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Abstract: Bladder cancer (BLCA) is a common malignancy of the urinary system. The gut micro-
biome produces various metabolites that play functional roles in tumorigenesis and tumor pro-
gression. However, the integrative analysis of the gut microbiome and metabolome in BLCA has
still been lacking. Thus, the aim of this study was to identify microbial and functional character-
istics and metabolites in BLCA in a Chinese population. Metagenomics, targeted metabolomics,
bioinformatics, and integrative analysis were used in fecal samples of BLCA patients and healthy
individuals. We found gut microbiomes were significantly dysregulated in BLCA patients, including
Bifidobacterium, Lactobacillus, Streptococcus, Blautia, and Eubacterium. We also found 11Z-eicosenoic
acid, 3-methoxytyrosine, abrine, aniline-2-sulfonate, arachidic acid, conjugated linoleic acids, elaidic
acid, glycylleucine, glycylproline, leucyl-glycine, linoelaidic acid, linoleic acid, nicotinamide hypox-
anthine dinucleotide, oleic acid, petroselinic acid, and ricinoleic acid to be significantly decreased,
while cholesterol sulfate was significantly increased in BLCA patients. Integration of metagenomics
and metabolomics revealed interactions between gut microbiota and metabolites and the host. We
identified the alterations of gut microbiomes and metabolites in BLCA in a Chinese population. More-
over, we preliminarily revealed the associations between specific gut microbiomes and metabolites.
These findings determined potential causative links among gut dysbiosis, dysregulated metabolites,
and BLCA.
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1. Introduction

Bladder cancer (BLCA) is one of the most common malignancies of the urinary system.
More than 570,000 patients are newly diagnosed, and more than 210,000 deaths are reported
each year worldwide [1]. In 2015, the morbidity rate of BLCA in China was 5.80 per 100,000
and the mortality rate of BC in China was 2.37 per 100,000 [2]. In China, BLCA causes
a serious social and economic burden. On the basis of the invasion of detrusor muscle,
BLCA can be divided into non-muscle-invasive BLCA (NMIBC) and muscle-invasive BLCA
(MIBC) [3]. NMIBC are more inclined to tumor recurrence (approximately 50–70%) and
progression (approximately 15%), while MIBC often has a high risk of tumor metastasis and
a low overall survival rate. For pathological types of BLCA, urothelial bladder carcinoma
(UBC), previously often described as transitional cell cancer, is the predominant histological
type (more than 90%) [4]. The occurrence and progression of BLCA include multifactorial
and multistep pathophysiological processes, and the regulatory mechanisms are not fully
understood. Therefore, it is essential to explore the relationship between related molecules
and the occurrence and progression of BLCA from various perspectives.

As we know, mammals have a large and diverse symbiotic microbial community in
the intestine. The total mass of microorganisms in the intestine of a normal adult can reach
1–1.5 kg, which contains up to 1 × 1014 bacteria [5]. Such a large micro community of
organisms constitute an extremely complex collective, namely, the gut microbiota. The
gut microbiome and the host interact with each other and gradually form a symbiotic
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homeostatic system, which plays an extremely important role in the growth, development,
nutrient metabolism, and immune homeostasis of the host [6]. The metabolism, homeosta-
sis, and immune system of gut are maintained with the help of gut microbiome. When their
populations or living conditions are “dysregulated”, it may lead to metabolic abnormalities;
inflammation; and other diseases, such as obesity [7], type 2 diabetes mellitus [8], and
food allergies [9]. Moreover, an increasing number of studies have shown that the gut
microbiome plays an important role in tumorigenesis and tumor progression, such as breast
cancer [10], prostate cancer [11], and colorectal cancer [12]. Recently, numerous studies
have shown that the gut microbiome produces a variety of metabolites that have different
functional roles in tumorigenesis and tumor progression, such as short-chain fatty acids
(SCFAs) [13], secondary bile acids [14], and polyamines [15]. Many researchers have been
exploring the gut microbiota–metabolites–disease axis, which results in a pro-tumorigenic
phenotype in multiple solid tumor types. For instance, IGF1 production stimulated by SC-
FAs from gut microbes influenced the growth of prostate cancer via activating local prostate
MAPK and PI3K signaling, indicating the existence of a gut microbiota–IGF1–prostate
axis [13]. In another case, gut microbiota promoted myeloid leukemia progression via the
downregulation of butyrate, which can repair intestinal barrier damage and inhibit LPS
absorption in vivo [16].

With the rapid development of metagenomics and metabolomics, the potential relation-
ship of gut microbiomes and metabolites and cancer could be determined comprehensively.
However, the integrative analysis of fecal metagenomics and metabolomics in BLCA was
still lacking. In the current work, we used quantitative metagenomic and metabolomic
analysis to identify genic, microbial, and functional characteristics and metabolites in BLCA.
These findings were expected to determine a potential causative link among gut dysbiosis,
dysregulated metabolites, and BLCA.

