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Abstract: Pancreatic adenocarcinoma (PAAD) has a poor prognosis with high individual variation
in the treatment response among patients; however, there is no standard molecular typing method
for PAAD prognosis in clinical practice. We analyzed DNA methylation data from The Cancer
Genome Atlas database, which identified 1235 differentially methylated DNA genes between PAAD
and adjacent tissue samples. Among these, 78 methylation markers independently affecting PAAD
prognosis were identified after adjusting for significant clinical factors. Based on these genes, two
subtypes of PAAD were identified through consistent clustering. Fourteen specifically methylated
genes were further identified to be associated with survival. Further analyses of the transcriptome
data identified 301 differentially expressed cancer driver genes between the two PAAD subtypes and
the degree of immune cell infiltration differed significantly between the subtypes. The 14 specific
genes characterizing the unique methylation patterns of the subtypes were used to construct a
Bayesian network-based prognostic prediction model for typing that showed good predictive value
(area under the curve value of 0.937). This study provides new insight into the heterogeneity of
pancreatic tumors from an epigenetic perspective, offering new strategies and targets for personalized
treatment plan evaluation and precision medicine for patients with PAAD.

Keywords: pancreatic adenocarcinoma; DNA methylation; prognosis; consistency clustering;
tumor classification

1. Introduction

Pancreatic adenocarcinoma (PAAD) is a malignant tumor of the digestive tract. New
cases accounted for 2.6% and 4.7% of all new cancers and cancer-related deaths worldwide
in 2020, respectively, and PAAD is the seventh leading cause of cancer deaths [1]. Fur-
thermore, PAAD has been projected to overtake breast cancer as the third leading cause
of cancer-related deaths by 2025 [2]. Although targeted and immunotherapy agents have
been utilized in PAAD treatment, its overall 5-year survival rate remains <10%.

Clinical features such as tumor-modal-metastasis staging are commonly used for
clinical evaluation and prognosis analysis of PAAD. However, research on the molecular
classification of PAAD is still in its infancy, and thus there is no standard classification sys-
tem available for patient stratification. This is further complicated by the heterogeneity of
PAAD, which contributes to the dearth of molecular classifications for different sensitivities
that could be widely used clinically for prognostic assessment and treatment guidance [3].

Therefore, it is necessary to develop more effective methods for the clinical diagnosis
and prognosis assessment of PAAD, particularly for early detection, diagnosis, and treat-
ment. Studies have confirmed that the occurrence and development of tumors are closely
related to the activation of oncogenes and inactivation of tumor suppressor genes [4,5],
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which involve cumulative and progressive genetic changes. Epigenetic modification (repre-
sented by DNA methylation) is also considered one of the important factors related to the
etiology of malignant tumors [6].

Abnormal methylation of the gene promoter region causes tumor suppressor gene
silencing, which may further promotes tumorigenesis and development [7]. In addition,
tumors originating from different tissues or organs show strong genetic and epigenetic
heterogeneity. Although the pathogenesis of tumors is not entirely clear, increasing evidence
supports an association with aberrant methylation [8,9]. Furthermore, the study of DNA
methylation is useful for analyzing the epigenetic heterogeneity of tumors, and its status is
a potential molecular marker of cancer subtypes [8,9].

The accumulation of high-throughput sequencing molecular data provides an op-
portunity to explore the specific molecular characteristics of unique potential subtypes of
PAAD and define clinically applicable molecular disease subgroups [3]. Moreover, machine-
learning algorithms and statistical methods are constantly being updated, providing new
research approaches for analyzing high-throughput sequencing and clinical data.

These data can be further used to construct prognostic prediction models for patients
with PAAD. For example, some studies have used the least absolute shrinkage and selection
operator (lasso) [10,11] method to identify potential molecular features in large sample
data. For PAAD, molecular data and clinical information from patients could be used as
potential prognostic factors. Previous studies on other tumors have generally integrated
various machine learning algorithms [12–14] to obtain the optimal model.

