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Abstract: (1) Background: tumor profiling enables patient survival prediction. The two essential
parameters to be calibrated when designing a study based on tumor profiles from a cohort are the
sequencing depth of RNA-seq technology and the number of patients. This calibration is carried
out under cost constraints, and a compromise has to be found. In the context of survival data, the
goal of this work is to benchmark the impact of the number of patients and of the sequencing depth
of miRNA-seq and mRNA-seq on the predictive capabilities for both the Cox model with elastic
net penalty and random survival forest. (2) Results: we first show that the Cox model and random
survival forest provide comparable prediction capabilities, with significant differences for some
cancers. Second, we demonstrate that miRNA and/or mRNA data improve prediction over clinical
data alone. mRNA-seq data leads to slightly better prediction than miRNA-seq, with the notable
exception of lung adenocarcinoma for which the tumor miRNA profile shows higher predictive power.
Third, we demonstrate that the sequencing depth of RNA-seq data can be reduced for most of the
investigated cancers without degrading the prediction abilities, allowing the creation of independent
validation sets at a lower cost. Finally, we show that the number of patients in the training dataset
can be reduced for the Cox model and random survival forest, allowing the use of different models
on different patient subgroups.

Keywords: sequencing depth; cancer; microRNA; survival; Cox model; random survival forest model

1. Introduction

microRNAs (miRNAs) are near 22-nucleotide long RNAs repressing protein-coding
gene expression at post-transcriptional level [1]. miRNAs have been shown to be implicated
in various steps of carcinogenesis: initiation, propagation and metastasis [2]. The cancer
genome atlas (TCGA) project has provided microRNA sequencing on thousands of tumor
samples over 33 cancer types, together with patient follow-up [3]. miRNAs represent
promising biomarkers to predict patient survival in cancer [4]. TCGA datasets are extremely
valuable to build survival models with tumor miRNA expression, and contain large enough
cohorts for many tumor types to evaluate the predictions. A semi-parametric and popular
model to link patient survival with genomics variables, dealing with censored data and
assuming proportional hazards, has been proposed by D.R. Cox [5]. Classically, in the
case of high-dimensional datasets, a penalty term is used to constrain the coefficients of
the model, and to select only a subset of genes. Different forms of penalties exist [6], but
we will focus on the elastic net penalty [7] in this paper, as we have recently shown that
they provide similar performances [8]. More recently, non-parametric machine learning
algorithms have been proposed and adapted to deal with survival data, including random
survival forest [9]. Random survival forest potentially offers more flexibility, as it does not
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assume any proportionality between hazards, and takes into account non-linear effects and
interactions between variables [10,11].

Building and evaluating efficient models from miRNA expression, applicable in clinics,
requires to build large datasets from patient cohorts. It implies the recruitment of many
patients, and the tumor miRNA profiling at a high enough sequencing depth. Increasing
the number of patients and/or the sequencing depth means increasing the cost, but may
not lead to direct improvement of the prediction performance of the models. Moreover,
validation datasets remain scarce and expensive to build [12]. Thus, a compromise has
to be found. For tumor mRNA profiling, P. Milanez-Almeida et al. [13] showed that the
sequencing depth could be decreased by typically two orders of magnitude for TCGA
datasets for most cancers when using the Cox model with elastic net penalty. They use
C-index and p-value from single variable Cox model as prediction performance metrics.
They argue that the saved cost could be used to increase the number of patients and/or to
perform longitudinal studies.

The goal of the present work is to investigate the required miRNA and mRNA sequenc-
ing depth together with the number of patients in the training dataset to build optimal
performance models according to well-established metrics (i.e., C-index and integrated
Brier score), both with the classical Cox model with elastic net penalty and random survival
forest. Additionally, we have validated our results with an independent cohort.

2. Materials and Methods
2.1. Overview of the Methodology

Supplementary Figure S2 shows the methods as a flowchart. Briefly, sequencing data
from TCGA are down-sampled (see Section 2.6.1), and then a cross-validation procedure
is performed (as detailed in Section 2.3). Learning of the model is performed on 80% of
the patients, eventually further reduced (see Section 2.6.2), and testing the performance
on the remaining 20% is performed using the C-index and the Integrated Brier Score (IBS).
Subsampling is performed both on the training set and on the testing set for TCGA datasets,
which aims to answer the question “can we reduce both the sequencing depth for learning
models and for patients in hospital?”.

2.2. Cox Model with Elastic Net Penalty and Random Survival Forest: The Link between Genetic
and Survival Data
2.2.1. Cox Proportional Hazards Model with Elastic Net Penalty

Let T denote the survival time (also called the ‘time-to-event’). The Cox model [5] is
widely used in medicine to link covariates to survival data through the hazard function,
defined for all time instants t > 0, h(t) = lim

h→0

P(t≤T<t+h|T≥t)
h , which represents the instanta-

neous death probability per unit of time. In the Cox model, the hazard function for patient
i is modeled as follows:

h(t; X i) = h0(t) exp(βTX i),

where h0(t) is the baseline hazard function, X i = (Xi
1, . . . , Xi

p)
T the vector of covariates for

patient i (here as mRNA or miRNA expression, with p the number of coding or miRNA
genes), and β = (β1, . . . , βp)T the vector of associated coefficients. We define ∆i to be the
associated status, as 1 for death and 0 for censoring. The vector of coefficients β can be
estimated by maximizing the Cox pseudo-likelihood, as proposed by Breslow [14].