2. Materials and Methods
2.1. Subjects and Sample Collection

A total of 32 BLCA patients (EXP group) were recruited at the Department of Urology
of Beijing Friendship Hospital affiliated with Capital Medical University (Beijing, China)
in 2021–2022. The fecal samples of BLCA patients were collected before surgery. The
inclusion criteria for patient selection included: (1) being ethnically Han; (2) being without
radiotherapy, chemotherapy, or other adjuvant treatments; (3) age > 18 years; (4) postoper-
ative pathological diagnosis of UBC with or without lymph node metastasis and distant
metastasis; (5) normal intelligence; (6) satisfactory pulmonary, cardiac, liver, renal, and
bone marrow functions. Exclusion criteria for the patients were as follows: (1) age under 18;
(2) treatment with antibiotics or anti-inflammatory agents 1 month before sampling;
(3) being vegetarian; (4) being pregnant; (5) having a history of other tumors or inflam-
matory bowel disease; (6) a postoperative pathological diagnosis of non-UBC; (7) having
autoimmune diseases; (8) declining to participate after reading the informed consent form.
A total of 15 gender-, age-, and body-weight-matched healthy controls (CON group) were
recruited for this study. This study was approved by the Ethics Committee of Beijing Friend-
ship Hospital affiliated with Capital Medical University and was conducted in accordance
with the Declaration of Helsinki ethical standards. Informed consent was obtained from all
participants and healthy individuals. Fresh fecal samples were collected from each subject
and were stored at a −80 ◦C freezer immediately.

2.2. Experimental Procedures of Metagenomic Sequencing
2.2.1. DNA Extraction and Sample Testing

Total DNA was extracted from the fecal samples of all BLCA patients and healthy
individuals using a Magnetic Soil and Stool DNA Kit (DP712, TIANGEN, Beijing, China)
on the basis of the manufacturer’s instructions. Next, DNA degradation and potential
contamination was detected on 1% agarose gels. Then, DNA concentration was measured
using a Qubit® dsDNA Assay Kit in Qubit® 2.0 Flurometer (Life Technologies, Carlsbad,
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CA, USA). DNA contents with OD values between 1.8 and 2.0 were used for next step.
Only qualified samples were used for library construction.

2.2.2. Library Construction

A total amount of 1 µg DNA per sample was used as input material for the DNA
sample preparations. Sequencing libraries were generated using a NEBNext® Ultra ™ DNA
Library Prep Kit for Illumina (NEB, Ipswich, MA, USA), according to the instructions. Next,
index codes were added to attribute sequences to each sample. Then, the DNA sample
was fragmented by sonication to a size of 350 bp. Following this, DNA fragments were
end-polished, A-tailed, and ligated with the full-length adaptor for Illumina sequencing
with further PCR amplification. PCR products were purified (AMPure XP system), and
libraries were analyzed for size distribution by an Agilent 2100 Bioanalyzer and quantified
using real-time PCR (Bio-Rad CFX96). A total of 35 cycles were set for the PCR test.

2.2.3. Sequencing

The clustering of the index-coded samples was performed on a cBot Cluster Generation
System according to the instructions. After cluster generation, the library preparations
were sequenced on an Illumina Novaseq 6000 (or MGISEQ-T7), and 150 bp paired-end
reads were generated.

2.3. Data Analysis of Metagenomic Project
2.3.1. Data Pretreatment and Quality Control

For quality control, default parameters of fastp (https://github.com/OpenGene/
fastp, accessed on 10 May 2022) software was used to pre-process the raw data obtained
from Illumina sequencing platforms to obtain clean data for subsequent analysis. The
specific processing steps were as follows: (1) we removed the reads which contain adapter;
(2) we removed the reads for which the N (N means that the base information cannot
be determined) ratio was greater than 10%; (3) we removed the reads with low quality
(the number of bases with Q ≤ 15 accounted for more than 50% of the reads). Last,
considering the possibility of host pollution may exist in samples, clean data needed
to be blasted to the host database, using the default Bowtie2.2.4 software (version 2.2.4,
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml, accessed on 1 January 2020) to
filter out reads that may have originated from the host [17].

2.3.2. Metagenome Assembly

SOAPdenovo software (V2.04, http://soap.genomics.org.cn/soapdenovo.html, accessed
on 13 May 2022) was used to perform the assembly and analysis of clean data for fecal
samples [18]. Then, the assembled Scaftigs from N connection were interrupted, and the
Scaftigs without N were obtained. All samples’ clean data were compared to each scaffold
by Bowtie2.2.4 software to acquire the PE reads [19]. All the reads that were not used in the
forward step of all samples were combined, and following this, the software of SOAPdenovo
was used for mixed assembly with the parameters. The Scaftigs were obtained, and the
fragments shorter than 500 bp in all Scaftigs for statistical analysis were filtered.

2.4. Gene Prediction and Abundance Analysis

MetaGeneMark (V2.10, http://topaz.gatech.edu/GeneMark/, accessed on 17 May 2022)
software was used to predict the ORF for the Scaftigs (>500 bp) assembled. The length
information shorter than 100 nt [20] from the predicted results with default parameters
were filtered and excluded. For ORF predicting, CD-HIT software (V4.5.8, http://www.
bioinformatics.org/cd-hit/, accessed on 17 May 2022) [21] was used for de-redundancy
and for obtaining the unique initial gene catalogue. Then, the clean data of each sample
were mapped to initial gene catalogue using Bowtie2.2.4, and the number of reads of the
genes mapped in each sample was calculated. The gene for which the number of reads < 2
in each sample was filtered and excluded. The gene catalogue (unigenes) was obtained for
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subsequent analysis. Unigene is an acronym for Universal Gene, which stands for widely
used gene database, forming a non-redundant gene database through a computerized
collection of identical loci. On the basis of the number of mapped reads and the length of
gene, the abundance information of each gene in each sample was calculated. On the basis
of the abundance information of each gene in each sample in the gene catalogue, general
information statistics, core-pan gene analysis, correlation analysis of samples, and Venn
analysis were performed.

