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Abstract: SNPs in ABCA7 confer the largest genetic risk for Alzheimer’s Disease (AD) in African
Americans (AA) after APOE ε4. However, the relationship between ABCA7 and cognitive function
has not been thoroughly examined. We investigated the effects of five known AD risk SNPs and
72 CpGs in ABCA7, as well as their interactions, on general cognitive function (cognition) in 634 older
AA without dementia from Genetic Epidemiology Network of Arteriopathy (GENOA). Using linear
mixed models, no SNP or CpG was associated with cognition after multiple testing correction, but
five CpGs were nominally associated (p < 0.05). Four SNP-by-CpG interactions were associated with
cognition (FDR q < 0.1). Contrast tests show that methylation is associated with cognition in some
genotype groups (p < 0.05): a 1% increase at cg00135882 and cg22271697 is associated with a 0.68 SD
decrease and 0.14 SD increase in cognition for those with the rs3764647 GG/AG (p = 0.004) and AA
(p = 2 × 10−4) genotypes, respectively. In addition, a 1% increase at cg06169110 and cg17316918 is
associated with a 0.37 SD decrease (p = 2 × 10−4) and 0.33 SD increase (p = 0.004), respectively, in
cognition for those with the rs115550680 GG/AG genotype. While AD risk SNPs in ABCA7 were
not associated with cognition in this sample, some have interactions with proximal methylation
on cognition.

Keywords: general cognitive function; cognition; ABCA7; African American; Alzheimer’s disease

1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized
by the dysregulation of the amyloid-β (Aβ) pathway, leading to Aβ plaques [1] and
the aggregation of tau tangles [2]. AD accounts for 60–80% of dementia cases in the
elderly [3–5]. Approximately 6.2 million Americans age 65 and older are living with AD,
and this estimate is projected to rise to 13.8 million by 2060 [3]. AD risk differs by race, with
African Americans (AA) twice as likely to develop AD compared to European Americans
(EA) [6]. Because this health disparity places a greater burden of personal and medical care
on AA, it is crucial to better understand AD and its development in this population.

AD is a multifactorial disease that is likely influenced by interactions between genetic,
environmental, and epigenetic factors, along with age-related neurodegeneration [7]. In ad-
dition to age, genetic variants in the apolipoprotein E (APOE) gene are the largest risk factor
for AD in AA [8], with one copy of the APOE ε4 allele increasing AD risk 3–5-fold [9–11].
ABCA7 is the second largest genetic risk factor for AD in AA, with genetic variants in-
creasing AD risk by 70–80% [8]. The ABCA7 gene encodes the ATP-binding cassette (ABC)
transporter A7, which regulates homeostasis of phospholipids and cholesterol in the central
nervous system and peripheral tissues [12–14]. This gene is mostly expressed in the brain,
spleen, lungs, and adrenal gland [15]. Studies have suggested that mutations in ABCA7 are
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associated with AD susceptibility through the dysregulation of lipid metabolism, which
facilitates Aβ clearance [13,14].

Though ABCA7 is a risk locus for AD in both EA and AA, the specific risk variants dif-
fer across groups [16]. In EA, three ABCA7 SNPs, rs3764650, rs3752246, and rs4147929, are
associated with AD. They represent two independent signals, as rs3752246 and rs4147929
are in nearly complete linkage disequilibrium (LD) in EA. Although rs3764650 shows the
strongest association with AD in EA, it is only nominally associated in AA [16,17]. In AA,
two additional ABCA7 SNPs, rs3764647 and rs3752239, have stronger associations with
AD [17], with rs3764647 being in the same LD block as rs3764650 in AA. Interestingly,
another independent SNP in ABCA7, rs115550680, which is monomorphic in EA, is strongly
associated with AD in AA. In particular, the G allele of rs115550680 confers an AD risk
comparable to APOE ε4 (OR = 1.79) in AA [8].

Epigenetic modifications, such as DNA methylation, are potential molecular mech-
anisms that can modulate the effect of genetic risk factors [18]. When methylation sites
(CpGs) are clustered together as a CpG island (CGI), it often serves as a hub for gene
expression regulation. CGIs in the promoter region usually suppress transcription, whereas
CGIs in the intragenic region can interact with multiple regulatory elements and have a
variety of impacts on gene expression (e.g., influencing mRNA isoforms or promoting
enhancer function) [19]. Given the regulatory role of DNA methylation on gene expression,
there has been a growing interest in understanding the extent to which DNA methylation
contributes to AD risk [20–24]. In particular, recent studies on post-mortem brain tissue
found evidence of association between DNA methylation in ABCA7 and both AD and
AD-related pathologies, including Aβ load and tau tangle density [21,22]. This evidence
suggests that methylation in ABCA7 has a non-trivial functional role which is worthy of
further investigation.

Although the relationships between AD and ABCA7 SNPs are well-characterized, there
are limited studies on the association between genetic variation in ABCA7 and measures
of cognitive function and/or cognitive decline prior to the development of dementia.
An imaging study showed that ABCA7 SNPs were associated with amyloidosis among
cognitively healthy individuals and those with mild cognitive impairment, but not among
those with AD, suggesting an early effect of ABCA7 on cognition and cognitive decline [25].
A few studies in EA found inconsistent results regarding the effect of ABCA7 SNPs on
cognition, with associations varying by sex, APOE status, and disease progression [26].
For example, in healthy older adults, a longitudinal study found an association between
rs3764650 and cognitive decline, but only in females [27]. Additionally, interactions between
the APOE ε4 allele and SNPs rs3764650 and rs3752246 were associated with three cognitive
factor scores related to verbal learning and memory, working memory, and intermediate
memory, in a genotype-dependent manner: in the absence of ABCA7 minor alleles, each
additional ε4 allele was associated with lower memory scores; and conversely, in the
presence of ABCA7 minor alleles, each additional ε4 allele was associated with better
memory scores [28]. Lastly, rs3764650 was significantly associated with increased rates of
memory decline among individuals with mild cognitive impairment or AD [29].