The elastic net methodology [7] consists of the addition of a penalty term to the
log-pseudo-likelihood l(β) before the maximization:

β̂(EN) = argmax
β

l(β)− λ

(
α||β||1 +

1− α

2
||β||22

)
In a previous work, we advised equally Lasso, Elastic Net and Ridge as penalization

methods, as they provide equal model performance [8]. The Lasso selects fewer genes,
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leading to a more parsimonious model. In the present work, we chose the Elastic Net
penalty as it is becoming the most popular penalization for Cox models.

We used the R package glmnet [15] to estimate Cox model with elastic net penalty. In
the followig, ‘Cox model’ refers to ‘Cox model with elastic net penalty’. For more details
on the Cox model and the choice of the hyperparameters used for penalties (i.e., α = 0.3),
we refer the reader to Supplementary Figure S1 and Materials.

2.2.2. Random Survival Forest

Random forest, introduced by Breiman, is a classical ensemble algorithm for regression
and classification whose principle is to build multiple decision trees and create a forest [16].
Results are averaged over all the trees. H. Ishwaran et al. then extended the classical random
forest algorithm to survival analysis with censored data [10]. At each node of each tree, m
explanatory variables are randomly chosen, and the variable that best separates patients
into two groups according to their survival curve is retained. Tree depth is controlled by a
threshold on the minimum number of patients in the node. Random survival forest has
the advantage of possibly taking into account non-linear effects and interactions between
variables [10,11].

We used the R package tuneRanger [9] to learn random survival forest for survival data,
a package based on the ranger package [17] but with a fast implementation for tuning the
number m of variables randomly drawn at each node. We used default hyperparameters
suggested by the authors (i.e., patients used to build a tree chosen with boostrapping, at
least 3 patients in a terminal node, 50 trees in a forest, log-rank test as splitting rule,

√
p as

starting value for tuning m, with p the total number of genes), and the function tuneMtryFast.
To decrease computation time for mRNA datasets, we only retain the 2500 genes with
the highest association with survival according to likelihood tests in single-variable Cox
models (i.e., we learn one single-variable Cox model for each gene to compute the p-values).

2.3. Prediction Performance Metrics

As schemed in Supplementary Figure S2, we estimate the prediction performance of
the models by 10 repetitions of K-fold cross-validation (K = 5). We learn a model (i.e., Cox
model or random survival forest) on a training dataset ( 4

5 of the patients), and we define
a risk score from this estimation for each patient of the testing dataset ( 1

5 of the patients).
The risk score (RS) is defined for a given patient i as the sum of β jXi

j for the Cox model (Xj
corresponds to the expression of gene j), and the mean of the estimated cumulative hazard
function for the random survival forest:

• R̂Si = β̂
T

X i for the Cox model, with β̂ the estimator of the coefficients, and X i the
gene expression vector for patient i.

• R̂Si =
1

Card(T) ∑j∈T Ĥ(tj|Xi) for random survival forest, with ‘Card’ the cardinal func-
tion, Ĥ(t|Xi) the estimated cumulative hazard function at time t for patient i, and T
the times at which the hazard function is estimated.

This procedure allows to assess prediction performance by computing the C-index
and the Integrated Brier Score (IBS), as defined below. Then, at the end of the procedure,
50 C-indices and 50 IBS are computed for each method.

The C-index allows the discrimination ability of a model to be assessed by quantifying
the proportion of patient pairs for whom risk scores are in good agreement with their
survival data. For two patients i and k with risk scores RSi and RSk, and with survival times
Ti and Tk, the C-index is defined as C = P(Ti < Tk |RSi > RSk). A C-index of 1 indicates
perfect agreement, and a C-index of 1

2 corresponds to random chance agreement. We took
the estimator of the C-index given by [18] and theorized by [19].

The Brier Score [20] measures the average squared distance between the observed
survival status and the predicted survival probability at a particular time t. It is always
a number between 0 and 1, with 0 being the best possible value. We used the IBS that
integrates the Brier Score between 0 and the maximum event time of the test set, and
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divides this quantity by the maximum integration time. Then, while the C-index measures
the ability of a model to rank patients according to their risks, the IBS estimates the ability
of a model to predict survival probabilities along time. The IBS is a global performance
metric that assesses both discrimination and calibration. These two metrics are widely used
to estimate prediction performance in practice and are complementary.

We used the R packages survcomp [21] to compute the C-index, and pec for the IBS [22].