This study aims at mining molecular markers of DNA methylation in PAAD and
identifying DNA methylation subtypes related to prognosis. Bioinformatics algorithms are
used to explore the specific molecular markers and prognosis among subtypes of PAAD.
Based on the DNA methylation data of PAAD, 831 significant high differential methylation
genes and 404 significant low differential methylation genes were identified between
PAAD and adjacent samples. Using the COX proportional hazard regression model and
introducing significant clinical factors affecting prognosis, 78 genes were identified. The
methylation level of these genes is an independent factor affecting the prognosis of PAAD.
Based on the unsupervised clustering analysis of the selected prognosis-related genes, two
molecular subtypes with significant differences in prognosis were obtained by consistent
clustering algorithm, and 14 specific methylation genes were further identified. It can
represent the unique methylation patterns of these two subtypes. Our findings provide
new ideas and targets for individualized treatment and prognosis assessment of patients
with PAAD.

2. Materials and Methods
2.1. Acquisition of DNA Methylation Data and Clinical Information of Patients with PAAD

The DNA methylation and expression data of 184 samples of patients with PAAD from
The Cancer Genome Atlas (TCGA) database and their corresponding clinical information
were collected. All methylation data were generated using the Illumina Infinium Human
Methylation 450 BeadChip (HM450K chip) platform. The expression information in this
dataset and the DNA methylation data used in this study were matched using SampleID to
further explore the heterogeneity of PAAD subtypes. The clinical data included sex, age,
stage, overall survival (OS) status, and OS time to identify clinical factors that significantly
affect patient survival.

The data were preprocessed to remove methylation sites with missing methylation
level (β) values exceeding 70% of the total number of samples, and the k-nearest neighbor
method was used to supplement the null values to further standardize the data. Probe
sites belonging to the promoter region in cancer sample data were selected by defining
the promoter region as 2 kb upstream to 0.5 kb downstream of the transcription start site.
Loci corresponding to single-nucleotide polymorphisms (SNPs), the sex chromosomes,
and more than one gene were removed. Because the HM450K chip detects the genome-
wide methylation level of more than 480,000 CpG loci, some genes with multiple CpG
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loci will be detected. Therefore, we calculated the mean methylation level of CpG sites
within each gene as the gene promoter region methylation level, and this value was
used in subsequent analyses. The 450K chip data of PAAD methylation obtained from
TCGA database contained 485,577 CpG probe sites. The CpG sites with excessive missing
values were removed, the missing values of the remaining CpG sites were adjusted, the
sites corresponding to sex chromosomes and SNPs were removed, and CpGs located in
the promoter region were extracted. After these preprocessing steps, 131,288 CpG site
methylation values of each sample were obtained. The methylation levels of these CpG
sites were then used to characterize the corresponding 16,420 genes and the methylation
profiles of PAAD genes were obtained (Table S1). GeneSymbol represents a unique coding
name for each probe site, with methylation values (β) ranging from 0 to 1, corresponding
to an unmethylated and fully methylated state, respectively.

The expression data of PAAD were obtained from integrated TCGA transcriptome
data based on the IlluminaHiSeq 2000 sequencing platform. These data were standardized
by log2 (XML1) and the genes were mapped to human genome coordinates by UCSC Xena
Hugo ProbeMap. The expression information in this data set was matched with the DNA
methylation data according to the unique Sample ID.

2.2. Screening and Analysis of Differentially Methylated Genes

R software was used to perform enrichment analysis and functional annotation for
1235 differentially methylated DNA genes based on the Gene Ontology (GO) [15] and
Kyoto Encyclopedia of Genes and Genomes (KEGG) databases [16]. Their enrichment
analysis was carried out based on the hypergeometric test, and the p-values were calculated
as follows:
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where N is the total number of human proteins; M is the number of proteins annotated as
gj; n is the number of proteins in G(c); and m represents proteins in G(c), annotated as the
number of gj.