To our knowledge, no study has investigated the relationship between ABCA7 genetic
variation and cognition in cognitively healthy AA. Further, few studies have examined
the relationship between DNA methylation in ABCA7 and/or its interaction with genetic
variants on general cognitive function. In this study, we investigate whether previously
identified risk SNPs (referred to as sentinel SNPs) in ABCA7, DNA methylation in ABCA7,
and their interactions are associated with general cognitive function in older AA without
dementia. In order to better understand the functional consequences of these risk factors at
the molecular level, we also evaluated whether identified epigenetic or genetic risk factors
are associated with transcript level ABCA7 gene expression in transformed B-lymphocytes
from the same cohort. A thorough investigation of the relationship between these multi-
omic layers and later-life cognition can help characterize the underlying genetic architecture
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of cognition in older adulthood, prior to dementia onset. This may allow the identification
of targets for intervention and treatment, especially in populations that are most at risk [30].

2. Materials and Methods
2.1. Sample

The Genetic Epidemiology Network of Arteriopathy (GENOA) study is a community-
based longitudinal study aimed at examining the genetic effects of hypertension and
related target organ damage [31]. European American (EA) and African American (AA)
hypertensive sibships were recruited if at least two siblings were clinically diagnosed with
hypertension before age 60. All other siblings were invited to participate, regardless of
hypertension status. Exclusion criteria included secondary hypertension, alcoholism or
drug abuse, pregnancy, insulin-dependent diabetes mellitus, active malignancy, or serum
creatinine levels > 2.5mg/dL. In Phase I (1996–2001), 1854 AA participants (Jackson, MS)
and 1583 EA participants (Rochester, MN) were recruited [31]. In Phase II (2000–2004),
1482 AA participants and 1239 EA participants were successfully followed up, and their
potential target organ damage from hypertension was measured. Demographics, medical
history, clinical characteristics, information on medication use, and blood samples were
collected in each phase. Methylation levels were measured only in AA participants using
blood samples collected in Phases I and II. In an ancillary study (2001–2006), 1010 AA
and 967 EA GENOA participants underwent a battery of established neurocognitive tests
to assess several measures of cognitive function, including learning, memory, attention,
concentration, and language. Written informed consent was obtained from all participants,
and approval was granted by participating institutional review boards (University of
Michigan, University of Mississippi Medical Center, and Mayo Clinic).

A total of 850 AA participants had non-missing genetic and demographic data. Since
participants with a history of stroke or dementia may have had changes in general cognitive
function that differed from non-pathological cognitive aging, we excluded those who had
a history of stroke (n = 43) and/or preliminary evidence of dementia as indicated by a
score of <24 on the Mini-Mental State Examination (MMSE) (n = 76) [32]. We also excluded
participants younger than age 45 (n = 16). A total of 634, 494, and 429 participants were
available for SNP, methylation, and gene expression analyses, respectively (Figure S1).

2.2. Measures
2.2.1. General Cognitive Function

General cognitive function was calculated using five neurocognitive measures evalu-
ated at Phase II [32,33]:

1 The Weschler Adult Intelligence Scale-Revised: Digit Symbol Substitution Test (DSST)
measured complex visual attention, sustained and focused concentration, response
speed, and visuomotor coordination. The DSST is related to the executive function
of working memory in cognition [34]. In this test, participants matched symbols to
numbers according to a key located at the top of the page. The DSST score comprised
the number of symbols correctly matched within 90 s.

2 The Controlled Oral Word Association Test (COWA-FAS) tested for verbal fluency
(phonetic association) and language. This required participants to generate as many
words as possible that start with F, A, and S in 1 min. The score consisted of the total
number of admissible words generated.

3 The Rey Auditory Verbal Learning Test (RAVLT) measured delayed recall, relating to
the cognitive functions of new learning, immediate memory span, and vulnerability
to learning interference, and recognition memory. Scores were determined by the
number of words recalled after a 30-min delay. Scores ranged from 0 to 15.

4 The Stroop Color–Word Test (SCWT) assessed concentration effectiveness by requiring
participants to state the color of a word, rather than the word written. The score sums
the number of color words that were correctly stated in 45 s. Specifically, the ability to
shift perceptual sets in response to novel stimuli was tested.
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5 The Trail Making Test A (TMTA) evaluated visual conceptual tracking, as participants
are required to connect a set of 25 circles quickly and accurately. TMTA provided
information on the cognitive functions of visual search, scanning, processing speed,
and executive functions. The TMTA score was measured as the amount of time
(seconds) the participants took to complete the task. The maximum time allowed was
240 s. Prior to analysis, TMTA scores were natural log-transformed and recoded so
that higher scores indicated better cognitive function.

General cognitive function, a measure of overall cognitive performance, can be quanti-
fied as a summary measure of cognitive tests in multiple cognitive domains [35]. In this
study, general cognitive function was calculated as the first unrotated principal component
(FUPC) from a principal component analysis (PCA) of the five neurocognitive measures
in the full sample (n = 634). The FUPC accounted for 53% of the total variance in the
neurocognitive measures, and loading values of the five measures ranged from 0.52 to 0.87.

2.2.2. Demographic Data

Age was assessed at the time of cognitive testing. Educational attainment, measured
at Phase II, was categorized into a three-level variable: (1) less than high school degree
(reference group), (2) high school degree or GED, and (3) at least some college. Smoking
has been shown to have a substantial impact on the epigenome [36], so we used smoking
data concurrent with DNA methylation measures (Phase I). Participants were categorized
as current, former, or never smokers (reference group).