2.4. The Cancer Genome Atlas and E-MTAB-1980 Datasets

Cancer acronyms, as provided by the TCGA consortium, are available in Supplemen-
tary Table S1. First, we included cancers available in TCGA for which there were more than
75 patients with miRNA-seq and survival data. Then, we followed recent formal recom-
mendations [23] to exclude the PCPG cancer that has too few death events and the SKCM
cancer that has a high ratio of metastatic samples sequenced. We used overall survival
as the disease-outcome, except when the authors recommend the use of progression-free
interval (BRCA, LGG, PRAD, READ, TGCT, THCA and THYM). After these two steps, we
retained 25 cancers. Finally, we computed the C-index and IBS estimates after running the
Cox model or random survival forest applied on the miRNA profiles for these 25 cancers as
schemed in Supplementary Figure S2. To focus on cancers for which the sequencing data
convey prognostic values, we decided to retain only the datasets for which the median
C-index is significantly higher than 0.6 for at least one of the algorithms (i.e., Cox model or
random survival forest) according to a one-sided Wilcoxon test at level 0.05. At the end of
this procedure, we retained 11 cancers (Table 1, Supplementary Figure S3). Supplementary
Table S2 shows the median miRNA sequencing depth and the number of patients for
the 25 cancers. There is no statistical difference between the retained 11 cancers and the
remaining 14 cancers, both in sequencing depth (p = 0.17, Wilcoxon test) and the number of
patients (p = 0.85).

We used the Broad GDAC FIREHOSE utility (https://gdac.broadinstitute.org/ (ac-
cessed on 11 December 2020)) to obtain clinical, miRNA-seq, and mRNA-seq datasets. We
applied a Trimmed Mean of M-values (TMM) procedure to correct for between sample
variance [24]. We first used the calcNormFactors function of package EdgeR [25] to compute
a normalization factor for each patient, and we then applied the voom function of the limma
package to compute log2-CPM data corrected with the normalization factors computed
earlier [26]. We then standardized the expression of each gene both in the training dataset
and the testing datasets using the mean and standard deviation values among patients of
the training data.

To confirm the impact of sub-sampling on survival metrics in an external validation
cohort, we acquired the processed E-MTAB-1980 dataset [27] from ArrayExpress (https:
//www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-1980/ (accessed on 25 November
2019)). Survival metrics were calculated as previously described, while using E-MTAB-
1980 as a testing dataset. We standardized the testing dataset independently from the
training dataset, by using the mean and standard deviation of the testing dataset. This
dataset gathers transcriptomic and clinical data from 101 patients of a Japanese cohort. The
transcriptomic data were acquired with a microarray technology, which is a continuous
technique, so we have not applied any down-sampling. The goals with this independent
dataset are: “can the approach with cross-validation on the TCGA data be validated with
an independent dataset?”, and “to which extent down-sampling affects the model quality”
(keeping unchanged the testing set).

https://gdac.broadinstitute.org/
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-1980/
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-1980/


Genes 2022, 13, 2275 5 of 14

Table 1. Characteristics of the 11 cancers investigated. We computed the C-indices with 10 repetitions
of 5-fold cross-validation for both the Cox-elastic net model (EN) and random survival forest (RF).
Datasets are ordered according to their median C-index computed with Cox-elastic net model
(decreasing order).

Cancer n Patients p miRNA Censoring
Rate

Survival—
3 Years

C-Index—
EN

C-Index—
RF

UVM 77 536 0.73 0.74 0.81 0.83
ACC 77 518 0.65 0.75 0.8 0.84
KIRP 269 486 0.84 0.87 0.79 0.82

MESO 85 519 0.14 0.19 0.7 0.69
KIRC 508 462 0.66 0.75 0.7 0.66
LGG 506 548 0.62 0.56 0.7 0.69
CESC 288 542 0.76 0.72 0.68 0.59
LIHC 355 540 0.65 0.62 0.67 0.66
PRAD 486 470 0.81 0.8 0.66 0.59
LUAD 483 529 0.63 0.61 0.66 0.6
UCEC 532 554 0.83 0.83 0.61 0.64

2.5. Integration of miRNA-seq Data Together with Clinical Data

We verified whether the tumor miRNA profiles added predictive value to the clinical
data [28]. Different strategies exist for integration of miRNA-seq and clinical data [29,30].
In order to avoid the dilution of the few clinical parameters among all the miRNA covari-
ates, we added the risk scores computed with miRNA-seq data alone (RSmiRNA) to ones
computed using classical clinical features (age, gender, grade, T, N, M), when available
(RS = β.RSmiRNA + ∑l βl .Clinl , where Clinl is the lth clinical variable). T is a score which
stands for the extent of the tumor, N for the extent of spread to the lymph nodes, and M
for the presence of metastasis. We did not include gender for sex-specific cancers (CESC,
UCEC, PRAD). Age is available for all cancers, and we specify whether the other variables
are available in Supplementary Figures S4 and S5.

To emphasize if the miRNA-seq data added prediction value over clinical data for
both Cox model and random survival forest, we performed a one-sided Wilcoxon signed
rank test for each of the 11 cancers studied. We considered a difference significant when
the p-value corrected with Benjamini-Hochberg method is below 0.05, even though this is
purely indicative as discussed below.

2.6. Degradation of miRNA-seq Data
2.6.1. Subsampling of miRNA-seq Data

“Sequencing depth” is defined here as the sum of the number of aligned reads per
patient, and can vary according to the patients, and is equivalent to the notion of “library
size”. These two nomenclatures will be used interchangeably in the following text.

