vertical and horizontal values, respectively. Accumulation
of proline (B), soluble protein (C), and soluble sugar (D) in two materials under different salt
concentrations. The line bars represent the standard deviation of the means. Different letters denote
significant differences at the p < 0.05 level found by MRT.

3.4. Identification of DEGs under Salt Stress

To make the transcriptome results more representative, we chose “Longya10” (oil ma-
terial) and “Fanni” (fiber material) for testing. Illumina paired sequencing technology was
used to explore the relationship between NaCl stress-related DEGs, using three biological
replicates per material. Mapping the rRNA depleted 582.3 million RNA-seq reads from
the 12 samples against the improved flax reference genome [35] showed that 558.9 million
reads (95.9%) were mapped in total, and 519.1 million (89.1%) were mapped uniquely
(Figure 4A). The mean mapped reads per sample were 46.6 ± 4.5 million in total reads and
43.2± 4.2 million in uniquely mapped reads. Correlation analysis showed that the replicate
samples had correlations above 0.8 (Supplementary Table S4). Gene expression profiles
in response to NaCl stress were compared with those of the untreated control (water). In
“Fanni” and “Longya10”, 7855 DEGs (3679 upregulated and 4176 downregulated) and
8054 DEGs (3970 upregulated and 4084 downregulated) were significantly differentially
regulated in response to NaCl stress exposure, respectively (Figure 4B). A Venn diagram
showed that 75.9% and 73.6% of the upregulated and downregulated genes, respectively,
overlapped between the two varieties (Figure 4C). Most of these genes were associated with
plant adversity stress using gene annotation (Supplementary Table S5). These differentially
expressed genes play a crucial role in the adaptive response of flax under salt stress.

3.5. Functional Annotation of DEGs in Overlapping Regions

To further understand the functions of the DEGs, we performed a GO enrichment
analysis. The results showed that 2905 upregulated and 3042 downregulated DEGs were sig-
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nificantly enriched in 126 and 81 biological processes (Padj < 0.05), respectively (Figure 5A,
Supplementary Table S6). The upregulated DEGs were mainly enriched in response to
extracellular stimulus, the cellular response to abscisic acid stimulus, the abscisic acid-
activated signaling pathway, anion transmembrane transport, toxic substances, aging, and
plant organ senescence. The downregulated DEGs were mainly enriched in the generation
of precursor metabolites and energy, photosynthesis, the response to cytokinin, the electron
transport chain, the cellular response to auxin stimulus, the auxin-activated signaling
pathway, and auxin transport. Therefore, the upregulated DEGs were mainly enriched
in osmoregulatory pathways, defense responses, and aging, whereas the downregulated
DEGs were mainly enriched in growth and development.
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Figure 3. Antioxidant properties of resistant and sensitive materials under salt stress. (A) Flax leaves
and (B) roots were chosen for NBT staining. (C) The cotyledons and (D) root systems of flax were used
for DAB staining. CK, the control from 0 mmol/L NaCl; TR, the treatment from 200 mmol/L NaCl.
(E) SOD enzyme activity assay and (F) CAT enzyme activity assay under different salt concentrations.
In the curvilinear regression, y and x are the vertical and horizontal values, respectively, and R2

represents the coefficient of determination.
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Figure 4. Statistical summary of flax transcriptomes. (A) Digest of data generated in flax transcrip-
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DEGs among the two varieties. FWT, water treatment Fanni; FTR, NaCl stress-treated Fanni; LWT,
water treatment Longya10; LTR, NaCl stress-treated Longya10.
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A KEGG pathway-based analysis was performed to further understand the biolog-
ical functions and interaction pathways. KEGG enrichment analysis revealed that the
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upregulated and downregulated genes were associated with 316 (23 remarkable) and
319 (14 remarkable) KEGG pathways, respectively (Figure 5B, Supplementary Table S7).
The upregulated DEGs were mainly involved in phenylpropanoid biosynthesis, plant-
pathogen interaction, MAPK signaling pathway, oxidative phosphorylation, and the p53
signaling pathway. These pathways mainly control defense and stress responses in plants.
In addition, downregulated genes were mainly associated with these pathways, including
photosynthesis, purine metabolism, starch and sucrose metabolism, carbon fixation in
photosynthetic organisms, porphyrin metabolism, methane metabolism, pentose phos-
phate pathway, and fatty acid elongation. These pathways primarily control the growth,
differentiation, and metabolism of plant cells.