2.2.3. Genetic Data

Blood samples were genotyped using the Affymetrix® Genome-Wide Human SNP
Array 6.0 or the Illumina 1M Duo. Samples and SNPs with a call rate <95%, samples with
mismatched sex, and duplicate samples were removed. Genotypes were imputed using the
1000 Genomes Project phase I integrated variant set (v.3) (Hg19, released in March 2012).
Of the six SNPs of interest identified from the existing literature (rs3764647, rs3764650,
rs115550680, rs3752246, rs3752239, and rs4147929), five had high imputation quality
(r2 > 0.7), and one (rs3752239) was excluded due to low imputation quality (r2 = 0.49).
SNPs were coded as the dosage of the corresponding AD risk allele, as specified in the
previous literature. Genetic principal components were calculated from genotyped SNPs
and included in regression models to control for population stratification. In order to
evaluate confounding and/or effect modification by APOE isoforms known to influence
dementia risk, we measured rs7412 (to capture the APOE ε2 allele) and rs429359 (to capture
the APOE ε4 allele) using a TaqMan assay and ABI Prism© Sequence Detection (Applied
Biosystems, Foster City, CA, USA) in 1544 participants. Participants were classified as
having 0, 1, or 2 copies of ε2 (represented by the rs7412 T allele) and/or ε4 (represented by
the rs429359 C allele).

2.2.4. DNA Methylation Data

Genomic data was extracted from stored peripheral blood leukocytes from 1106 AA
participants from Phase I and 304 AA participants from Phase II using the AutoGen FlexStar
(AutoGen, Holliston, MA, USA). Bisulfite conversion was performed with the EZ DNA
Methylation Kit (Zymo Research, Irvine, CA, USA), and methylation was measured using
the Illumina HumanMethylationEPIC BeadChip. The raw intensity data were visualized
using the shinyMethyl R package [37] to identify sex mismatches and outliers, which were
removed. Samples with incomplete bisulfite conversion were identified using Qcinfo
in the Enmix R package [38], and then removed. Background correction and dye-bias
normalization were performed using Noob in the Minfi R package [39,40]. We also checked
sample identity using the 59 SNP probes on the EPIC chip, and mismatched samples were
removed. Probe-type bias was adjusted using the Regression on Correlated Probes (RCP)
method [41]. Probes with detection p-value < 10−16 were considered successfully detected,
and probes and samples with a detection rate of <10% were removed [42]. After quality
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control, a total of 1396 samples (n = 1100 from Phase I and n = 294 from Phase II) and
857,121 CpG sites were available for analyses. For this analysis, all methylation data were
collected from Phase I samples.

We selected all CpG sites within 5kb of the ABCA7 gene (a total of 72 CpG sites within
the ABCA7 region: chr19, 1040102–1065570, and hg19). We used Illumina annotation [43] to
characterize each CpG site as being in a promoter region and/or CGI, CGI shore, or CGI
shelf. White blood cell proportions for CD8+ T lymphocytes, CD4+ T lymphocytes, natural
killer cells, B cells, monocytes, and granulocytes were estimated using the Houseman
method [44]. For each CpG site prior to analysis, the methylation beta-value [45,46] was
multiplied by 100 to approximate the percent of methylation at that site. Methylation
beta-values were pre-adjusted for batch effects (sample plate, row, and column) and white
blood cell proportions using linear mixed modeling, and the resulting residuals were added
to the mean values.

2.2.5. Gene Expression Data

Gene expression levels in transformed B-lymphocyte cell lines from blood samples
taken primarily at GENOA Phase II were measured using the Affymetrix Human Tran-
scriptome Array 2.0. The Affymetrix Expression Console was used for quality control, and
all array images passed visual inspection. Affymetrix Power Tool software was used to
process raw intensity data [47]. We normalized Affymetrix CEL files using the Robust Mul-
tichip Average (RMA) algorithm, including background correction, quantile normalization,
log2-transformation, and probe set summarization [48]. Linearity was also maintained us-
ing GC correction (GCCN), signal space transformation (SST), and gain lock (value = 0.75).
We used the Brainarray custom CDF [49] version 19 to map the probes to genes, specifically
removing probes with non-unique matching cDNA/EST sequences that could be assigned
to more than one gene cluster. As a result, the gene expression data processed through the
custom CDF are expected to be free of mappability issues; however, alignment bias may
still exist due to genetic variation, errors in reference genome, and other complications [50].
After mapping, Combat was used to remove batch effects [51].

2.3. Statistical Analysis
2.3.1. Genetic Analysis

We first calculated Pearson correlations between sentinel SNPs. Next, the association
between ABCA7 sentinel SNPs and general cognitive function was analyzed using linear
mixed models with random effects to adjust for relatedness. Model 1 adjusted for age
at cognitive testing, sex, and the first four genetic principal components (PC1-4), with
family as a random effect to account for sibships. Model 2 additionally adjusted for
educational attainment. Model 3 further adjusted for APOE ε2 and ε4. For any SNPs that
were significantly associated with general cognitive function, we further examined the
association between those SNPs and each of the five neurocognitive measures to identify
the domain(s) that most strongly drive the association. Since prior studies have suggested
that the effect of ABCA7 SNPs may vary by sex, education, and/or APOE status, we also
assessed the interaction between the sentinel SNPs and sex, education, or APOE (ε2 and ε4)
on cognitive outcomes.

2.3.2. Epigenetic Analysis

Pearson correlations were calculated for all 72 CpG sites. Next, linear mixed models
were used to test the associations between each of the 72 CpG sites and general cognitive
function. Model 1 adjusted for age at cognitive testing, sex, four genetic principal compo-
nents, age difference between methylation and cognition measurements, smoking status,
and family as a random effect to account for sibships. Model 2 additionally adjusted for
educational attainment, and Model 3 further adjusted for APOE ε2 and ε4. The coMET
package in R was used to create a regional plot to visualize association p-values, correla-
tions, and Ensembl genes [52]. BioRender was used to annotate and format the figure [53].
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For any CpGs that were significantly associated with general cognitive function, we further
examined the association between those CpGs and each of the five neurocognitive measures
in order to identify the domain(s) that most strongly drive the association.