E − SKEGG
(
c, Pj

)
= −log10

 n

∑
k=m

(
M
k

)(
N − M
n − k

)
(

N
n

)
 (2)

where N is the total number of human proteins, M is the amount of protein annotated as Pj
of the KEGG pathway, n is the number of proteins in G(c), and m is the number of proteins
in G(c) and Pj.

2.3. Identification of Methylation Markers Associated with Prognosis

To identify the molecular subtypes of PAAD related to prognosis, 184 samples ob-
tained from TCGA database were divided into training and test sets (128 and 56 samples,
respectively) according to a 7:3 ratio. OS time and survival status (0 representing survival
and 1 representing death) were used to construct survival events, which were employed in
Kaplan–Meier survival analysis of the two methylated subgroups using the survival func-
tions Survfit and Survdiff in the R package. In univariate analysis, the model only describes
the relationship between each single variable and survival status, ignoring the influence
of other variables; however, the survival status associated with a given sample/patient
may also be affected by different clinical factors. To address this problem, the univariate
Cox proportional hazards regression model was used to include the significant prognostic
genes (p < 0.05) into the multivariate Cox proportional hazards regression model, and
the significant prognostic clinical factor age (p = 0.021) was used as a covariate to find
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independent prognostic factors. For each feature i, the univariate and multivariate Cox
proportional hazards regression models are described in Equations (3) and (4), respectively:

h(t, x)i = h0(t)exp
(

βmethymethyi

)
(3)

h(t, x)i = h0(t)exp
(

βmethymethyi + βageage
)

(4)

where h0 (t) is the benchmark risk equation, which can be any non-negative equation for
time t; methyi is the vector representing the methylation level of CpGi; age is the vector
representing the clinical stage of the patient; and βmethy and βage represent the regression
coefficients. A positive regression coefficient indicates that the increase of methylation
level is related to an increased risk of death, whereas a negative coefficient indicates that
the increase of methylation level is related to a decreased risk of death. The Benjamini–
Hochberg method was used to adjust the p-value.

After univariate and multivariate Cox proportional hazard regression analysis, the
significant independent prognostic markers were used to construct a risk score (Risk Score)
in the training set, represented by a linear combination of the DNA methylation levels of
these markers and corresponding regression coefficients, as follows:

Risk Score = ∑n
i=1 βiXi (5)

where βi is the Cox regression coefficient of gene i in the training set, Xi is the DNA
methylation level of gene i, and n is the number of genes that significantly affect survival.

The training set was used for model construction and screening of prognostic markers,
and the test set was used for subsequent verification of the selected prognostic markers.

2.4. Subtype Recognition

To identify different subtypes of PAAD based on CpG locus data with significant
prognostic correlations to survival, unsupervised consistent clustering analysis was per-
formed using the ConcensusClusterPlus R package [17]. We tested multiple clustering
algorithms and metric distances embedded in the ConcensusClusterPlus package to explore
the optimal clustering results. Various clustering algorithms were applied to the dataset,
with the K-means clustering algorithm using the Euclidean distance as a metric and the
PAM clustering algorithm using the Pearson distance as the metrics finally considered.
The cumulative distribution function of consistency, mean coefficient of consistency, and
coefficient of variation (CV) were then used to determine the final number of subtypes.
The final criteria used to determine the clustering method and the number of clusters were:
certain K cluster numbers, the consistency value between groups was relatively high, and
the CV was relatively low. The CV was calculated as follows:

CV = (SD/MN) × 100% (6)

where SD is the standard deviation of the consistency value among different groups under
the same number of categories, and MN is the average consistency among different groups
under the same number of categories. Patients with PAAD were classified into two subtypes
based on the DNA methylation levels of the mined prognosis-related genes.