To reduce the sequencing depth, we used a subsampling method [31]. The key
parameter to calibrate fold reduction is the proportion of subsampling, ε ∈ (0, 1]. For each
count data (i.e., number of reads) Rij obtained for a patient i and a gene j, a subsampled
count data of a proportion ε, noted R̃ij, is drawn according to a binomial distribution of
parameters Rij and ε:

R̃ij ∼ Binom(Rij, ε),

for each patient i = 1, . . . , n and each gene j = 1, . . . , p.
Thus, the closer the parameter ε is to 0, the smaller the read depth: a proportion of

ε (e.g., 0.01) corresponds to a subsampling of the sequencing data by a factor δ = 1
ε (e.g.,

100). In this study, we examine the effect of 1 (no subsampling), 10, 100, 1000 and 10,000
subsampling factors δ. We then draw saturation curves, which are the evaluation metrics
(i.e., C-index, IBS), performed on the test set which is not subsampled, as a function of the
subsampling factor δ [32,33].
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2.6.2. Reduction of the Number of Patients in the Training Dataset

To study the impact of the number of patients on prediction capabilities, we artificially
decreased the percentage x of patients in the learning dataset. In this study, we chose
x = 10, 20, . . . , 80%. However, to ensure that the C-index and IBS are not biased, the testing
dataset is always composed of 20% of patients.

3. Results
3.1. Library Sizes of mRNA-seq Data Are Ten Times Larger than the Ones of miRNA-seq Data

The library sizes are equivalent between the 25 cancers, with a few exceptions, and are dis-
tributed around 5× 106 reads for miRNAs, and 5× 107 for mRNAs (Supplementary Figure S6).
Recall here that only aligned reads, and not raw reads, are taken into account. The se-
quencing depth for mRNA datasets is therefore higher than that of the miRNAs by a factor
of 10 on average, which is not surprising as it spans on 40 times more genes. There are
thus, on average, 4 times more aligned reads per gene for miRNAs than for mRNAs. The
lengths of genes are also very different between mRNAs and miRNAs. Also, there is no
particular relationship between the sequencing depth chosen for the mRNAs and for the
miRNAs between the different cancers. Note that for the LAML cancer, we observe a lower
sequencing depth than for the other cancers: the median sequencing depth is 720,000 reads
for LAML, 2.5 million for KIRC and 7.5 million for LGG (Supplementary Figure S6).

3.2. C-Index Highlighted Noticeable Prediction Differences between Cox and Random Survival
Forest Models for Eight Out of Twenty-Five Cancers

Using miRNA-seq datasets and according to the C-index metric, the Cox model shows
better prediction than the random survival forest for KIRC, CESC, PRAD, LUAD, HNSC,
and to a lesser extent LIHC (Supplementary Figure S3A). Conversely, random survival
forest shows better predictions for KIRP, THYM, THCA, and to a lesser extent UCEC. For
the other cancers, we did not observe clear differences. Noticeably, while the Cox model
is not able to capture any prediction abilities for THCA (i.e., median C-index of 0.46),
random survival forest exhibits a median C-index of 0.62. However, if we choose the IBS
as the prediction metric, random survival forest shows better prediction than Cox except
for LGG (Supplementary Figure S3B). We discuss this difference observed between the
metrics below.

3.3. mRNA-seq Data Provides Slightly Better Prediction Performance than miRNA-seq Data for
Most of the 11 Investigated Cancers

In this section, we use a Wilcoxon signed-rank test to highlight the situation in which
there exist differences, and we corrected the 11 p-values computed with the Benjamini-
Hochberg procedure.

The median C-indices reached with the Cox model are higher with mRNA-seq data than
miRNA-seq data for all selected cancers except LUAD. More precisely, the C-indices are higher
with mRNA-seq data for 8 cancers (ACC, KIRP, MESO, KIRC, LGG, CESC, PRAD, UCEC), and
higher with miRNA-seq data only for LUAD (Supplementary Figure S7A). When using IBS
as a metric, the median IBS obtained from 5 cancers (UVM, KIRC, LIHC, LUAD, UCEC) was
lower compared to the median IBS obtained with mRNA-seq data. Additionally, overall
IBS obtained by using mRNA-seq data was lower in cases of KIRP, MESO, LGG, and CESC,
and higher while using miRNA-seq data of UVM, KIRC and LIHC. Comparable results
were obtained using random survival forest as prediction model. Overall, mRNA-seq data
provides better predictions, but the absolute differences remain small.

