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Abstract: Alström syndrome (ALMS) and Bardet–Biedl syndrome (BBS) are rare genetic diseases with
a number of common clinical features ranging from early-childhood obesity and retinal degeneration.
ALMS and BBS belong to the ciliopathies, which are known to have the expression products of genes,
encoding them as cilia-localized proteins in multiple target organs. The aim of this study was to
perform transcriptomic and proteomic analysis on cellular models of ALMS and BBS syndromes to
identify common and distinct pathological mechanisms present in both syndromes. For this purpose,
epithelial cells were isolated from the urine of patients and healthy subjects, which were then cultured
and reprogrammed into induced pluripotent stem (iPS) cells. The pathways of genes associated with
the metabolism of lipids and glycosaminoglycan and the transport of small molecules were found to
be concomitantly downregulated in both diseases, while transcripts related to signal transduction, the
immune system, cell cycle control and DNA replication and repair were upregulated. Furthermore,
protein pathways associated with autophagy, apoptosis, cilium assembly and Gli1 protein were
upregulated in both ciliopathies. These results provide new insights into the common and divergent
pathogenic pathways between two similar genetic syndromes, particularly in relation to primary
cilium function and abnormalities in cell differentiation.

Keywords: Alström syndrome; Bardet–Biedl syndrome; proteomics; transcriptomics; cilia

1. Introduction

Alström syndrome (ALMS) and Bardet–Biedl syndrome (BBS) are rare genetic dis-
eases inherited in an autosomal recessive manner whose common clinical features are
early-childhood obesity and retinal degeneration. Moreover, patients with ALMS have
nystagmus and photophobia, hearing loss, type 2 diabetes mellitus and dilated cardiomy-
opathy as primary clinical features. In addition, many other symptoms are observed in
ALMS patients, such as insulin resistance, lipid disorders, endocrine abnormalities, hep-
atic, renal and pulmonary pathology, scoliosis and cognitive impairment [1–3]. All these
abnormalities are determined by two pathogenic/likely pathogenic variants present in the
ALMS1 gene [4,5].

The symptoms in patients with Bardet–Biedl syndrome are very similar. Additionally,
patients show abnormalities of the long limb bones, mainly in the form of polydactyly,
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brachydactyly and syndactyly. Patients with BBS syndrome also often suffer from intellec-
tual disability, renal and heart defects, hepatic fibrosis and ataxia [6–9]. The phenotype of
the patients results from causative mutations located in multiple genes (BBS1–22) [10,11].
Both syndromes also share a lack of disease progression markers and causal treatment.

The ALMS and BBS syndromes belong to the “ciliopathies”, a group of diseases
determined by the disturbances of immobile cilia present in many organs whose functions
are impaired in both ALMS and BBS patients. It is now known that the protein encoded
by ALMS1 gene is localized in a basal body of the cilium and is widely expressed in
many tissues, including the photoreceptors, central nervous, endocrine, cardiopulmonary,
reproductive and urologic systems, suggesting its role in intracellular transport and ciliary
function in a number of target organs [12,13]. Based on studies in animal models and the
cell lines of fibroblasts obtained from patients with ALMS syndrome, the ALMS protein
has also been shown to be involved in the endosomal recycling mechanism [14,15]. Similar
pathological mechanisms have been attributed to the proteins of the BBS complex, which
not only builds the primary cilia but also seems to be participating in ciliogenesis and the
regulation of intraflagellar transport (IFT) system [16–18]. Interestingly, the role of cilia
is considered in the regulation of the metabolism of the organism and the maintenance
of energy homeostasis and, as a result, in the required body weight [19,20]. On the other
hand, a link between disruption of primary cilia structure and Hedgehog (Hh) signaling
has already been demonstrated [21].

It appears that the development of both diseases may begin early in embryonic life.
This makes it possible to use induced pluripotent stem (iPS) cells to study the pathological
mechanisms of ALMS and BBS syndromes, providing an opportunity for the first insight
into these phenomena [22]. New studies suggest that the method of obtaining iPS cells may
be more important than their cellular source, pointing to urine cells as the most effective
for receiving iPSc. This is probably related to the fact that reprogrammed epithelial cells,
unlike the frequently used fibroblasts, do not need to perform the mesenchymal-epithelial
transition on the way to iPSc [23,24].

In the present study, to understand the mechanisms present in both syndromes better,
proteomic and transcriptomic analysis was performed on human cellular models of ALMS
and BBS syndromes.