2.5. Identification of Subtype Specific Marker Genes

The average methylation level of each gene in Cluster1 and Cluster2 subtype samples
was calculated using the custom R script identification. The mean difference was calculated
and the significance of the difference was evaluated by a two-sided t-test. Genes with a
mean β difference greater than 0.1 and p value less than 0.05 after multiple test correction
by the Benjamini-Hochberg method were considered to be differentially methylated genes.
Next, QDMR [18] was used to further screen the sites with high or low methylation
specificity in PAAD subgroups.
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2.6. Construction of a Prognosis Prediction Model for PAAD Typing

The DNA methylation subtypes identified in this study were obtained by the afore-
mentioned unsupervised consistent clustering method. To validate the DNA methylation
typing results and to establish a more convenient and accurate methylation typing method
for PAAD, a supervised Bayesian network classification model was constructed using
the training set. In a Bayesian network, the root node is represented by nodes indicating
clusters (i.e., Cluster1 and Cluster2), and all other feature nodes are used as “offspring”
extending from the root node. The Bayesian network classifier is used to calculate the
probability of a sample belonging to a category and then determine which category it
belongs to, rather than directly assigning a category to a given sample. With this classifier,
we used the 14 specific genes obtained in the previous step as features and the two DNA
methylation subtypes as classification labels. Ten-fold cross-validation was used during
model training to better evaluate the performance of the model. Feature curves (receiver
operating characteristic curves) were constructed using the pROC package in R software.

2.7. Expression Differences According to DNA Methylation Subtype

Expression data of TCGA PAAD samples were matched with previously obtained
related DNA methylation data using Sample ID. A custom R script was used to identify
differentially expressed genes among DNA methylation subtypes based on gene expression
levels. Differentially expressed genes were defined as follows: the mean ratio (fold change)
of expression levels of genes between the two groups of samples was >2 or <0.5, and the
p value of the paired t-test was <0.05 after correction by the Benjamini–Hochberg method.

2.8. Analysis of Immune Cell Abundance in DNA Methylation Subtypes

Studies have shown that immune cell dysfunctions, such as abnormal distribution of
abundance and type, as well as developmental and functional abnormalities are associated
with various diseases, including cancer [19]. Therefore, studying the extent of immune
cell infiltration can provide important assessments of immune status, disease progression
and prognosis, and treatment. In this study, the ImmuCellAI algorithm [20] was used to
calculate and evaluate the abundance of 24 types of immune cells in PAAD samples based
on RNA expression profiles, including 18 T cell subsets [CD4+, CD8+, CD4+ naive, CD8+
naive, central memory T, effector memory T, Tr1, induced regulatory T cells (iTreg), natural
regulatory T cells (nTregs), Th1, Th2, Th17, Tfh, Tc, mucosal-associated invariant T (MAIT),
Tex, γ-delta T, and natural killer (NK) T cells] and six other important immune cells (B
cells, macrophages, monocytes, neutrophils, dendritic cells, and natural killerNK cells).
Evaluation of the degree of immune cell infiltration can be used as a prognostic factor and
a predictor of treatment efficacy [21], which has strong guiding significance for selecting
patients to receive immunotherapy.