2.5. Taxonomy Prediction

First, DIAMOND software (V0.9.9, https://github.com/bbuchfink/diamond/, accessed
on 20 May 2022) was used to compare the unigenes with bacterial, fungal, archaeal, and
viral sequences extracted from NCBI’s NR database (version 2018-01-02, https://www.ncbi.
nlm.nih.gov/, accessed on 20 May 2022). Second was the comparison of each sequence, the
results of which the e values ≤ 1 × 10−5 were analyzed by the LCA algorithm to determine
the species annotation information for the sequence. On the basis of the LCA annotation
results and gene abundance, we obtained the abundance information and gene numbers of
each sample in each taxonomy hierarchy (kingdom, phylum, class, order, family, genus,
species). On the basis of the abundance at each taxonomic level, Krona analysis, generation
situation of relative abundance, and the abundance cluster heat map were drawn. Pareto-
scaled principal component analysis (PCA, R ade4 package, Version 2.15.3) and NMDS
(R vegan package, Version 2.15.3) were used to perform dimension reduced analysis. The
difference between groups was tested by Anosim analysis (R vegan package, Version 2.15.3).
Metastats and LEfSe analysis were used to identify the different species between groups.
A permutation test between groups was performed using Metastats analysis for each tax-
onomy. After obtaining the p-value, Benjamini and Hochberg false discovery rate (FDR)
was used to acquire the q-value [22]. p-value < 0.05 was considered statistically significant,
and the q-value was calculated to evaluate the FDR for correction of multiple comparisons.
LEfSe analysis was conducted by LEfSe software (the default LDA score is 3). Finally,
random forest (R pROC and random forest packages, version 2.15.3) was used to construct
a random forest model. Significant species were screened out by mean decrease accuracy
and mean decrease gin, and each model (default 10 times) was cross-validated.

2.6. Functional Database Annotations

DIAMOND software (V0.9.9, https://github.com/bbuchfink/diamond/, accessed on
23 May 2022) was used to compare the unigenes with functional databases, including KEGG
(Version 2018-01-01, http://www.kegg.jp/kegg/, accessed on 23 May 2022), eggNOG
(Version 4.5, http://eggnogdb.embl.de/#/app/home, accessed on 23 May 2022), and CAZy
(Version 201801, http://www.cazy.org/, accessed on 24 May 2022). For each sequence’s
result, the Best Blast Hit was used for subsequent analysis.

2.7. Experimental Procedures of Targeted Metabolomics
2.7.1. Metabolite Extractions

First, 800 µL of cold methanol/acetonitrile/water (2:2:1, v/v) extraction solvent was
added to 100 mg sample, and the mixture was adequately vortexed. Stock solutions of
stable-isotope internal standards were added to the extraction solvent simultaneously. Then,
the samples were under vigorous shaking and incubated on ice, and following this, were
centrifuged at 14,000× g for 20 min at 4 ◦C, whereafter the supernatant was collected and
flowed through a 96-well protein precipitation plate, and then the elution was collected and
dried in a vacuum centrifuge at 4 ◦C. For LC–MS analysis, the samples were re-dissolved in
100 µL acetonitrile/water (1:1, v/v) solvent and centrifuged at 14,000× g at 4 ◦C for 15 min,
and following this, the supernatant was injected.

https://github.com/bbuchfink/diamond/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://github.com/bbuchfink/diamond/
http://www.kegg.jp/kegg/
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2.7.2. LC–MS/MS Analysis

Analyses were performed using an UHPLC (1290 Infinity LC, Agilent Technologies,
Santa Clara, CA, USA) coupled to a QTRAP MS (6500+, Sciex, Framingham, MA, USA). The
analytes were separated on HILIC (Waters UPLC BEH Amide column, 2.1 mm × 100 mm,
1.7 µm) and C18 columns (Waters UPLC BEH C18-2.1 × 100 mm, 1.7 µm). For HILIC
separation, the column temperature was set at 35 ◦C, and the injection volume was 2 µL.
A gradient was then initiated at a flow rate of 300 µL/min. For RPLC separation, the
column temperature was set at 40 ◦C, and the injection volume was 2 µL. A gradient
was then initiated at a flow rate of 400 µL/min. The sample was placed at 4 ◦C during
the whole analysis process. Next, 6500 + QTRAP (AB SCIEX) was performed in positive
and negative switch modes. The ESI-positive source conditions were as follows: source
temperature: 580 ◦C; Ion Source Gas1 (GS1): 45; Ion Source Gas2 (GS2): 60; Curtain Gas
(CUR): 35; IonSpray Voltage (IS): +4500 V. The ESI-negative source conditions were as
follows: source temperature: 580 ◦C; Ion Source Gas1 (GS1): 45; Ion Source Gas2 (GS2): 60;
Curtain Gas (CUR): 35; IonSpray Voltage (IS): −4500 V. The MRM method was used for
mass spectrometry quantitative data acquisition. Polled quality control samples were set in
the sample queue to evaluate the stability and repeatability of the system.

2.7.3. Data Processing

Multi-Quant or Analyst was used for quantitative data processing. The QCs were
processed together with the biological samples. Metabolites in QCs with coefficient of
variation less than 30% were denoted as reproducible measurements.

2.7.4. Statistical Analysis

After sum-normalization, the processed data were uploaded into before importing into
SIMCA-P (version 14.1, Umetrics, Umea, Sweden), where it was subjected to multivariate
data analysis, including PCA and orthogonal partial least-squares discriminant analysis
(OPLS-DA). The sevenfold cross-validation and response permutation testing were used to
evaluate the robustness of the model. The variable importance value (VIP) in the projection
of each variable in the OPLS-DA model was calculated to indicate its contribution to
the classification. Significance was determined using an unpaired Student’s t test. A
p-value < 0.05 was considered statistically significant.