3.4. Mirna-seq Data Improves Predictions over Clinical Data Alone for Most of the
Investigated Cancers

For 8 cancers (UVM, ACC, MESO, LGG, CESC, LIHC, PRAD, LUAD) out of the
11 studied, the addition of miRNA-seq data to generic clinical data significantly improved
the C-index compared to clinical data alone for the Cox model (Supplementary Figure S4A,
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integration of clinical and miRNA data is described Section 2.5). Similarly, for random
survival forest, the median C-index is improved for 6 cancers (UVM, ACC, MESO, LGG,
LIHC and PRAD, Supplementary Figure S5A). When using the IBS as the performance
metric, the difference are often not as clear: predictions appear better for 5 cancers when
taking tumor miRNA profiles into account in the Cox model (KIRP, MESO, KIRC, LGG,
and CESC, Supplementary Figure S4B), and for 5 cancers in the random survival forest
model (ACC, KIRP, MESO, LGG, and LIHC, Supplementary Figure S5B).

Overall, the addition of miRNA-seq data to classical clinical data improves prediction
performance as assessed by C-index and/or IBS for all the 11 cancers investigated but
UCEC with the Cox model. This performance drops to 7 cancers with random survival
forest; KIRC, CESC, LUAD, UCEC do no show improvement. The use of miRNA-seq
data seems not as interesting as clinical data alone to build predictive risk scores for
UCEC. However, we have included this cancer because RNA-seq data can be used in
other contexts as part of a survival model: stratifying patients according to transcriptomic
profiles [34], identifying predictive markers of response to treatments [35], identifying
potential therapeutic targets [36].

3.5. Shallow Tumor miRNA or mRNA Sequencing Keeps Survival Prediction Performance for
Many Cancers

We consider that the sequencing depth can be reduced if and only if none of the two
prediction metrics (i.e., C-index or IBS) is degraded at level 0.05 according to a one-sided
Wilcoxon test. Figure 1 shows the C-index as a function of miRNA (or mRNA) library
size reduction and/or number of patients subsampling for the kidney cancer subtype
KIRC (corresponding to clear cell renal cell carcinoma, ccRCC). We highlight this cancer
subtype for the following reasons: the dataset contains many patient data (Table 1), the
prediction performance is quite high (C = 0.7), the availability of an independent dataset
(Section 3.8), and as we are more specialized on this subtype [37]. For this cancer, it appears
that both the number of patients and the sequencing depth could have been decreased while
keeping similar prediction capacity. More precisely, using 60% of the patients (n = 304) in
the training set leads to similar model performance, even though a small but noticeable
performance decrease is noticed with IBS in the Cox model (Supplementary Figure S9).
Also, decreasing the miRNA and mRNA sequencing depth by one order of magnitude has
no measurable consequences. However, both the number of patients and the sequencing
depth should not be decreased to their maximum extents altogether, as shown by the shape
of the color map (Figure 1A).

Tables 2 and 3 summarize the maximum lowering of sequencing depth without
affecting prediction performance. For most cancers, reducing the sequencing depth for
miRNAs and mRNAs leads to similar performance, and the possible library size reduction
is correlated between miRNAs and mRNAs when chosen as covariates in the Cox model
(Supplementary Figure S10). For mRNAs, one order of magnitude reduction or more is
permitted for 11 cancers but CESC, which only tolerates a 50% reduction (∼20,000,000
aligned reads). For miRNAs, there are 3 exceptions: CESC again, which also tolerates a 50%
reduction (∼2,000,000 aligned reads), PRAD with an 80% reduction (∼1,000,000 aligned
reads), and LUAD which do not tolerate any sequencing depth reduction, and may even
show improved performance with an increase in library size (≥5,000,000 aligned reads).
For cancers tolerating 500,000 aligned reads in mRNAs or less, the sequencing depth could
be reduced at least for one order of magnitude in miRNAs. Thus, mRNA sequencing data
might inform of the required sequencing depth for miRNAs.
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Figure 1. C-index obtained for different fold reduction factors and percentage of patients in the
training dataset for KIRC (ccRCC, TCGA) with the Cox model. (A) Median C-index for different
degradation of both sequencing depth (x axis) and percentage of patients (y axis) in the training
dataset for miRNA-seq data. Horizontal box highlights the case where all 80% of patients are used
and corresponds to (B), whereas vertical box focuses on the full available library size and corresponds
to (C). (B) C-index for different fold reduction factors for miRNA-seq (gray boxplots) and mRNA-seq
data (median values, in red) with 80% of the patients in the training dataset. Above is the p-value
of a one-sided Wilcoxon test compared to no subsampling (i.e., δ = 1). (C) C-index for different
percentages of patients in the training dataset for miRNA-seq (light gray boxplots) and mRNA-seq
data (median values, in red) with original TCGA sequencing depth. Above is the p-value compared
to the full dataset (i.e., 80%). red, mRNA-seq; gray boxplots, miRNA-seq. In each case, we computed
the C-indices by 10 repetitions of 5-fold cross validation. ***: p ≤ 0.001, **: p ≤ 0.01, *: p ≤ 0.05,
+: p < 0.1, n.s.: p ≥ 0.1.

Table 2. Maximum miRNA-seq library size reduction before the decreasing of prediction performance,
corresponding median sequencing depth (in thousands of aligned reads), and prediction metric
degraded first, for the Cox model, and the 11 investigated cancers.