3. Results
3.1. Identification of Methylation Markers Associated with Prognosis in PAAD

We identified 1235 differentially methylated genes between cancer and para-cancer
samples among 16,420 genes with methylation information on PAAD, including 831 and
40 differentially hypermethylated and hypomethylated genes, respectively. The visualiza-
tion of the distribution of these differentially methylated genes is presented as a volcano
diagram constructed using the R package GGPlot (Figure 1A). The 10 most significantly
differentially hypermethylated genes were SARM1, IRX4, ZSCAN23, FOXC2, PTPN5, IRF4,
CACNA1, EN2, HOXB4, and IGF2BP1, and the 10 most significantly differentially hy-
pomethylated genes were REG4, C11orf34, BRD9, S100A16, HIST1H2BK, STATH, LRRC31,
UBD, MIR548A1, and PSMG3.
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Figure 1. (A) Distribution of differentially methylated genes in PAAD. (B) Gene ontology (GO) enrich-
ment analysis of differentially methylated genes. Bubble diagram of GO enrichment analysis results
and several of the most prominent GO terms associated with the genes. (C) Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway enrichment of differentially methylated genes. Bubble
diagram of KEGG enrichment and several of the most prominent pathways analysis results for the
enriched genes. In the bubble graphs, the horizontal axis is GeneRatio, representing the proportion of
genes contained in each enriched function or pathway in the total genes involved in the analysis, and
the name of the enriched function or pathway is presented on the vertical axis. The size and color
gradient of dots represent the number of genes and p-value. Small circles of the network diagram
represent the most prominently enriched function or pathway name, distinguished by different colors,
and genes in these entries are connected by corresponding color lines.
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GO and KEGG pathway enrichment analyses were, respectively, performed on the
1235 differentially methylated genes (Figure 1B,C). In the GO functional enrichment set
(Figure 1B), the most significant enrichment functions mainly included the neuropeptide
signaling pathway, neuronal differentiation in the central nervous system (CNS), embryonic
organ development, and other biological processes. The KEGG pathway enrichment analy-
sis showed that these genes were mainly involved in neuroactive ligand receptor interaction,
calcium, cAMP, circadian rhythm, morphine addiction, glutamatergic synapses, pancreatic
secretions, salivary secretion, and nicotine addiction signaling pathways (Figure 1C).

To identify molecular subtypes of PAAD associated with prognosis, genes signifi-
cantly affecting survival were included as taxonomic features. The univariate Cox propor-
tional hazards regression model was constructed using the 1235 differentially methylated
genes and three clinical factors identified for the samples in the training set. Finally,
135 genes were found to be significantly associated with the survival of patients with PAAD
(p < 0.05). In addition, the univariate Cox proportional hazards regression model estab-
lished for clinical factors (Table S2) showed that “age” (p = 0.021) was also a significant
factor affecting the survival of patients. The multivariate Cox proportional hazards regres-
sion model included these 135 significantly different methylated genes, along with age
as a covariate to identify factors that independently affect prognosis. Finally, 78 methy-
lated genes significantly associated with prognosis were identified using multivariate Cox
regression models (Table S3).

3.2. Construction of a Prognosis Prediction Model for PAAD Classification

The methylation values (β) of 78 methylated genes independently associated with the
prognosis of PAAD obtained in this study were consistently clustered. Analysis of the cluster-
ing methods used revealed that the PAM (Figure 2A) and K-means (Figure 2B) algorithms
were more suitable for PAAD methylation data compared to the other methods. The color con-
sistency matrix heat map of K = 1 to 10 was obtained according to the consistency clustering
of the PAM algorithm (Figure S1) and K-means algorithm (Figure S2).
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In the consistency clustering matrix heat map, the values corresponding to the perfect
consistency matrix are displayed in blue with white backgrounds on the diagonal blocks
on the color-coded heat maps. The results of the PAM and K-means clustering algorithms
can be clearly separated into boundaries of visible k colors where the color boundary is
relatively clean, showing a white background.

The comparison of the two algorithms showed that for the same k, the PAM algorithm
showed a relatively higher consistency coefficient than that of the K-means algorithm; thus,
we finally determined the consistency clustering results using the PAM algorithm. The
PAM algorithm had the highest average consistency coefficient and stable classification
when k = 2 in the clustering process from k = 2 to 10 (Figure 2C). In addition, when
k = 2, the corresponding classification color blocks of samples near this value do not often
change, and the classification under this value is relatively stable (Figure 2D). Therefore, we
used k = 2 as the appropriate number of cluster categories for the next step of the analysis,
identifying two methylation subtypes (Cluster1 and Cluster2) with significant prognostic
differences for patients with PAAD.