2.3.3. Genetic-Epigenetic Interaction Analysis

Next, we examined the interaction between each CpG site and sentinel ABCA7 SNPs in
association with general cognitive function. In this analysis, we adjusted for age at cognitive
testing, sex, four genetic principal components, age difference between methylation and
cognition measurements, smoking status, and APOE ε2 and ε4, with family as a random
effect to account for sibships (Model 4). Models 1–4, which were used to assess genetic,
epigenetic, and genetic–epigenetic interaction associations with general cognitive function
are shown in Figure S2. To improve interpretability, we mean-centered methylation so that
the β estimates from the regression models reflect the effect sizes for those with average
methylation in the population. For any identified significant interaction, we stratified the
genotypes by number of risk alleles (0, 1, or 2 risk alleles) and conducted contrast tests using
the Emtrends function in the Emmeans package in R [54] to obtain the effect size of the CpG
associated with general cognitive function in each genotype group. Minor homozygote
genotype groups that made up <5% of the sample size were grouped with heterozygous
genotype groups to increase power as appropriate. Plots of SNP-by-CpG interactions on
general cognitive function were generated using the effects [55] and ggplot2 [56] packages in
R. Any identified SNP-by-CpG interactions significantly associated with general cognitive
function were also tested for association with each of the five neurocognitive measures.

As a sensitivity analysis for significant interactions (FDR q < 0.1), we tested the associa-
tion after excluding outlying CpG values that were more than four standard deviations from
the mean (Model 4). We then assessed whether the SNP-by-CpG interactions (FDR q < 0.1)
were driven by potential SNP-CpG correlations by testing the association between each
SNP and its corresponding CpG, adjusting for age at methylation measurement, sex, and
the first four genetic principal components, with family as a random effect. If the SNP and
CpG were associated at p < 0.05, we adjusted out the effect of the SNP from the CpG site
and re-tested the interaction (Model 4).

2.3.4. Gene Expression Analysis

Among the 494 participants with methylation and genetic data, 429 participants also
had gene expression data. Figure S3 presents a graphical depiction of ABCA7 transcripts
observed in the Genotype Tissue Expression (GTEx) project [57], which assesses gene
expression levels in a variety of cell types. A total of 17 transcripts, along with a measure
of overall ABCA7 gene expression, were available for analysis in our study. For SNPs,
CpGs, or interactions that were significantly associated with general cognitive function, we
assessed their association with ABCA7 gene-level and transcript-level expression (Model 5)
using linear mixed models. Model 5 adjusted for age at which gene expression data was
generated (age at blood draw), sex, first four genetic principal components, and family
as a random effect. For models that included CpG sites, Model 5 also included the age
difference between methylation and gene expression measurements. Similarly, for any
significant interaction effects, contrast tests were conducted to obtain the effect size in each
genotype group. Minor homozygote genotype groups (<5% sample size) were grouped
with heterozygous genotype groups to increase power as appropriate.

We next evaluated whether the identified CpG sites within the ABCA7 region correlate
with gene expression of ABCA7 and/or nearby genes in an external public database with
multiple cells/tissues. For this, we used cis- expression quantitative trait methylation
(cis-eQTM) results from peripheral blood mononuclear cells (PBMCs) and three specific
white blood cell types (CD4 + T lymphocytes, monocytes, and neutrophils) in the iMETHYL
database [58,59], which integrated genotype, methylation, and gene expression data from
102 individuals. We also examined gene expression levels of ABCA7 in different cell types
available from the Genotype Tissue Expression (GTEx) project [57].
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2.3.5. Multiple Testing Correction

All statistical analyses were conducted using R (Version 3.6) [60]. For genetic analysis,
the Bonferroni corrected p-value cut-off (p < 0.05/5) was used to claim significance. For all
other analyses, false discovery rate (FDR) correction was applied to each model, and FDR
q < 0.1 was considered significant. Since the SNPs, CpG sites, and transcripts in ABCA7
were all correlated, applying stringent multiple testing corrections might have been too
conservative; thus, any nominal associations were also noted.

3. Results
3.1. Sample Characteristics

The sample included 634 AA without dementia (Table 1). Overall, participant age
ranged from 45 to 85 years (mean = 63.3 years), and the mean age difference between
Phase I methylation and cognitive measurements was 6.0 years (SD = 1.3). More than half
of participants (74.9%) were female, and 47.3% had at least some college education. General
cognitive function was normally distributed. Mean RAVLT score was 7.1 (SD = 3.3) words
recalled, mean DSST score was 34.4 (SD = 12.6) symbols, mean COWA-FAS score was
29.7 (SD = 11.6) words, mean SCWT score was 22.5 (SD = 9.8) items, and mean TMTA score
was 61.6 (SD = 32.0) seconds to completion.

Table 1. Sample characteristics of Genetic Epidemiology Network of Arteriopathy (GENOA) African
Americans (n = 634).

Mean (SD) or n%

Age at cognition measurement (years) 63.31 (8.08)
Age difference between methylation and cognition measurements (years) a 6.03 (1.29)
Sex

Female 475 (74.90%)
Male 159 (25.10%)

Educational attainment
At least some college 300 (47.32%)
High school degree/GED 169 (26.66%)
Less than high School degree/GED 165 (26.03%)

Smoking status
Current smoker 105 (16.56%)
Former smoker 146 (23.03%)
Never smoker 383 (60.41%)

General cognitive function 0.00 (1.00)
Delayed recall (RAVLT, number of words recalled) 7.05 (3.34)
Processing speed (DSST, number of symbols) 34.44 (12.62)
Word fluency (COWA-FAS, number of words) 29.73 (11.61)
Concentration effectiveness (SCWT, number of items) 22.53 (9.83)
Visual conceptual tracking (TMTA, seconds to test completion) 61.63 (31.96)

Abbreviations: HS, high school; RAVLT, Rey Auditory Verbal Learning Test; DSST, Digit Symbol Substitution Test;
COWA-FAS, Controlled Oral Word Association Test; SCWT, Stroop Color–Word Test; TMTA, Trail Making Test A.
a. The subset sample (n = 494) consists of subjects with available genetic and methylation data.

3.2. Correlation among Six Cognitive Outcomes

Pearson correlations (r) among the six cognitive outcomes (general cognitive function
and the five individual neurocognitive measures) are shown in Table S1. The five neurocog-
nitive measures were moderately correlated (Pearson r ranged from 0.24 to 0.66), with the
highest correlation between DSST and TMTA (r = 0.66, p < 0.001).
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3.3. Correlation among ABCA7 SNPs

Pearson correlations among the five sentinel ABCA7 SNPs are shown in Table S2.
Rs3764647 was strongly correlated with rs3764650 (r = 0.84, p < 0.001), and rs3752246 was
highly correlated with rs4147929 (r = 0.96, p < 0.001). The other sentinel SNP pairs were
only weakly correlated or uncorrelated.