2.8. Integrated Analysis of Metagenomics and Metabolomics

After metagenomics and metabolomics profiling, the top 11 metabolites with the
most significant differences (metabolites with top 11 VIP values and p-value < 0.05 with
qualitative information) and top 18 microbiomes with the most significant differences
(microbiomes with top 18 VIP values and p-value < 0.05 with qualitative information)
were selected for the integrated analysis. First, PCA and PCoA were used to perform the
multi-omics downscaled comparative analysis. Then, multiple direct gradient analysis was
performed using RDA. RDA, based on a linear model, was used to reflect the relationship
between gut microbiomes and significant fecal metabolites. Then, a weighted network was
built by computing the Spearman analysis. Moreover, the correlation coefficient between
metabolites and microbiomes were shown as a heat map. A p-value < 0.05 was considered
statistically significant in this study.

3. Results
3.1. Patient Characterization

In the present study, a total of 32 BLCA patients (EXP group) and 15 normal healthy
individuals (CON group) were recruited. The age for BLCA patients and healthy individu-
als were 65.06 ± 9.277 and 60.60 ± 13.96, respectively. For gender, there were 21 males and
11 females among BLCA patients, and 10 males and 5 females among healthy individuals.
Notably, there were no statistical significances in terms of age and gender of the two groups.
The postoperative pathology revealed that EXP group includes 7 low-grade patients and
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25 high-grade patients. Moreover, there were 6 MIBC (T2 or above) and 26 NMIBC (Ta
and T1) in the EXP group. In particular, to reduce disturbing factors, UBC was the only
pathological type for all patients after selection.

3.2. Gene Number Differences and Correlation Analysis

To identify the total number of genes that differed between groups, box plots of gene
numbers between EXP and CON group were drawn. As shown in Figure 1a, total gene
numbers in the EXP group were slightly more than the CON group. To examine the distri-
bution of gene numbers between the two groups, a Venn graph was drawn. As shown in
Figure 1b, there were 1,516,026 genes commonly detected in the two groups, 485,675 genes
specifically detected in the EXP group, and 183,301 genes specifically detected in the CON
group. Moreover, we performed the correlation of gene abundance between samples. As
shown in Figure 1c, different colors represented the level of Spearman correlation coefficient.
The similarity of gene abundance patterns between samples was relatively high.
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Figure 1. Gene number differences and correlation analysis (BLCA patients, EXP group; healthy
individuals, CON group). (a) Box plot of gene number between groups. The horizontal coordinate
stands for each group, and the vertical coordinate stands for the gene numbers. (b) Venn graph. Each
circle represents a group. The number in overlapping circles represents the gene numbers shared
between groups; the number in non-overlapping circles represents the number of genes unique to the
group. (c) Sample correlation coefficient heat map. Different colors represent the level of Spearman
correlation coefficient. The leftward bias of the ellipse indicates that the correlation coefficient is
positive, and the rightward bias is negative.

3.3. Relative Abundance Analysis of Gut Microbiota

Histograms were plotted for each group, corresponding to the annotation results at
genus and species levels. At the genus level (Figure 2a), the results showed Prevotella,
Bacteroides, Roseburia, Bifidobacterium, Akkermansia, Megamonas, Streptococcus, Faecalibacterium,
Ruminococcus, and Clostridium were the top 10 microbiomes with maximum relative abun-
dance in two groups. At the species level (Figure 2b), the top 10 microbiomes with max-
imum relative abundance in the two groups were shown. On the basis of the relative
abundance at different taxonomic levels, we selected the abundance information of the
top 35 microbiomes in the two groups to create a heat map. At the genus level (Figure 2c),
21 microbiomes had higher abundance in the CON group, including Bifidobacterium and
Lactobacillus. However, 14 microbiomes had higher abundance in the EXP group, including
Streptococcus and Escherichia. At the species level (Figure 2d), 35 microbiomes in two groups
under their genus were shown, which are listed in Table S1. Moreover, the heat maps also
showed the phylum of these top 35 microbiomes (Actinobacteria, Bacteroidetes, Firmicutes,
Proteobacteria, Verrucomicrobia).
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Figure 2. Relative abundance analysis of gut microbiota (BLCA patients, EXP group; healthy individ-
uals, CON group). (a) At the genus level, the top 10 microbiomes with maximum relative abundance
in two groups are shown. (b) At the species level, the top 10 microbiomes with maximum relative
abundance in the two groups are shown. The number in non-overlapping circles represents the
number of genes unique to the group. (c) Heat map of the top 35 microbiomes of abundance ranking
in the two groups at genus level. (d) Heat map of the top 35 microbiomes of abundance ranking in
the two groups at the species level.