3.3. Subtype Analysis of the Prognosis Prediction Model Based on PAAD Classification

Kaplan–Meier survival analysis of the two DNA methylation subtypes was performed
using the Survfit and Survdiff functions in the survival R package. Among 158 samples
in the training set, 66 and 62 belonged to subtypes Cluster1 (red) and Cluster2 (blue),
respectively, and the analysis results showed a significant difference in prognosis between
the two subtypes (p = 0.00034). Cluster2 had a better prognosis than that of Cluster1,
indicating that the two methylation subtypes of PAAD defined in this study would be
useful in predicting the prognosis of PAAD in patients. (Figure 3A).
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Next, we further mined DNA methylation markers of the unique methylation patterns
between the two subtypes, We first screened 58 differentially methylated genes between
the two PAAD subtypes. Furthermore, the corrected p-values showed the top 20 genes with
the most significant differences (Table S4). The two PAAD subtypes were identified using
consensus clustering, which suggested that samples within both subtypes had unique
methylation patterns. Therefore, we further screened for specifically hypermethylated and
hypomethylated genes in the two subtypes using QDMR [18], which identified 14 subtype-
specific genes in Cluster1 and Cluster2 (Table 1).

Table 1. Specific genes associated with PAAD subtypes.

Gene Name Entropy Cluster1 Cluster2

CAPN8 8.4890 0.4903 0.7586
MIR135B 8.6130 0.5052 0.7505

LOC728392 8.7880 0.3407 0.1245
KRTAP2.4 8.8170 0.3170 0.5288
GSDMC 8.8670 0.3958 0.6001
HEBP1 8.8730 0.4158 0.6190

SNORD114.29 8.9020 0.4707 0.6698
MAP4K5 8.9140 0.4968 0.6941

EVC 8.9250 0.3252 0.1295
UCA1 8.9460 0.5976 0.7903
CSTA 9.0130 0.4692 0.6528

SLAMF7 9.0760 0.3656 0.5409
HOXB4 9.1070 0.3848 0.2134
HRH1 9.1590 0.3117 0.4766

GeneName: gene symbol; entropy: Shannon entropy of differentially methylated genes; Cluster1 and Cluster2:
mean methylation level of specific genes in subtype 1 and subtype 2, respectively.

We identified 14 subtype-specific genes that were differentially methylated among the
two PAAD DNA methylation subtypes, representing their unique methylation patterns
(Figure 3B). For Cluster2, associated with a good prognosis, 11 genes showed specific
hypermethylation (CAPN8, CSTA, GSDMC, HEBP1, HRH1, KRTAP2.4, SNORD114.29,
MAP4K5, MIR135B, SLAMF7, and UCA1), whereas. The other three genes showed specific
hypomethylation (EVC, HOXB4, and LOC728392). Markers of Cluster1 were found to be
involved in six main biological functions, including positive regulation of smoothened
signaling pathway and somatic stem cell division. Cluster2 markers were mainly involved
in 27 biological functions, including MAPK cascade, positive regulation of inositol trisphos-
phate biosynthetic process, and positive regulation of vascular endothelial cell proliferation
(Table S5).

The results of the model performance evaluation using a 10-fold cross-validation
method showed that the constructed model had a classification accuracy of 93.75% (Table 2).
In Cluster1, 63 of the 66 samples were correctly classified using the model and for Cluster2,
57 of 62 samples were correctly classified. Moreover, the sensitivity and specificity of the
classification model were high. (Figure 3C).

Table 2. Classifier confusion matrix based on the Bayesian network.

Prediction Cluster1 Prediction Cluster2

Cluster1 63 3
Cluster2 5 57

The Bayesian network-based prediction model of PAAD classification was used to
analyze 56 samples in the test set (Figure 3D). The 56 samples were assigned labels des-
ignating their classification (Cluster1 and Cluster2), and the two classes of samples in
the test set also showed similar prognostic profiles to those in the training set. p-values
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indicated statistical significance of survival differences. Furthermore, 30 and 26 samples
were classified with the Cluster1 and Cluster2 methylation subtype tags, respectively. In
addition, in the prognosis of samples at 1, 3, and 5 years, Cluster2 was superior to Cluster1,
and the survival curves were clearly separated without crossover. The log-rank test showed
a significant difference in survival curves (p = 0.014).