3.4. Genetic Associations

In Models 1 and 2, there were no ABCA7 SNPs that met the nominal significance thresh-
old (p < 0.05, Table S3). Although APOE was not part of the primary analysis, APOE ε2 and
ε4 were analyzed separately as exposures in Models 1 and 2. APOE ε4 was associated with
general cognitive function in both models in the expected direction (higher dosage of ε4 was
associated with lower cognitive function). After adjusting for educational attainment and
APOE ε2 and ε4 in Model 3, sentinel SNPs remained unassociated with general cognitive
function. There were no observed nominal or significant interactions between SNPs and
sex, APOE isoforms, or educational attainment on general cognitive function.

3.5. Epigenetic Associations

Among the 72 CpG sites examined, six were nominally associated with general cogni-
tive function in at least one of the three Models (Table S4). After adjusting for educational
attainment and APOE ε2 and ε4 (Model 3), five CpGs (cg22271697, cg00874873, cg11714200,
cg26264438 and cg12082025) in the ABCA7 region were nominally associated with general
cognitive function. Figure 1 illustrates the regional plot of association p-values of the
72 CpGs in the ABCA7 region with general cognitive function according to the chromoso-
mal positions of CpG sites, as well as the correlations between the CpGs (Model 3).

3.6. Genetic-Epigenetic Interactions

Since rs3764647 and rs3764650, as well as rs4147929 and rs3752246, are highly cor-
related with each other (Table S2), we removed one SNP from each pair. We selected
rs3764647 because it had stronger evidence of association with AD in AA than rs3764650 [8].
We selected rs3752246 because it was a missense variant and more likely to have a func-
tional effect than rs4147929, which is intronic [61]. Thus, we analyzed three independent
risk SNPs (|r| < 0.60) in the interaction analysis. We assessed the interaction between
each of the three independent sentinel SNPs (rs3764647, rs115550680, and rs3752246)
and 72 CpG sites on general cognitive function, and identified four significant SNP-
by-CpG interactions (FDR q < 0.1) that were associated with general cognitive function
(Table 2): rs3764647*cg00135882 (p = 1.46 × 10−4), rs3764647*cg22271697 (p = 5.77 × 10−4),
rs115550680*cg06169110 (p = 2.18 × 10−4), and rs115550680*cg17316918 (p = 4.84 × 10−4).
The two SNPs and four CpGs that were involved in the four significant SNP-by-CpG
interactions are shown in Figure 1 to highlight their positions with respect to neighboring
genes, regulatory elements, and CGIs in the ABCA7 region. All interactions with at least
nominal significance are shown in Table S5. Notably, an additional seven CpG sites had
nominally significant interactions with rs115550680, and one additional site had a nominally
significant interaction with rs3764647. In Table S6, we present Pearson correlations among
the ABCA7 CpG sites that were nominally associated with general cognitive function (Table
S4) and/or were involved in an FDR-significant SNP-by-CpG interaction (Table 2). The
majority of these CpGs were weakly correlated or uncorrelated.
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Figure 1. Regional plot of the association between DNA methylation in the ABCA7 region and general
cognitive function. The top panel shows −log10 (p value) for the association between methylation and
general cognitive function, adjusting for age, sex, age difference between methylation and cognition
measurements, educational attainment, APOE ε2, APOE ε4, smoking status, PC1-4, and familial
relatedness (random effects; Model 3), according to chromosomal positions. Nominally significant
(p < 0.05) associations are above the dashed line. The middle panels show Ensembl genes, regulatory
elements, and CpG islands (UCSC Genome Browser) in the ABCA7 region. The lower panel shows
the correlations in the DNA methylation levels among the 72 CpG sites in this region. The five CpGs
that have a nominal association with general cognitive function are marked by asterisks. The four
CpGs and two SNPs that were identified in the SNP-by-CpG interactions associated with general
cognitive function are marked by diamond symbols (CpGs) and arrows (SNPs).
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Table 2. Interaction between ABCA7 sentinel SNPs and CpG sites on general cognitive function (FDR q < 0.1; n = 494).

SNP Annotation CpG Site Annotation Main Effects Interaction

SNP*CpG Site
Interaction SNP Position Risk

Allele RAF Cpg Site Position Site Type Relation
to CGI βSNP p-Value βCpG p-Value βinteraction p-Value

rs3764647*cg00
135882 rs3764647 1044712 G 0.20 cg00135882 1065783 Promoter North

Shore −0.01 0.875 0.24 0.086 −0.80 1.46 × 10−4 **

rs3764647*cg22
271697 rs3764647 1044712 G 0.20 cg22271697 1042537 Promoter North

Shelf −0.07 0.319 0.16 7.23 × 10−6 * −0.18 5.77 × 10−4 **

rs115550680*cg06
169110 rs115550680 1050420 G 0.06 cg06169110 1046615 Gene

Body
CG

Island −0.23 0.045 * 0.06 0.143 −0.38 2.18 × 10−4 **

rs115550680*cg17
316918 rs115550680 1050420 G 0.06 cg17316918 1056930 Gene

Body
Open
Sea −0.05 0.661 −0.06 0.164 0.41 4.84 × 10−4 **

Abbreviations: AA, African American; EA, European American; RAF, risk allele frequency in GENOA. Model 4: General cognitive function ~ SNP + CpG + SNP*CpG + age at cognitive
testing + age difference between methylation and cognition measurements + sex + educational attainment + APOE ε2 + APOE ε4 + smoking status + PC1-4 + familial relatedness
(random effect). * p < 0.05, ** FDR q < 0.1.
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For interactions with FDR q < 0.1, we performed contrast tests to estimate the effect
size of the specific CpG site per genotype group. In all four cases, the minor homozygote
genotype group had a small frequency (<5% of the sample size); thus, we combined
them with the corresponding heterozygote genotype group. Contrast tests showed that
methylation is associated with general cognitive function in some genotype groups, but
not others (p < 0.05; Table 3 and Figure 2).