3.6. RNA-Seq Expression Validation with qRT-PCR

Six candidate DEGs were selected for a qRT-PCR analysis of resistant and susceptible
materials to quantitatively assess the reliability and widespread repression of the tran-
scriptome data. These results were consistent with the RNA-seq values obtained using
each method, which differed by a log2-fold difference (Figure 6). Combining RNA-seq
and qRT-PCR data to calculate their correlation, the results showed a positive correlation
with the Pearson coefficient R2 = 0.889. Our results indicated that qRT-PCR expression
profiles for the six selected DEGs were generally consistent with the RNA-seq results, thus
demonstrating the feasibility and accuracy of the transcriptome analysis of NaCl stress
in flax.
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Figure 6. Validation of the RNA-seq data expression profile with qRT-PCR. The relative expression
levels of six DEGs were calculated according to the 2−∆∆Ct method using the Actin gene as an internal
reference gene. The x-axis indicates the change of transcriptome data (Mock) and qRT-PCR data after
exposure to 200 mM NaCl solution for 24 h (C-N1) and 72 h (C-N2). FN-Log2FC, Fanni log2 (fold
change); LY-Log2FC, Longya10 log2 (fold change); C71-Log2QRT, C71 log2 (2−∆∆Ct); C116-Log2QRT,
C116 log2 (2−∆∆Ct).

4. Discussion

Flax is an ancient crop that has generated many complex and sophisticated mecha-
nisms to adapt to adversity during its evolution [5,53]. Deciphering the adaptive mecha-
nisms of flax salt stress is beneficial for the scientific selection of salt-tolerant varieties and
for alleviating food pressure. In this study, we attempted to reveal the adaptive responses
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of flax under salt stress by using the phenotypic changes and physiological responses of
two flax cultivars with different salt tolerances under different salt concentrations. The
results were verified by transcriptome analysis.

4.1. Growth Adjustment in Response to Salt Stress

Growth inhibition is an important means of flax resistance to salt stress pressure [34,40].
In this study, the biomass of both flax cultivars gradually decreased with increasing salt
concentrations (Supplementary Table S2). With an increasing salt concentration, the plant
height and root length of both cultivars were significantly reduced, and the relative reduc-
tions in plant height and root length of the salt-tolerant cultivar were greater than those
of the salt-sensitive cultivar (Figure 1C,D). These results indicate that growth inhibition
is one of the main responses to salt stress in flax. Furthermore, our transcriptomic data
revealed that genes related to photosynthesis, auxin, and cytokinins were significantly
downregulated (Figure 5A,B). It is well known that photosynthesis plays an important
role in the formation of plants, and auxin and cytokinin are key regulators of growth and
development [57,58]. These results suggest that sacrificing growth to improve salt tolerance
is one of the strategies for flax adaptation under salt stress.

4.2. Osmotic Adjustment under Salt Stress

The rapid mobilization of the intracellular osmotic defense system can block the loss of
plant cell water, thereby effectively reducing the impact of salt damage [1,55,59,60]. When
plants are affected by salt stress, osmotic stress immediately decreases the cell expansion
of root tips and young leaves and sharply diminishes stomatal conductance. Therefore,
the plant cells lose water and die [10,14]. Many plants can develop compatible solutes to
achieve stable osmotic pressure and to protect membranes and proteins from degradation
by mediating osmotic adjustment [11,13,35]. Consistent with previous studies, our research
showed that salt-induced accumulation was observed for most of the proline, soluble
sugars, and soluble proteins in flax and that C116 accumulated more osmoregulatory
substances than C71 at high salt concentrations (Figure 2B–D). C116 synthesized osmoreg-
ulatory substances at a significantly higher level than C71; in turn, it may obtain greater
water-holding capacity and alleviate the lethal damage caused by high salt concentrations
(Figure 2). Most strategies for improving water efficiency in plants focus on manipulating
abscisic acid (ABA) signaling. ABA can activate SnRK2 under osmotic stress and is in-
volved in regulating leaf starch hydrolysis through the SnRK2-AREB/ABF-BAM1/AMY3
signaling pathway, which is important for plant resistance to osmotic stress [55,58,61].
GO enrichment analysis revealed that 63 and 60 upregulated DEGs were enriched in the
cellular response to abscisic acid stimulus and abscisic acid-activated signaling pathways,
respectively (Supplementary Table S6). This demonstrates that the water-locking capacity
of flax cells is one way to adapt to salinity.