3.4. DNA Methylation Subtype Analysis Based on Transcriptome Data

We next focused on the expression differences of several gene sets of interest between
two PAAD DNA methylation subtypes. A total of 723 cancer driver genes were obtained
from the Catalogue of Somatic Mutations in Cancer (COSMIC)–Cancer Gene Census (CGC)
project [22]. Among the DNA methylation subtypes identified in this study, 301 tumor
driver genes were differentially expressed between the two groups of samples (Figure 4A).
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Of the 78 methylation molecular markers identified in this study that were associated
with the prognosis of patients with PAAD, 27 showed significantly different expression
levels between the two groups (Figure 4B).

In addition, 4 of the 14 subtype-specific methylated genes identified based on QDMR
showed significant differences in RNA expression levels between the two groups (Table 3).
Among them, HRH1 encodes a member of the rhodopsin-like G-protein-coupled recep-
tor family, and previous studies have proven that its expression is associated with poor
prognosis [23]. Activation of SLAM family member 7 (SLAMF7) [24], a self-ligand on T
cells, induces phosphorylation of signal transducer and activator of transcription 1 (STAT1)
and STAT3, and inhibits the expression of multiple receptors and transcription factors
associated with T-cell exhaustion.
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Table 3. Subtype-specific methylated genes with significantly different RNA expression levels.

Gene Fold Change Adjusted p-Value

HRH1 2.3112 1.93 × 10−5

LOC728392 0.3919 1.49 × 10−4

SLAMF7 0.3007 1.09 × 10−2

EVC 0.3859 1.34 × 10−2

3.5. Abundance of Immune Cells in the DNA Methylated Subtypes

ImmuCellAI was used to evaluate the abundance of 24 immune cell types (including
18 T-cell subsets) in PAAD samples based on transcriptome data (Figure 5). The results
showed significant differences in the abundance of multiple immune cell types in the PAAD
DNA methylation subtypes, Cluster1 and Cluster2 (p < 0.05). For example, iTregs, nTregs,
Tr1, and monocytes were significantly enriched in Cluster2, which may be related to their
immunosuppressive properties. Some antitumor cells such as NK, NK T, and MAIT cells
also showed high infiltration in Cluster2, suggesting that the tumor microenvironment
may prevent these immune cells from entering Cluster1 tumor nodules. We also found
that the infiltration of 17 types of immune cells was significantly different between the two
subtypes according to DNA methylation patterns. Consequently, these differences may
have the potential to be useful in elucidating the interaction between PAAD and the immune
microenvironment. Furthermore, these cells could provide valuable predictors, and the
classification model based on DNA methylation patterns for screening the advantage of
PAAD immunotherapy is of great significance.
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4. Discussion

Aberrant DNA methylation is a key factor in the prognostic outcome of cancer, inspired
by the study of tumor-typing based on gene expression abnormalities, typing based on the
methylation pattern has become a research hotspot that aims to better explain the consistency
within the same cancer. Furthermore, this approach may be a further guide in clinical
practice to improve the application and value of DNA methylation as a prognostic marker.
Zhang et al. [25] identified nine sub-groups in breast cancer based on DNA methylation status.
Compared with the PAM50 classification of breast cancer based on gene expression level, DNA
methylation subtypes were more refined. Wang et al. [26] identified six subtypes and 17 key
hub CpG sites in early stage non-small cell lung cancer (NSCLC). Capper et al. [27] developed
a classification method for CNS tumors based on DNA methylation, which identified 91
different types of CNS tumors using methylation features.

The subtypes of PAAD are crucial in determining treatment strategies in clinical care,
but there are still no validated staging criteria. Multiple studies have now found the
potential feasibility of using DNA methylation data for determining PAAD molecular
characteristics based on mining and have explained the potential heterogeneity of PAAD.
In an evaluation of 150 patients with PAAD based on TCGA data, DNA methylation data
distinguished two major subgroups (H1 and H2). The H1 cluster had more extensive DNA
hypermethylation than that of the H2 cluster [28]. Mishra et al. [29] identified three possible
subtypes of PAAD based on genome-wide methylation patterns, somatic mutations, copy
number changes, and histological features.