Table 3. Estimated effect of CpG site on general cognitive function for the given ABCA7 SNP genotype
group (n = 494).

SNP Cpg Site Genotype βCpG p-Value

rs3764647 a cg00135882
AA 0.09 0.566

GG/AG −0.68 0.004 *

rs3764647 a cg22271697
AA 0.14 2.00 × 10−4 *

GG/AG −0.02 0.719

rs115550680 b cg06169110
AA 0.05 0.221

GG/AG −0.37 2.00 × 10−4 *

rs115550680 b cg17316918
AA −0.06 0.202

GG/AG 0.33 0.004 *
a: GG (n = 17) and AG (n = 156) groups were combined in the GG/AG group (n = 173). b: GG (n = 5) and AG (n = 54)
groups were combined in the GG/AG group (n = 59). Model 4: General cognitive function~ SNP + CpG + SNP*CpG +
age at cognition measurement + age difference between methylation and cognition measurements + sex + educational
status + APOE ε2 + APOE ε4 + smoking status + PC1-4 + familial relatedness (random effect). * p < 0.05.
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Figure 2. Linear prediction of CpG sites (% methylated) on general cognitive function for a given
SNP genotype group in the ABCA7 region: (A) rs3764647*cg00135882, (B) rs3764647*cg22271697,
(C) rs115550680*cg06169110, and (D) rs115550680*cg17316918. Models were adjusted for age, sex, age
difference between methylation measurement and cognition measurement, educational attainment,
APOE ε2, APOE ε4, smoking status, PC1-4, and familial relatedness as a random effect (Model 4).
Regression lines are shown with standard error bands. For rs3764647, GG (n = 17) and AG (n = 156)
groups were combined in the GG/AG group (n = 173). For rs115550680, GG (n = 5) and AG (n = 54)
groups were combined in the GG/AG group (n = 59).



Genes 2022, 13, 2150 12 of 19

Rs3764647 had significant interactions with two CpGs (cg00135882 and cg22271697).
For those with the risk genotype (GG/AG), a 1% increase at cg00135882 was associated
with a 0.68 SD decrease in general cognitive function (p = 0.004, Figure 2A); whereas for
those with the AA genotype, a 1% increase at cg22271697 was associated with a 0.14 SD
increase in general cognitive function (p = 2.00 × 10−4, Figure 2B). Similarly, rs115550680
had interactions with two CpGs (cg06169110 and cg17316918). For those with the risk
genotype (GG/AG), a 1% increase at cg06169110 was associated with a 0.37 SD decrease in
general cognitive function (p = 2.00 × 10−4, Figure 2C), and a 1% increase at cg17316918
was associated with a 0.33 SD increase in general cognitive function (p = 0.004, Figure 2D).

We performed a sensitivity analysis by excluding outlying CpG values beyond four
standard deviations of mean methylation, and our results remained consistent (Table S7).
To test whether the interaction was driven by potential SNP-CpG correlation, we assessed
the association between each SNP-CpG pair. We observed nominal associations between
rs3764647 and cg22271697, as well as between rs115550680 and cg06169110. For these
two SNP-CpG pairs, we regressed out the SNP effect from the corresponding CpGs and
re-tested the interactions. The results remained consistent with those reported in Table 3
(Table S8). We also tested the association between all four significant interactions with
each of the five neurocognitive domains. Similar interactions were observed for multiple
neurocognitive measures, especially DSST and SCWT, in which all four interactions were
significantly associated (Table S9).

3.7. Gene Expression Associations

To understand the functional effects of identified SNP-by-CpG interactions, we examined
their interaction effects (Tables S10 and S11) as well as marginal effects (Tables S12 and S13)
on ABCA7 gene and transcript expression. At the gene level, none of the identified SNP-by-
CpG interactions were associated with gene expression in our sample. However, we found
a negative association between one of the SNPs, rs115550680, and gene level expression
of ABCA7 (ENSG00000064687): for each additional rs115550680 G allele, there was a 0.05
decrease in gene expression (p = 0.027).

At the transcript level, two SNP-by-CpG interactions (rs115550680*cg17316918
and rs3764647*cg22271697) were nominally associated with two different transcripts
(ENST00000525939 and ENST00000531467) (Table S10). ENST00000531467 (Chromosome 19:
1,062,261–1,063,945 forward strand) is a protein coding transcript with four coding exons
(Figure S3). ENST00000525939 (Chromosome 19: 1,062,261–1,063,945 forward strand) is a
retained intron, found primarily in the spleen, pituitary, whole blood, and brain (cerebellum
and cerebellar hemisphere) (Figure S3). Although the interactions were only nominally
significant, we performed contrast tests to estimate the effect size of the CpG site in each
genotype group on each identified transcript. Contrast tests showed that methylation at
cg17316918 trended toward a positive association with ENST00000525939 among those
with the rs115550680 risk genotype (GG/AG) but did not reach nominal significance
(Table S11). We also assessed the marginal associations of the two SNPs and two CpGs
involved in the interactions on each of the ABCA7 transcripts (Tables S12 and S13). We
found that rs115550680 was negatively associated with 11 ABCA7 transcripts, including
ENST00000531467, at FDR q < 0.1 (Table S12). Rs3764647 was nominally associated with
only ENST00000530703 (p = 0.037; Table S12). Among the CpGs involved in the interactions,
cg06169110 was nominally associated with two transcripts (Table S13).

The iMETHYL [62] cis-eQTM results for PBMCs and the three white blood cell types
showed that there were CpGs within the ABCA7 region, including within the promoter
region, that regulate expression of both ABCA7 and nearby genes. However, the CpGs
identified in the significant SNP-by-CpG interactions in our study were not associated with
gene expression of ABCA7 or nearby genes at FDR q < 0.05.
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4. Discussion

While previous studies have implied that ABCA7 is a causal gene for AD [63–66],
there is a dearth of studies examining the relationship between ABCA7 and cognitive
function. AD is a gradual neurodegenerative disease, characterized by noticeable cognitive
impairment in areas of episodic memory, semantic memory, and executive function, with
pathophysiology preceding the illness decades prior [67,68]. Studying the relationship
between SNPs and CpGs in ABCA7 and cognition may enhance our understanding of cog-
nitive health and further elucidate the role of ABCA7 in cognitive aging preceding AD. To
our knowledge, this study is the first assessment of the association and interaction between
DNA methylation and genetic risk factors in ABCA7 on cognition in AA without dementia.