3.4. Dimension-Reducing Analysis Based on Species Abundance

First, principal co-ordinates analysis (PCoA) was used to extract the most dominant
elements and structures from multidimensional data by a series of eigenvalues and through
eigenvector sorting. We performed PCoA based on Bray–Curtis distance and selected
the combination of principal coordinates with the highest contribution rate for graph-
ical presentation. As shown in Figure 3a,b, a BLCA microbial dysbiosis was revealed
because overlap was found only in part with taxonomic composition in EXP and CON
at genus and species level. Next, non-metric multi-dimensional scaling (NMDS) analy-
sis was performed to overcome the shortcomings of linear models to better reflect the
non-linear structure of ecological data. As shown in Figure 3c,d, there were some differ-
ences of species composition that were based on this analysis for at genus and species
levels (stress points = 0.136 and 0.127, respectively). Stress points less than 0.2 indicated
that NMDS analysis had reliability.
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Figure 3. Dimension-reducing analysis based on species abundance (BLCA patients, EXP group;
healthy individuals, CON group). Each point in the graph indicates a sample, and samples from
the same group were represented using the same color. The distance between points indicated the
degree of difference. (a) At the genus level, PCoA is shown. (b) At the species level, PCoA is shown.
(c) At the genus level, NMDS is shown. Stress point = 0.136. (d) At the species level, NMDS is shown.
Stress point = 0.127.

3.5. LEfSe and Metastat Analysis of Species Differing between Groups

To screen for species with significant differences between groups in biomarkers, we
first detected species with differences between groups by means of rank sum test and
achieved dimensionality reduction by LDA (linear discriminant analysis); following this,
we evaluated the effect size of the difference species. Then, the LDA score was obtained.
As shown in Figure 4a, species with LDA scores greater than a set value (set to 4 by default)
were revealed, which could be considered biomarkers that are statistically different between
groups, including Streptococcus, Blautia, Bifidobacterium, Lactobacillus, and Eubacterium. The
length of the bar chart represented the effect size of the differing species. As shown in
Figure 4b, on the basis of the abundance of species that differed between groups as screened
by LEfSe above, the differential species at the genus level were selected to draw a cluster
heat map to reflect the distribution of these differential species across samples, including
Streptococcus, Blautia, Lactobacillus, and Eubacterium. Next, we used the Metastats method to
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process the species abundance data between the EXP and CON groups. By correcting for
the p-value, the q-value was obtained. As shown in Figure 4c,d, we found the abundance
of butyrate-producing bacterium SS3_4 and Clostridiales bacterium 36_14 was significantly
reduced in the EXP group compared to the CON group at the species level (q-value < 0.05).
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Figure 4. LEfSe and Metastat analysis of species differing between groups (BLCA patients, EXP
group; healthy individuals, CON group). (a) Species with an LDA score greater than a set value (set
to 4 by default) are shown. The length of the bar graph represents the effect size of the differential
species (i.e., the LDA score). (b) Cluster heat map based on differential species. The clustering tree
on the left is the species clustering tree, and the values corresponding to the middle heat map are
the Z values obtained by normalizing the relative abundance of species in each row. (c) Metastat
analysis of butyrate-producing bacterium SS3_4. * indicates q-value < 0.05. (d) A Metastat analysis of
Clostridiales bacterium 36_14. * indicates q-value < 0.05.

3.6. Functional Characterization of Gut Microbiota

We selected the top 35 functions in terms of abundance and their abundance informa-
tion in each sample on the basis of the function annotations and abundance information of
all samples in each database in order to create a heat map and clustered them at the level of
functional differences. On the basis of the KEGG pathway (Kyoto Encyclopedia of Genes
and Genomes, Figure 5a), eggNOG (Evolutionary Genealogy of Genes: Non-Supervised
Orthologous Groups, Figure 5b), and CAZy (Carbohydrate-Active Enzymes Database,
Figure 5c) comparisons, we found that gut microbiomes in the EXP and CON groups were
abundant in various pathways. The detailed information is shown in Table S2. These
results suggest that dysbiosis microbiota in BLCA patients could be involved in many
pathophysiological activities of the human body.



Genes 2022, 13, 1967 10 of 17

Genes 2022, 13, x FOR PEER REVIEW 10 of 17 
 

 

Table S2. These results suggest that dysbiosis microbiota in BLCA patients could be in-
volved in many pathophysiological activities of the human body. 

 
Figure 5. Functional characterization of gut microbiota (BLCA patients, EXP group; healthy indi-
viduals, CON group). (a) Distributions of relative abundances of KEGG pathway categories in EXP 
and CON groups. (b) Distributions of relative abundances of eggNOG pathway categories in EXP 
and CON groups. (c) Distributions of relative abundances of CAZy pathway categories in EXP and 
CON groups. 

3.7. Changes of Gut-Microbiome-Associated Metabolites in BLCA Patients 
In this section, targeted metabolomics was used to perform the qualitative and quan-

titative analysis of relevant metabolites in EXP and CON groups. The results revealed a 
total of 348 fecal metabolites identified after positive and negative ion switching detection. 
All metabolites were classified according to their chemical taxonomy attribution (CTA) 
information. The number of metabolites for each CTA is shown in Figure 6a. As a result, 
carboxylic acids and derivatives, fatty acyls, organooxygen compounds, steroids and ster-
oid derivatives, indoles and derivatives, organonitrogen compounds, and purine nucleo-
tides were found to have more than 10 metabolites. Next, a volcano plot was used to vis-
ualize the differential analysis for all metabolites detected. As shown in Figure 6b, a total 
of 18 metabolites showed consistent variances with statistical significances between the 
two groups (cutoff: fold change > 1 and p-value < 0.05). Among them, compared to the 
CON group, 17 metabolites were decreased, while only 1 metabolite was increased in the 
EXP group. In order to visualize the fold change of identified metabolites with statistical 
significances, a histogram was drawn, as shown in Figure 6c. As a result, compared to the 
CON group, 11Z-eicosenoic acid, 3-methoxytyrosine, abrine, aniline-2-sulfonate, ara-
chidic acid, conjugated linoleic acids, elaidic acid, glycylleucine, glycylproline, leucyl-gly-
cine, linoelaidic acid, linoleic acid, nicotinamide hypoxanthine dinucleotide, oleic acid, 
petroselinic acid, and ricinoleic acid were reduced, while cholesterol sulfate was increased 
in BLCA patients. Then, correlation analysis was performed to measure the metabolic 
proximities in significantly dysregulated metabolites (p-value < 0.05). As shown in Figure 
6d, these dysregulated metabolites might have some expression correlations that indi-
cated that they may be involved in several biological processes together, namely, func-
tional relevance. Last, according to the enrichment score of KEGG analysis, biosynthesis 
of unsaturated fatty acids (hsa01040, p-value < 0.05) and linoleic acid metabolism 
(hsa00591, p-value < 0.05) were statistically significant pathways for these dysregulated 
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and CON groups. (b) Distributions of relative abundances of eggNOG pathway categories in EXP
and CON groups. (c) Distributions of relative abundances of CAZy pathway categories in EXP and
CON groups.