Cancer UVM ACC KIRP MESO KIRC LGG CESC LIHC PRAD LUAD UCEC

Fold reduction 1000 1000 100 100 10 10 2 10 5 < 1 10,000
Median library size
(in 1000 reads) 5 6 60 50 200 700 2000 500 900 > 5000 1

Metric degraded first C-index both both C-index both IBS C-index both C-index both C-index

Table 3. Maximum mRNA-seq library size reduction before the decreasing of prediction performance,
corresponding median sequencing depth (in thousands of aligned reads), and prediction metric
degraded first, for the Cox model, and the 11 investigated cancers.

Cancer UVM ACC KIRP MESO KIRC LGG CESC LIHC PRAD LUAD UCEC

Fold reduction 100 1000 100 100 10 100 2 10 10 10 10
Median library size
(in 1000 reads) 400 40 400 500 5000 500 20,000 5000 5000 4000 2000

Metric degraded first C-index both IBS both IBS both C-index IBS both IBS both

For random survival forest and mRNA-seq data, the sequencing depth of all cancers
can be reduced by a factor 100 without degrading the C-index and the IBS (Supplementary
Table S3 and Figure S11). This fold reduction corresponds to median sequencing depth of
about 500,000 aligned reads. For KIRC and LGG the sequencing depth can be even more



Genes 2022, 13, 2275 9 of 14

reduced, by a factor 1000 (∼50,000 aligned reads). The results are more heterogeneous
for miRNA-seq data as the sequencing depth can be reduced by a factor 1000 for CESC
(∼5000 aligned reads) down to 5 for KIRP and MESO (∼1,000,000 aligned reads). Notice-
ably, for CESC, the possible fold reduction is much larger for random survival forest than
for the Cox model for both miRNAs and mRNAs. We hypothesized that these differences
are the consequence of a better C-index obtained with the Cox model than with random
survival forest (supplementary Figures S3A, S10 and S11).

3.6. Models Trained with Fewer Patients Do Not Degrade Prognosis for Most of the
Investigated Cancers

For the Cox model and miRNA-seq data, the number of patients in the training dataset
can be reduced for 9 of the 11 cancers, at least for a small proportion (Supplementary Table S4).
The two exceptions concern PRAD and LUAD, for which diminishing the number of
patients in the training set decreases the prediction performance. We obtained comparable
results for mRNA-seq data, except for UVM and UCEC which require more patients to
achieve maximum performance—for UVM with similar C-index between miRNAs and
mRNAs, but for UCEC with better performance with miRNAs (Supplementary Figure S7).
Surprisingly, random survival forest need less patients in the training dataset to achieve
optimal prediction performance. This result makes it possible to consider stratifying
patients into subgroups and to learn models separately for each subgroup.

3.7. Very Small Sequencing Depth Is Responsible for the Performance Loss

When reducing sequencing depth, we automatically reduce the number of detected
genes. We define a non-coding/coding gene as ‘detected’ if its CPM-normalized expres-
sion level is greater than 1 for at least 1% of the patients in the training dataset. Two
hypotheses can be put forward to explain the decrease in predictive abilities induced by
the subsampling of sequencing depth:

1. the number of detected genes decreases as the subsampling rate increases (Supplemen-
tary Figure S12A, [38]), and only the level of expression of the most highly expressed
genes can be measured (Supplementary Figure S12B). However, genes with a low
level of expression may have significant predictive power and go undetected, which
would diminish overall predictive capabilities.

2. more generally, the signal-to-noise ratio decreases for all genes (the standard deviation
of the measurements varies in

√
N, with N the number of aligned reads per gene).

To test the first hypothesis, we compared the C-indices obtained with all miRNAs, and
those obtained only with the most expressed genes, using the Cox model. This corresponds
on average to a 2-fold decrease in the number of predictors (i.e., 210 miRNAs on average
detected after subsampling of the miRNA-seq data by a factor of 10,000 for all cancers
studied). In these two scenarios, the sequencing data keep the same read depth per gene, but
only the number of genes taken into account differs. For miRNAs, reducing the dimension
by keeping only the 210 most expressed genes does not significantly impact prediction
capabilities (i.e., C-index and IBS) for the 11 cancers studied, except for CESC and LUAD
with the C-index (p-value < 0.001, one-sided Wilcoxon signed-rank test with Benjamini-
Hochberg correction), and to a lesser extent for LIHC with the C-index (p-value < 0.05,
Supplementary Figure S13). The first hypothesis is therefore not verified.

To test the second hypothesis, we calculated the C-indices obtained after subsam-
pling by a factor of 10,000 (i.e., 210 genes on average are detected, and the count data
are subsampled), and those obtained with the same 210 genes (on average) but without
subsampling, also with the Cox model. For all 11 cancers, the median C-index obtained
after subsampling is lower than that obtained without subsampling but with the same
predictors (Supplementary Figure S13). For the IBS, we observed the same results, except
for UVM, LUAD and UCEC. The second hypothesis is verified: the subsampling induces
a decrease in the signal-to-noise ratio of the RNA-seq count data explaining the decrease
of the prediction if a strong subsampling is applied. It is also interesting to notice that for
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most cancers, selecting half of the most expressed predictors does not affect prediction
performance.