In this study, we found no association between known AD-associated SNPs and
cognitive measures. This is, perhaps, not surprising, as previous studies have been incon-
sistent regarding the association between ABCA7 SNPs and cognition. Most of the studies,
however, have been conducted in primarily European ancestry populations [27–29,69].
For example, the Three-City Dijon study found no association between ABCA7 common
variants and global cognition, nor other cognitive outcomes [69]. Other studies in EA have
shown that SNPs may be associated with cognition in subgroups stratified on gender [27],
APOE status [28], or disease progression [29]. In light of this, we also assessed whether
ABCA7 SNP associations are modified by sex, APOE major isoforms, and/or education
status. Unlike prior studies [27,28], we did not find any evidence of interaction. Lack of
association with cognition for the sentinel SNP-by-sex and SNP-by-APOE interactions may
be due to differences in ancestry or to small sample size, as those studies have sample
sizes ranging from 1153 to 3267 [39,40]. Our study also did not find SNP-by-education
associations interactions on cognition. This is consistent with another study, which ob-
served no interaction between education and ABCA7 variants on memory performance in
either EA or AA; however, a weak signal was observed for memory decline in AA, which
is a cognitive measure more closely related to AD and dementia than general cognitive
function [70].

Other lines of evidence also suggest that the ABCA7 risk variants may not be highly
relevant to the neurological pathways underlying normal cognitive function and/or cog-
nitive reserve. For example, previous GWAS for general cognitive function and AD have
shown few overlapping loci [35,71]. Further, studies of cognitively “resilient” individu-
als who live to an older age with intact cognitive function, despite the presence of AD
neuropathology, have found the genetic architecture of cognitive resilience to be distinct
from that of AD [72]. At this point, relatively little is known about the pathways involving
genetic variants and cognitive aging in those without dementia. Thus, studying variants
that affect general cognitive function before development of dementia may identify novel
pathways for therapeutic targets.

Only one epigenome-wide association study (EWAS) has examined the association
between all CpG sites across the genome, including CpGs in ABCA7 gene, and general
cognitive function in participants from multi-ethnic backgrounds [73]. This study did
not identify any significant associations between ABCA7 and general cognitive function.
However, due to the large numbers of CpG sites tested, the EWAS could have missed
signals with smaller effect sizes. Moreover, the EWAS sample was mostly composed of
EA. Our study, which focused on CpG sites in ABCA7 in an AA cohort, would give us
more power to detect an association in this region among AA. Nevertheless, we also failed
to detect any associations between CpGs and general cognitive function after multiple
testing correction, although six CpGs were associated at a nominal level. Importantly, we
examined methylation levels in whole blood leukocytes, which is not the most relevant
tissue for brain function. A study in post-mortem brain tissue found associations between
CpGs in ABCA7 and AD, as well as an increased burden of pathologies (e.g., Aβ load and
tau tangle density), whereas another study failed to demonstrate differential methylation
in peripheral blood between AD patients and controls [21]. Although methylation patterns
differ between blood and brain tissues [23,74], blood cells touch every cell bed that affects
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the brain, and are related to chronic inflammation and oxidative stress, which are linked
to cognitive performance [75,76]. Studying methylation in blood also allows us to study
epigenetic associations with cognition in living participants in an inexpensive and non-
invasive manner.

Although ABCA7 sentinel SNPs and CpG sites were not associated with general cogni-
tive function, we did find evidence of SNP-by-CpG interactions. Four interactions reached
FDR significance (rs3764647*cg00135882, rs3764647*cg22271697, rs115550680*cg06169110,
and rs115550680*cg17316918). Further, a total of nine CpG sites had at least nominally
significant interactions with rs115550680 on cognition function. For participants who are
homozygous for the rs115550680 major allele (AA), local methylation does not seem to
have an effect on cognitive function. However, for participants who carry the risk allele
(GG/AG), methylation at local CpGs may play an important role in cognition. This might
be related to the different ABCA7 transcripts that are involved in each case. Rs115550680 is
located in an LD block that spans several introns and exons [8]. A prior study suggested
that there is a 44-base pair exonic deletion (rs142076058, p.Arg578 fs) among rs115550680 G
carriers, which could cause a frameshift in the ABCA7-coding sequence, resulting in the for-
mation of a premature termination codon [77]. Indeed, our gene expression analysis found
that the risk allele (G) at rs115550680 was strongly associated with decreased expression of
11 ABCA7 transcripts. Taken together, these data suggest that this SNP might influence the
major isoforms that are expressed, and the expressed alternative transcripts may influence
cognitive function. Furthermore, alternative transcripts that are expressed in those carrying
the risk allele may be further modulated by methylation level at local CpG sites, which
may lead to differences in cognitive function in this group. Consistent with this hypothesis,
methylation at cg17316918 was associated with transcript ENST00000525939 in rs115550680
risk allele carriers (GG/AG) only. Interestingly, this transcript is largely expressed in the
brain. However, there is no prior evidence to show an association between this transcript
and AD and/or cognition. Nonetheless, alternative splicing of ABCA7 is likely to play a
similar important role in cognition, as has been demonstrated in AD [78,79].