3.7. Changes of Gut-Microbiome-Associated Metabolites in BLCA Patients

In this section, targeted metabolomics was used to perform the qualitative and quan-
titative analysis of relevant metabolites in EXP and CON groups. The results revealed a
total of 348 fecal metabolites identified after positive and negative ion switching detec-
tion. All metabolites were classified according to their chemical taxonomy attribution
(CTA) information. The number of metabolites for each CTA is shown in Figure 6a. As a
result, carboxylic acids and derivatives, fatty acyls, organooxygen compounds, steroids
and steroid derivatives, indoles and derivatives, organonitrogen compounds, and purine
nucleotides were found to have more than 10 metabolites. Next, a volcano plot was used to
visualize the differential analysis for all metabolites detected. As shown in Figure 6b, a total
of 18 metabolites showed consistent variances with statistical significances between the two
groups (cutoff: fold change > 1 and p-value < 0.05). Among them, compared to the CON
group, 17 metabolites were decreased, while only 1 metabolite was increased in the EXP
group. In order to visualize the fold change of identified metabolites with statistical signifi-
cances, a histogram was drawn, as shown in Figure 6c. As a result, compared to the CON
group, 11Z-eicosenoic acid, 3-methoxytyrosine, abrine, aniline-2-sulfonate, arachidic acid,
conjugated linoleic acids, elaidic acid, glycylleucine, glycylproline, leucyl-glycine, linoe-
laidic acid, linoleic acid, nicotinamide hypoxanthine dinucleotide, oleic acid, petroselinic
acid, and ricinoleic acid were reduced, while cholesterol sulfate was increased in BLCA
patients. Then, correlation analysis was performed to measure the metabolic proximities
in significantly dysregulated metabolites (p-value < 0.05). As shown in Figure 6d, these
dysregulated metabolites might have some expression correlations that indicated that they
may be involved in several biological processes together, namely, functional relevance. Last,
according to the enrichment score of KEGG analysis, biosynthesis of unsaturated fatty acids
(hsa01040, p-value < 0.05) and linoleic acid metabolism (hsa00591, p-value < 0.05) were
statistically significant pathways for these dysregulated metabolites. The KEGG pathway
annotation results and maps are shown in Table S3 and Figure S1.
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Figure 6. Changes of gut-microbiome-associated metabolites in BLCA patients (BLCA patients, EXP
group; healthy individuals, CON group). (a) Quantitative statistics of the identified metabolites in
each chemical classification. Each bar in the figure stands for a different chemical classification attribu-
tion entry. (b) Volcano plot was used to visualize the differential analysis for all metabolites detected.
The horizontal coordinate was the log2 value of the fold change (FC), and the vertical coordinate was
the log10 value of the significant p-value. Significantly dysregulated metabolites: metabolites meeting
FC > 1, p-value < 0.05, are shown in red; metabolites meeting FC < 1, p-value < 0.05 are shown in
blue. Non-significantly dysregulated metabolites are shown in black. (c) The fold change of identified
metabolites with statistical significances are shown. Upregulation of differential metabolites are
shown in red. Downregulation of differential metabolites are shown in green. (d) Heatmap of correla-
tion analysis for these significantly dysregulated metabolites. Red indicates positive correlation, blue
indicates negative correlation, and white indicates non-significant correlation. The size of the dot is
related to the significance of the correlation.