In this study, it was proposed for the first time that pancreatic tumors can be divided
into two prognostic molecular subtypes, Cluster1 and Cluster2, according to DNA methy-
lation levels, and proved that Cluster2 had a better prognosis than that of Cluster1. Our
consistency clustering method based on DNA methylation patterns ensured high intra-
class consistency within PAAD molecular subtypes. Furthermore, we further identified
14 specific methylation genes that could represent the unique methylation patterns of the
two subtypes. For Cluster2, with a good prognosis, 11 genes showed specific hyperme-
thylation (CAPN8, CSTA, GSDMC, HEBP1, HRH1, KRTAP2.4, SNORD114.29, MAP4K5,
MIR135B, SLAMF7, and UCA1). Three genes (EVC, HOXB4, and LOC728392) showed
specific hypomethylation in Cluster1.

Furthermore, the mined molecular markers of PAAD subtypes were used to construct
a prognosis prediction model for PAAD classification based on the Bayesian network. Some
of these genes have also been found to be significantly associated with cancer in previous
studies. Wuyts et al. [30] demonstrated that EXTL1 is a member of the EXT oncogene family,
whereas Redon et al. [31] showed that SMG6 interacts with telomerase, the chromosome
terminal replicase. Inozume et al. [32] found that the FCRLA gene is a potential target
antigen in immunotherapy of B-cell lymphoma. Whether these genes are associated
with the prognosis of PAAD still needs to be further verified through in vivo and in vitro
experiments. In addition, genes such as C11orf34 and SPATA21, which ranked among the
top 15 most significant, have rarely been reported to be related to tumor development.

In this study, the two PAAD subtypes identified based on DNA methylation differed
significantly in terms of survival time, expression levels of cancer driver genes, and abun-
dance of immune cells. In previous studies, it has been reported that a variety of solid
tumours can be identified as two distinct tumour subgroups: ‘immune hot’ and ‘immune
cold’, which display differing prognosis and oncogenic driver events. This result is con-
sistent with the two classifications obtained in the present study, for the better prognosis
Cluster2, which had a higher proportion of oncogenic immune cells enriched and a more
intense immune response [33]. At the same time, 14 DNA methylation markers were
identified to determine PAAD typing, which provides theoretical support for future precise
treatment of PAAD and can improve the correct rate of PAAD treatment and prediction.
This strategy may provide a new perspective for the precise treatment of PAAD. Although
all of the training data features used in this study are continuous variables, the Bayesian
network classifier itself can also accept discrete variables or a mixture of continuous and



Genes 2022, 13, 1913 13 of 14

discrete variables. Such a model would be somewhat more scalable and optimizable as
knowledge of PAAD improves.

5. Conclusions

In this study, two PAAD methylation subtypes (Cluster1 and Cluster2) were identi-
fied based on an unsupervised consistent clustering algorithm, with Cluster2 associated
with a better prognosis than Cluster1. Fourteen subtype-specific methylation genes were
identified, which could serve as molecular markers to characterize the unique methylation
patterns of the two PAAD subtypes. The two DNA methylation subtypes also showed
differences in the distribution of clinical features. Transcriptome analysis revealed signif-
icant differences in RNA expression levels of many key cancer driver genes, as well as
in the abundance of infiltrating immune cells between the two subtypes. The described
methodological approach and associated results of this study provide evidence and new
directions to support future research on DNA methylation molecular typing as a basis
for treatment guidance, prognosis assessment, and further related investigations of other
malignant tumors.
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multivariate cox regression analysis; Table S4: Top 20 differentially methylated genes among PAAD
subtypes; Table S5: Characteristic pathways of methylated genes in subtypes.
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