2. Materials and Methods

The study protocol was approved by the University Bioethics Committee at the Medi-
cal University in Lodz, Poland (RNN/343/17/KE). Patients provided written informed
consent for participation in the study. The diagnosis of ALMS or BBS syndrome was con-
firmed in patients by sequencing the related genes, as previously described [25,26]. Urine
samples were collected from three patients with genetically confirmed ALMS syndrome (with
pathogenic variants: NM_001378454.1:c.8161C>T(;)11204C>A, NM_001378454.1:c.4108dup(;)
7373_7376del and NM_001378454.1:c.1900C>T(;)11877_11878del in ALMS1 and MIM No.
606844), three patients with BBS syndrome (pathogenic variants in BBS8—homozygous
NM_144596.3:c.489G>A; BBS9—NM_198428.3:c.190C>T and NM_198428.3:c.1789+1G>C;
BBS10—NM_024685.4:c.145C>T and NM_024685.4:c.680_681delGCinsAA; MIM No. 608132,
607968 and 610148, respectively) and two healthy volunteers ethnically and gender-matched.
The cellular models were from patients who underwent initial whole exome sequencing
(WES) testing, which showed no pathogenic/potentially pathogenic variants other than
those associated with the underlying disease. Patients also did not have any syndromes
associated with trisomies or other CNV (copy number variation)-related diseases.

In the next step, epithelial cells were isolated from urine, cultured and reprogrammed
into iPS cells. This allowed the creation of an experimental human cellular model of the
ciliopathy diseases.



Genes 2022, 13, 2370 3 of 16

2.1. Cell Cultures

Urine epithelial cells were transformed into iPSc in cooperation with Personather and
Celther Companies, Poland. Epithelial cells were isolated from urine samples according to
the protocol described previously [27,28]. Briefly, 100 mL of urine sample was collected,
transferred into a 50-mL conical tube and centrifuged at 400× g for 10 min at room tem-
perature. The supernatant was removed; the cell pellet was washed twice with 25 mL
of PBS supplemented with penicillin (100 U/mL), streptomycin (100 µg/mL), ampho-
tericin B (0.25 µg/mL) and centrifuged again. The supernatant was discarded, and the cell
pellet was suspended in Renal Epithelial Cell Growth Medium (REGM BulletKit, Lonza,
Basel, Switzerland) and plated on gelatin-coated cell culture plates (Attachment Factor
Protein, Life Technologies, Carlsbad, CA, USA). After reaching 90% confluency, cells were
passaged with TrypLE Select (Life Technologies, Carlsbad, CA, USA) into a new well for
further expansion.

Cell conversion was performed using the forced expression of the transcription factors
NANOG, OCT3/4, KLF4, SOX2, L-MYC and LIN28, introduced using a non-viral episomal
system based on EBNA-1/oriP elements. To increase the efficiency of the reprogramming
process, a microRNA 302/367 coding vector was also included. Cells were transfected
twice and then cultured until iPS colonies appeared.

The analysis of pluripotency markers was performed by immunocytochemical meth-
ods. For immunocytochemical analyses, iPS cell cultures were fixed with 4% paraformalde-
hyde in PBS for 10 min and permeabilized with 0.1% Triton X-100 for 10 min at room
temperature. Nonspecific binding sites were blocked by incubation with 2% donkey serum
(Sigma Aldrich, Darmstadt, Germany) in PBS for 1 h. For immunolabeling, fixed cells
were subsequently incubated with the appropriate primary antibodies: anti-Oct3/4 mouse
antibody sc-5279 (Santa Cruz Biotechnology, Dallas, TX, USA; dilution 1:500) and anti-TRA-
1-60 mouse antibody 41-1100 (Life Technologies; dilution 1:100) for 1 h at room temperature.
Labeling was visualized by incubation with a species-specific fluorochrome-conjugated
secondary anti-mouse Alexa Fluor®594 donkey antibody (Molecular Probes, Invitrogen,
Waltham, MA, USA; dilution 1:500) (1 h, room temperature). Control samples were in-
cubated with the secondary antibodies alone. Slides were mounted with ProLong® Gold
Antifade Reagent or ProLong® Gold Antifade Reagent with DAPI (Molecular Probes, Invit-
rogen, Life Technologies Group, Carlsbad, CA, USA), coverslipped and examined using
Nikon Eclipse Ci-S epifluorescence microscope (Figure 1).

iPS cells were cultured in Essential 8 (Life Technologies, Carlsbad, CA, USA) on
protein-coated culture vessels of the extracellular matrix (Geltrex™ LDEV-Free Reduced
Growth Factor Basement Membrane Matrix Geltrex, Life Technologies, Carlsbad, CA, USA;
1:100). After reaching the appropriate confluence, iPS cell colonies were passed using
0.5 mM EDTA (Sigma-Aldrich, Darmstadt, Germany) on new culture vessels and also
extracellular matrix protein-coated, until the number of cells required for the analysis
was reached.