We obtained comparable results for random survival forest (Supplementary Figure S14)
and for mRNA-seq data (data not shown to avoid too many supplementary figures, but
can easily reproduced with the R scripts shared on github).

3.8. Prognostic Performances Follow Similar Trend after Subsampling When Tested on an
Independent Dataset

To evaluate to which extent these results can be used in practice, we checked whether
the models learned on TCGA, with an incremental decrease in sequencing depth, also
do not degrade the predictions on an independent dataset. However, we were unable
to find a dataset comparable to TCGA with both microRNA tumor profiling and patient
survival, so we chose to demonstrate the reproducibility on mRNA profiling. We chose an
mRNA profiling dataset measured with microarray in order to improve generalizability,
and keeping ccRCC for the reasons detailed Section 3.5. Figure 2 shows that first the
C-index is higher when the test set is the independent one, and second that the trend is
comparable for both test sets (E-MTAB-1980 and TCGA datasets). More precisely, reducing
the mRNA sequencing depth by a factor of 10 or even 100 on the training set does not
affect the C-index performance. The E-MTAB-1980 dataset also provide improved IBS
performance and smaller variability. We hypothesize that the smaller variability is due
to the fact that the E-MTAB-1980 test set remains the same, as compared to the TCGA
test set gathering the 20% of remaining patients, not used in the training set, and so the
difference in performance is more sensitive (Supplementary Figures S15 and S16). Halving
the number n of patients in the training set (from 80% to 40%, i.e., from n = 406 to 203)
increases the IBS measured on the E-MTAB-1980 dataset in a modest manner (from a
median of 0.112, 95% confidence interval of the median [0.11;0.114] to 0.133 [0.125;0.14]),
whereas only 10% (n = 51) of the patients lead to low IBS performance (0.205 [0.195;0.214]).
This information is useful when trying to improve the model by clustering the patients
into refined cancer subtypes, and further applying different Cox model in each of these
subtypes: while 2 subtypes are reasonable for ccRCC on this large TCGA cohort, more than
5 may lead to too large IBS values only because of the small number of patients in each
learning subset.

*** *** + n.s. n.s.

*** + n.s. n.s. n.s.
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Figure 2. C-index as a function of sequencing depth reduction tested on the E-MTAB-1980 dataset and
TCGA subset for mRNA profiling in ccRCC. In dark gray, performance measured with the C-index
calculated on the E-MTAB-1980 dataset, after training on an 80% sub-sample of the TCGA dataset
(the procedure is repeated to obtain 50 C-indices). In blue, the test is performed on the remaining 20%
of TCGA data (median C-index). ***: p ≤ 0.001, +: p < 0.1, n.s.: p ≥ 0.1.

4. Discussion

Our work shows the benefit of using tumor mRNA or miRNA profiling to predict
patient survival. We thus estimated the optimal sequencing depth and number of patients
to achieve this prediction, using Cox and random forest models. We considered that the
sequencing depth can be reduced if both C-index and IBS are not significantly degraded.
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This choice is subjective and can easily be adapted with the R script provided. For example,
if discrimination among patients at risk is the only important aspect for a particular study,
the C-index should be considered as the only prediction metrics. Second, as the same
initial set of patients is used in multiple Monte-Carlo runs (10 repetitions of 5-fold cross-
validation) to estimate prediction performance, the 50 metrics (i.e., C-index or IBS) are not
independent. Besides, the p-values can be reduced toward 0 when small differences are
observed by increasing the number of repetitions. The computed p-values are thus only
indicative, but helps the readability of the graphics.

Thus, because of the methodology used, we obtain comparable results with slight
differences with [13] about shallow tumor mRNA sequencing to predict patient survival
with Cox model. We have extended it to miRNA-sequencing, and to random forest survival.

Then, estimation of the IBS with random survival forest is direct in the sense that the
survival function S is an output of the algorithm for patients of the testing dataset. However,
it is not the case with the Cox model as the baseline hazard function h0 is not estimated
in the pseudo-likelihood. This function h0 is estimated with the Breslow estimator [14].
This dissimilarity in the way individual survival functions are estimated may explain the
large advantage on prediction performance for random survival forest as compared to
the Cox model (Supplementary Figure S3B). More investigations are still needed to better
understand this observation.

C-index and IBS metrics do not always provide identical evaluation of the performance
of the models. While the C-index only accounts for the ordering of the patients depending
on the risk score, the IBS also evaluates the base line h0(t). We hypothesize that the quality
of the inference of the baseline is responsible for the different behavior of both metrics.
For specific goals, one of the metric could be favored. For example, to identify patients
at risk, we encourage to focus on the C-index. In other cases, and as the two metrics are
complementary, we advise to consider both metrics.

This work is the first one to focus on the sequencing depth of miRNA profiling for
survival prediction, and could serve as a proxy to calibrate future experiments. Lung
adenocarcinoma (LUAD) showed a noticeable difference with other cancers as tumor
miRNAs better predict patient survival than mRNAs. This may indicate the particular role
of miRNAs in this tumor type, and would be worth to further investigate.