4.3. ROS Homeostasis during Salinity Stress

ROS accumulation and scavenging are essential for the adaptive survival of flax under
salt stress [62,63]. Salt stress induces the accumulation of reactive oxygen species in plant
cells, leading to hyperoxia and the further production of toxic substances [21]. A transcrip-
tome analysis identified 40, 50, and 63 upregulated DEGs enriched in response to reactive
oxygen species, toxic substances, and the MAPK signaling pathway (classical detoxification
signaling pathway), respectively. These pathways maintain ROS homeostasis [13,64]. It is
well known that the excessive accumulation of ROS is fatal to plants, and the fundamental
reason for this is the disruption of the ROS scavenging system, which leads to oxidative
stress damage [11,65]. Some studies have demonstrated that H2O2 causes chloroplast
clustering and thus affects photosynthetic machinery function under salt stress [14,22,66].
The exogenous application of CAT alleviates salt-induced harmful effects through H2O2
scavenging activity [65]. Similar to the previous results, both staining experiments and
enzyme activity assays indicated that the accumulation and scavenging of hydrogen per-
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oxide affected the salt tolerance of the two cultivars (Figure 3). Interestingly, we found
22 upregulated DEGs enriched in response to hydrogen peroxide (Supplementary Table S6).
These results show that the accumulation and scavenging of reactive oxygen species are
involved in the adaptive response of flax under salt stress, especially H2O2.

4.4. Transcriptome Analysis Using a High-Quality Reference Genome-Based Read Mapping

RNA-seq technology has become the main choice for detecting DEGs under different
biological conditions [24,29]. The accurate, comprehensive, and precise interpretation of
such high-throughput assays relies on well-characterized reference genomes and/or tran-
scriptomes [43,46]. With the development of sequencing technology, the flax genome has
been updated to chromosome-level genome assembly, and five high-quality flax genomes
have been published [67–69]. Among these, Longya10 probably obtains a finer genome
using Hi-C sequencing technology [68]. Fortunately, an annotation file for Longya10 was ob-
tained. In this study, the mapping of RNA-seq reads against the improved reference genome
showed an average mapping rate of 95.9%, among which the uniquely mapped reads aver-
aged 89.1% (Figure 4A). The annotation file was used to simplify transcriptome analysis.
Intriguingly, we captured some new DEGs that have not been annotated in previous studies;
therefore, annotating these genes needs further validation (Supplementary Table S5).

5. Conclusions

The two flax cultivars studied, C116 and C71, were both affected by salt stress; however,
differences in survival rates indicated that C116 was more adapted to salt stress than
C71. An analysis of several behavioral and physiological parameters indicated that this
difference in adaptation was due to nutrient regulation, water retention capacity, and
ROS accumulation and scavenging. A transcriptome analysis revealed that defense- and
senescence-related genes were significantly upregulated, and growth- and development-
related genes were significantly downregulated under salt stress. These results provide a
basis for understanding the adaptation mechanisms of flax seedlings under salt stress and
have significance for the scientific selection of salt-tolerant flax germplasm.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/genes13101904/s1, Table S1: Primers for qRT-PCR; Table S2: Summary
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Table S5: Annotation of overlapping genes; Table S6: GO enrichment analysis of overlapping genes;
Table S7: KEGG pathway enrichment analysis of overlapping genes.
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