3.8. Integrative Analysis of Metagenomics and Metabolomics

In order to select the relevant microbes and metabolites for the network analysis,
data were further processed. First, we performed redundancy analysis (RDA) to reflect
the relationship between gut microbiomes and environmental factors (significant fecal
metabolites). As shown in Figure 7a, after filtering, the effects of the top 11 metabolites
with the most significant differences (metabolites with top 11 VIP values and p-value < 0.05
with qualitative information) on species data were visualized at the species level. Next,
the correlation coefficients between significantly different microbiomes and metabolites in
two groups were calculated using Spearman analysis and presented in a cluster heat map.
As shown in Figure 7b, the results showed that Clostridium_sp__CAG_590 was positively
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related to various metabolites with statistical significances, such as 11Z-eicosenoic acid,
arachidic acid, conjugated linoleic acids, elaidic acid, linoelaidic acid, linoleic acid, oleic
acid, and petroselinic acid. However, Bacteroides_salyersiae was negatively related to these
metabolites. Moreover, uncultured_Bacteroides_sp was significantly negatively related to
ricinoleic acid. Furthermore, a hydroxy fatty acid, cholesterol sulfate, was positively related
to Bacteroides_fragilis, Parabacteroides_distasonis, and Bacteroides_eggerthii with statistical
significances. These results offered us many possibilities for the verification tests of these
networks in BLCA.
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Figure 7. Integrative analysis of metagenomics and metabolomics (BLCA patients, EXP group; healthy
individuals, CON group). (a) Redundancy analysis (RDA) at the species level. Dots of different colors
or shapes indicate different samples. Arrows indicate metabolite information. A projection was
made from the point to the arrow of the metabolite, and the distance of the projection point from the
origin represents the relative influence of the metabolite on the distribution of the sample community.
(b) Heat map of correlation coefficients between significantly different microbiomes and metabolites
in two groups. Each row indicates a microbiome at the species level. Each column indicates a
significantly different metabolite. The correlation coefficient R is expressed in color. R > 0 indicates
positive correlation (red); R < 0 indicates negative correlation (blue). * indicates p-value < 0.05;
** indicates p-value < 0.01; *** indicates p-value < 0.001.

4. Discussion

In the present study, to identify and analyze the differences of the gut microbiota and
metabolites in BLCA, we characterized the genic, microbial, and functional repertoire and
targeted metabolites of the microbiomes using metagenomics and metabolomics in fecal
samples of 32 BLCA patients and 15 gender-, age-, and body-weight-matched healthy
controls. Because of the role of gut microbiota in shaping the final fecal metabolome,
we performed the combined study of both metagenomics and metabolomics data that
could help us explore the potential biomarkers and molecular mechanisms in the future.
Finally, the results showed that some special gut microbiomes and their key metabo-
lites were significantly increased or decreased in BLCA patients compared to controls,
which indicated a dysbiosis in BLCA patients. These findings provided great possibili-
ties to explore the positive association between intestinal dysbiosis and BLCA. To our
knowledge, this is the first human study using fecal metagenomics and metabolomics
conducted in BLCA.
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In fact, the gut has a large number of microorganisms—about 80% of the body’s normal
microorganisms are concentrated here, and they are known as the body’s second largest
genome. The gut microbiota is important for maintaining intestinal metabolism, intestinal
homeostasis, and the intestinal immune system. Therefore, gut microbiota directly or indi-
rectly affects the tumor progression [23]. Especially in colorectal cancer [24], the positive
association between intestinal dysbiosis and colorectal cancer is well established. This is
because feces are proximal to the colorectal mucosa. In terms of mechanism, TJALSMA [25]
proposed a “driver–passenger” model of gut microbiota carcinogenesis, suggesting that
certain specific intestinal bacteria can induce DNA damage in intestinal epithelial cells,
leading to the initiation of carcinogenesis. These microorganisms are called “drivers”. In
the process of carcinogenesis, the intestinal microenvironment is changed; certain condi-
tionally pathogenic bacteria proliferate preferentially; and the “driver” microorganisms
are gradually replaced by these “passenger” microorganisms, thus promoting tumor pro-
gression. For BLCA, during the process, inflammation, immunity, and microbial dysbiosis
are probable contributors to the known increase in cancer incidence [26]. For example,
one indicator of systemic inflammation, serum neutrophil/lymphocyte ratio (NLR), was
predictive of disease recurrence and progression in both NMIBC and MIBC [27]. Moreover,
in another study, ROS concentration correlated positively with increased tumorigenesis
in mice treated with the carcinogen N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) and
intravesical LPS compared with mice treated with BBN alone [28]. These support the idea
that dysregulated inflammation and immunity are closely related to BLCA progression.
In terms of gut microbiome dysbiosis and BLCA, to date, only one human study has been
conducted [29]. Using pyrosequencing and the real-time quantitative polymerase chain
reaction (PCR) method, the authors found a reduced content of Clostridium cluster XI
and Prevotella in BLCA patients after comparisons in a study including 26 BLCA patients
and 16 age-matched healthy participants. Moreover, the quantities of fecal butyric acid
were found to be significantly decreased in BLCA patients. In our study, using metage-
nomic sequencing, we listed the top 35 microbiomes in abundance for two groups. The
results showed not only Clostridium and Prevotella, but also 19 microbiomes including
Lactobacillus, Bifidobacterium, and Roseburia were significantly reduced in fecal samples of
BLCA patients at the genus level. Our findings were in line with the previous study [29].
Moreover, in our study, we also found some probiotics were reduced in BLCA patients such
as Lactobacillus, Bifidobacterium, and Butyrate-producing bacterium, which were demonstrated
to play a key role in protecting the body and inhibiting the tumor growth. For example,
in Japan, the gut microbiome was reported to alter the NMIBC recurrence because of
widely consumed Lactobacillus in fermented milk products and the reported anti-tumor
properties of oral Lactobacillus preparations in mice [30]. A study reported that an oral
cancer vaccine using a Bifidobacterium vector could suppress tumor growth in a syngeneic
mouse BLCA model. Moreover, they found oral cancer vaccine alone or as an adjunct to
anti-PD-1 antibody could provide a novel treatment option for patients with BLCA [31].
For Butyrate-producing bacterium, such as Roseburia, which was reduced in BLCA patients
in our study, was found to act as probiotic for restoration of beneficial flora, thus reducing
a major structural imbalance of gut microbiota in cancer patients [32].