The other SNP that had significant interactions with ABCA7 CpG sites, rs3764647, is a
missense mutation, where the risk allele (G) leads to the amino acid change p.His395Arg
in the first extracellular loop of the ABCA7 protein [16]. One CpG site (cg00135882) is
associated with cognitive function in participants who carry the risk allele (GG/AG), and
another CpG site (cg22271697) is associated with cognitive function in those who do not
carry the risk allele (AA). This differential pattern may be due to different functions of the
two transcripts instead of alternative splicing. Consistently, we did not observe a direct
association between this SNP or CpG with expression of ABCA7 transcripts. Notably, three
of the CpGs (cg00135882, cg22271697, and cg06169110) in the significant SNP-by-CpG
interactions were either flanking or within CGIs. Active intragenic CGIs may change the
major isoforms that are expressed by interfering with splicing and/or polyadenylation.
Alternatively, they may promote enhancer function or act directly as an enhancer to regulate
gene expression [19]. Consistent with this hypothesis, all four CpGs are located in regions
that contain at least one important regulatory element (i.e., promoters, enhancers, and/or
CTCF binding sites). Taken together, these results suggest that SNPs and CpG sites in
ABCA7 may interact to modulate the expression and/or function of ABCA7 transcripts,
and that some of the affected transcripts may influence cognitive function in older AA.

Indeed, recent literature suggests that SNP-by-CpG interactions might be an im-
portant mechanism underlying human complex diseases [80–82]. Similar SNP-by-CpG
interactions have been identified in association with complex human disorders, such as
breast cancer [83], type 2 diabetes [84], alcohol dependence [85], and suicide attempts in
schizophrenia [86]. One factor to note, however, is that SNPs could have a cis-regulatory
effect on local CpGs, which could cause a spurious interaction. However, our sensitivity
analysis demonstrated that the interactions which we observed were not solely due to
SNP-CpG correlations. In summary, we have demonstrated that a complicated interplay be-



Genes 2022, 13, 2150 15 of 19

tween genetic and epigenetic risk factors in the ABCA7 region may play an important role in
cognitive function. Future studies are needed to disentangle this complicated relationship.

Our study is not without limitations. First, our gene expression measures were
taken from transformed B-lymphocytes from immortalized cell lines. While transformed
B-lymphocytes are a convenient source of DNA, the transformation process causes epige-
netic changes to the immortalized cells that are not fully understood [87]. However, they
provide a unique and efficient way to examine the functional effects of genetic and epige-
netic variation on gene expression, since the environmental conditions of the cells are the
same across individuals. In addition, previous cis-eQTM studies in white blood cells have
shown that at least some CpGs within the ABCA7 region promote or repress gene expression
of ABCA7 and nearby genes, but we did not observe eQTM relationships with those same
CpGs in our study. One reason for this may be that our methylation was measured in
blood and included a mix of white blood cells, while our gene expression was measured
in transformed B-lymphocytes. Additional work is needed to understand how ABCA7
CpGs and their interactions with SNPs influence proximal gene expression in a variety
of white blood cell types, which would further shed light on the complicated biological
mechanisms that contribute to cognitive function. We also acknowledge that our findings
need to be replicated in a larger sample of AA. Further studies in animal and cellular models
are also warranted to confirm our findings and to reveal how SNPs and methylation jointly
contribute to cognitive function. Finally, due to the cross-sectional nature of our study, we
cannot infer causality of our findings or quantify how the SNP-by-CpG interactions alone
impact cognition. To that end, longitudinal studies are necessary to investigate how SNPs
and/or CpGs affect cognitive changes over time.

Our study also has notable strengths. To our knowledge, our study is the first to
take a multi-omic approach to investigate the relations between the ABCA7 gene region
and cognitive function in a population-based cohort of older adults without diagnosed
dementia. Our study was also conducted on AA, an understudied population with a higher
prevalence of AD [3,5] and higher conferred risk of AD from ABCA7, compared to EA [8].
Additionally, with comprehensive cognition measures, we were able to assess associations
with multiple neurocognitive domains, as well as general cognitive function.

5. Conclusions

In the present study, we evaluated the association between ABCA7 genetic, epige-
netic, and transcriptomic markers and cognitive function in 634 AA participants without
preliminary evidence of dementia. We found that DNA methylation levels at local CpG
sites modify the relationship between genetic variants and general cognitive function.
Specifically, two SNPs in the ABCA7 gene region (rs3764647 and rs115550680) may regu-
late the effects of methylation on cognition. Differential gene expression analysis further
highlighted the potentially causal transcripts. In conclusion, our findings suggest that a
complicated interplay between genetic and epigenetic factors in ABCA7 may influence
cognition in older AA without dementia.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13112150/s1, Figure S1: Flow diagram illustrating sample
sizes for genetic (n = 634), epigenetic (n = 494), and transcriptomic (n = 429) analyses in GENOA AA;
Figure S2: Models used to assess genetic, epigenetic and genetic-epigenetic interaction associations
with general cognitive function; Figure S3: Transcript expression of ABCA7: ENSG00000064687
(12 ATP binding cassette subfamily A member 7 [Source: HGNC Symbol; Acc:HGNC:37]); Table S1:
Pearson’s correlations among the six cognitive measures (n = 634); Table S2: Pearson’s correlations
among the five sentinel ABCA7 SNPs (n = 634); Table S3. Association between ABCA7 sentinel SNPs
and general cognitive function (n = 634); Table S4. Association of CpGs in the ABCA7 region and
general cognitive function (p < 0.05; n = 494); Table S5. Interaction between ABCA7 sentinel SNPs and
CpG sites on general cognitive function (p < 0.05; n = 494); Table S6. Pearson’s correlations among
ABCA7 CpG sites (n = 494); Table S7. Estimated effect of CpG site on general cognitive function for
given ABCA7 SNP genotype group, after excluding outlying values for CpG sites; Table S8. Estimated
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effect of CpG site on general cognitive function for given ABCA7 SNP genotype group, after adjusting
for SNP effect; Table S9: Interaction between ABCA7 sentinel SNPs and CpG sites on neurocognitive
measurements (n = 494); Table S10. Interaction between ABCA7 sentinel SNPs and CpG sites on
transcripts in the ABCA7 gene region (p < 0.05; n = 429); Table S11. Estimated effect of CpG site on
ABCA7 transcripts for given ABCA7 SNP genotype group (n = 429); Table S12. Association of SNPs
on transcripts in the ABCA7 gene region (p < 0.05; n = 429); Table S13. Association of CpG sites on
transcripts in the ABCA7 region (p < 0.05; n = 429).
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