Finally, the number of patients required in the training dataset is lower for random
survival forest than for the Cox model (Section 3.6). This result is surprising as random
forest has more degrees of freedom, and further work is needed to investigate this point.

5. Conclusions

In this work, we present a methodology and results on the possibility of (i) reducing
sequencing costs to, for example, create validation datasets, and (ii) reducing the number of
samples in training datasets to stratify patients into subgroups in the context of prediction
of survival in cancer. Cox model and random survival forest provide comparable C-indices
for some cancers but not all (e.g., the Cox model outperforms random survival forest for
CESC and miRNA-seq data; the contrary being true for THCA). However, with IBS as
the performance metric, the performance are better with random survival forest. We also
pointed out that mRNA-seq data provide slightly better performance than miRNA-seq data
on average, with the noticeable exception of lung adenocarcinoma (LUAD). Integration of
miRNA-seq data with clinical data allows to improve predictions over clinical data alone for
most of the 11 investigated cancers. Importantly, we demonstrated that sequencing depth
of miRNA-seq and mRNA-seq can be reduced without degrading prediction performance
for most of the 11 cancers retained in a cancer, data (i.e., miRNAs or mRNAs) and metric
(i.e., C-index or IBS) dependent manner, thus allowing the reduction of sequencing cost
to create independent validation datasets. Finally, we demonstrated that the number of
patients in the training dataset can be reduced for both miRNA and mRNA data without
degrading the prediction performance for the Cox model, and in a larger extent for random
survival forest. Finally, our results were confirmed on an independent dataset.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13122275/s1, Figure S1. Deviance and number of genes
selected for different values of α for KIRP; Figure S2. Procedure for the evaluation of prediction
performances; Figure S3. Boxplot of the C-indices (A) and of the IBS (B) for the Cox model with
elastic net penalty (blue) and random forest (orange); Figure S4. C-indices (A) and IBS (B) obtained
with clinical data alone (red), miRNA-seq data alone (blue), and both clinical and miRNA-seq data
(purple) for the 11 cancers investigated and the Cox model with elastic net penalty; Figure S5. C-
indices (A) and IBS (B) obtained with clinical data alone (red), miRNA-seq data alone (blue), and
both clinical and miRNA-seq data (purple) for the 11 cancers investigated and the random survival
forest procedure; Figure S6. Distribution of the library size for miRNA-seq data (A), and median
library size for mRNA-seq and miRNA-seq data(B) for the 25 cancers of TCGA; Figure S7. Boxplot
of the C-indices (A) and of the IBS (B) for the Cox model with elastic net penalty for miRNA-seq
(blue) and mRNA-seq (lightblue) data; Figure S8. Boxplot of the C-indices (A) and of the IBS (B)
for random survival forest for miRNA-seq (orange) and mRNA-seq (yellow) data; Figure S9. IBS
obtained for different fold reduction factors and percentage of patients in the training dataset for
KIRC (ccRCC, TCGA) with the Cox model; Figure S10. Distribution of C-indices obtained with the
Cox model after fold reduction of miRNA-seq data or mRNA-seq data for the 11 investigated cancers;
Figure S11. Distribution of C-indices obtained with the random survival forest model after fold
reduction of miRNA-seq data or mRNA-seq data for the 11 investigated cancers; Figure S12. Number
of genes (miRNAs) detected for different fold reduction (A) and level of expression (log2-CPM) of
the genes detected without subsampling (blue) and after subsampling by a factor 10,000 for KIRP;
Figure S13. C-indices (A) and IBS (B) obtained after subsampling by a factor 10,000 (green), with the
same miRNAs (∼200 most expressed) but without subsampling (orange), and with all the miRNAs
(∼500) and without subsampling (blue) for the Cox model with elastic net penalty; Figure S14. C-
indices (A) and IBS (B) obtained after subsampling by a factor 10,000 (green), with the same miRNAs
(∼200 most expressed) but without subsampling (orange), and with all the miRNAs (∼500) and
without subsampling (blue) for random survival forest; Figure S15. C-index obtained for different
fold reduction factors and percentage of patients in the training dataset for KIRC (ccRCC, TCGA)
with the Cox model, assessed on the E-MTAB-1980 dataset; Figure S16. IBS obtained for different
fold reduction factors and percentage of patients in the training dataset for KIRC (ccRCC, TCGA)
with the Cox model, assessed on the E-MTAB-1980 dataset; Table S1. Acronym of the TCGA cancers;
Table S2. Median microRNA sequencing depth and number of patients in the TCGA cohort; Table S3.
Maximum fold reduction without degradation of the C-index and the IBS, corresponding median
sequencing depth (thousands of reads), and prediction metric degraded first for random survival
forest and for miRNA-seq data (A) and mRNA-seq data (B) for the 11 investigated cancers; Table S4.
Minimum Proportion of patients needed in the training dataset without degradation of the C-index
and the IBS and corresponding number of patients for the 11 investigated cancers for miRNA-seq
data and the Cox model (A), miRNA-seq data and random survival forest (B), mRNA-seq data and
the Cox model (C), and mRNA-seq data and random survival forest (D). References [15,39,40] are
cited in the supplementary materials.
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