An important mechanism of gut microbiota is through the multiple metabolites that
may influence tumorigenic progression by regulating apoptosis, proliferation, inflamma-
tion, and immunity. SCFAs, produced by the gut microbiome, are major energy sources for
enterocytes and are ligands for G protein-coupled free fatty acid receptors, being able to
repress the histone deacetylase, which can directly limit tumor progression via prevention
of pro-tumorigenic epigenetic changes [33]. For example, in prostate cancer, gut microbiota
could promote tumor proliferation through regulating systemic and local prostate IGF1
in the host, which was mediated by SCFAs [13]. Moreover, secondary bile acids (BAs)
are another type of bacterial metabolite, such as deoxycholic acid (DCA) and lithocholic
acid (LCA), which were identified as acting as risk factors for colonic inflammation and
cancer [34]. One study demonstrated gut-microbiome-mediated primary-to-BA conversion
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could regulate liver antitumor immunosurveillance [35]. In the metabolomics section of
our study, we found that some SCFAs (propionic acid and butyric acid) were reduced,
and BAs (DCA and LCA) were increased in BCLA patients, despite statistical significance
not being obtained (p-value > 0.05). We speculated that the sample size may interfere the
statistical calculations. Notably, we have some interesting findings that some long chain
fatty acids (LCFAs) were significantly reduced in fecal samples of BLCA patients, including
11Z-eicosenoic acid, elaidic acid, petroselinic acid, ricinoleic acid, oleic acid, and arachidic
acid. The study found that the production of C18-3OH by bacteria could be one of the
mechanisms implicated in the anti-inflammatory properties of probiotics. The production
of LCFA-3OH could be implicated in the microbiota/host interactions [36]. In addition,
LCFAs produced by gut microbiota could form a synergistic triad with the immune system
and regulate inflammation to maintain homeostasis, thus preventing cancer progression re-
lated to inflammation [37]. Therefore, we reasonably speculate that not only SCFAs but also
LCFAs play important roles in preventing BLCA progression. One probable mechanism
might be inflammation regulation and intestinal barrier function protection [16].

Next, in terms of integrated analysis of metagenomics and metabolomics, two points
should be focused on. First, the results of our study showed Clostridium_sp__CAG_590 was
positively related to various metabolites with statistical significances, such as 11Z-eicosenoic
acid, arachidic acid, conjugated linoleic acids, elaidic acid, linoelaidic acid, linoleic acid,
oleic acid, and petroselinic acid. This microbiome and these metabolites were both reduced
in BLCA patients after sequencing. These metabolites belong to LCFAs and lineolic acids
with derivatives. One study regarding inflammatory bowel disease demonstrated that
LCFAs (such as arachidic and oleic acids) and Clostridium were decreased in patients, which
indicated an interaction network to identify key micronutrients, microbiota components,
and metabolites that contribute to inflammatory bowel disease [38]. Moreover, in pediatric
Crohn’s disease, higher abundances of Clostridium and linoleic acid were closely associated
with a sustained response in patients [39]. Thus, we speculated that decreased abundances
of Clostridium might positively regulate LCFAs and lineolic acids, thus acting as regulatory
roles in BLCA progression via regulating inflammation. Notably, cholesterol sulfate was
positively related to Bacteroides fragilis, Parabacteroides distasonis, and Bacteroides_eggerthii
with statistical significances. Recently, researchers discovered that Bacteroides spp. was
the specific bacteria metabolizing cholesterol for the first time [40]. Moreover, in primary
mammary fat pad tumors, cholesterol sulfate was significantly increased in lung metastases,
which suggests potential extracellular uptake by cancer cells [41]. Cholesterol sulfate
was produced by hydroxysteroid sulfotransferase 2B1 (SULT2B1) and accumulates in
human prostate adenocarcinoma and precancerous prostatic intraepithelial neoplasia (PIN)
lesions, which indicates the functional roles of cholesterol sulfate in these diseases [42].
Therefore, further study focusing on the network of cholesterol sulfate and key microbiomes
could be conducted.

However, this study had several limitations. First, it is necessary to expand the UBC
tissue samples in order to explore the possibilities of specific microbiomes and metabo-
lites as biomarkers for UBC detection or follow-up. Next, the present study integrated
metabolomics and microbiome data of BLCA. However, the verifications of networks of spe-
cific microbiomes and metabolites and their regulatory roles in BLCA should be conducted
in our future study. Last but not least, it could be quite interesting to explore differences in
gut microbiota and their metabolites on the basis of different pathological characteristics
of BLCA. The readers must know that biological replicates (multiple extractions of the
same fecal sample) would be more informative rather than a single data point for the
metagenome that is known to be highly variable.

5. Conclusions

In summary, using metagenomics and metabolomics in BLCA in a Chinese popu-
lation, we identified the alterations of gut microbiomes including Streptococcus, Blautia,
Bifidobacterium, Lactobacillus, and Eubacterium. We also found altered metabolites including
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11Z-eicosenoic acid, 3-methoxytyrosine, abrine, aniline-2-sulfonate, arachidic acid, conju-
gated linoleic acids, elaidic acid, glycylleucine, glycylproline, leucyl-glycine, linoelaidic
acid, linoleic acid, nicotinamide hypoxanthine dinucleotide, oleic acid, petroselinic acid,
ricinoleic acid, and cholesterol sulfate. Moreover, using integrated analysis, we preliminar-
ily revealed the associations between specific gut microbiomes and metabolites, such as
Bacteroides_salyersiae and some long chain fatty acids. These findings determined potential
causative links among gut dysbiosis, dysregulated metabolites, and BLCA.
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