2.2. RNA Isolation and Microarrays Gene Expression Study—Transcriptomics Analysis

Dry pellets containing 1 million iPS cells each were suspended in 200 µL of RNA-Later
Solution (Life Technologies, Carlsbad, CA, USA) for microarray expression analysis, as de-
scribed previously [29]. Next, a next generation transcriptome-wide gene-level expression
profiling was performed using ClariomTM S Assay (Applied Biosystems, Thermo Fisher
Scientific, Waltham, MA, USA). In this study, the Affymetric GeneChip® System 3000Dx
v.2 platform (Thermo Fisher Scientific, Waltham, MA, USA) consisting of GeneChip® Hy-
bridization Oven, GeneChip® Fluidics Station 450Dx and GeneChip® Scanner 3000Dx with
AutoLoader was used.
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stem cells. Images were captured using Eclipse Ci-S epifluorescence microscope. 
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Figure 1. Characterization of exemplary induced pluripotent stem cells (iPSCs) derived from urine
cells isolated from ALMS patient by means of reprogramming. The detection of pluripotency-
associated markers showed that cell colonies were positive for OCT3/4 transcription factor and
displayed TRA-1-60 expression on their surface. Cells presented typical morphology for pluripotent
stem cells. Images were captured using Eclipse Ci-S epifluorescence microscope.

2.3. Proteomic Analysis

The iPS cells were also prepared for proteomic analysis, i.e., a dry pellet of 10 million
cells. For this purpose, an appropriate number of cells were washed twice with cold
buffered saline solution without ions (PBS w/o Ca2+, Mg2+; vWR, PA, USA), inundated
with a volume of cold PBS appropriate for the surface of the culture vessel, scraped and
centrifuged (330× g, 5 min, 4 ◦C). After supernatant removal, the cells were quickly frozen
in liquid nitrogen and then stored at −80 ◦C. The whole procedure was performed on ice.
All proteomic analyses for each patient and control samples were performed in triplicates,
as described previously [29].

All mass spectrometry data were acquired using an Orbitrap Fusion Lumos mass
spectrometer(ThermoFisher, San Jose, CA, USA) in-line with a Proxeon nanoLC-1200 Ultra
performance liquid chromatography (UPLC) system, with subsequent analysis using a
previously described informatics pipeline [30–32].



Genes 2022, 13, 2370 5 of 16

2.4. Statistical Analysis

Initial transcriptomics data pre-processing included the rejection of transcripts not
assigned to the Entrez Gene database and the management of multiple transcripts coding
the same genes—those with the highest expressions were selected for further analysis.
Global differences between transcriptomic profiles of study groups were investigated
with principal component analysis (PCA) and samples in a two-dimensional PCA plot
were manually clustered and annotated. Afterwards, hierarchical clustering (HCL) was
performed using Euclidean distance and average linkage parameters. Both PCA and HCL
were carried out with Multiple Experiment Viewer (MeV 4.8: J. Craig Venter Institute,
Rockville, Maryland, USA). To identify genes which differentiate studied diseases from
healthy subjects, we calculated the fold change (FC) of each transcript’s abundance between
malady and control. The statistical significance of comparisons was assessed using linear
modeling in the limma 3.42.2 R package [33] with Benjamini–Hochberg correction for
multiple hypothesis testing (FDR) [34]. Results were visualized with volcano plots using
R 3.6.3 with ggplot2 3.3.2. Numbers of significantly expressed genes and their overlap
between ALMS and BBS were shown in a Venn diagram using Venny 2.1.0. Gene Set
Enrichment Analysis (GSEA) [35] was run as pre-ranked against lists of genes sorted by
log2FC between mean expression in disease and in control, using Broad GSEA software
(4.0.3) with Reactome Gene Set collection v7.1 and gene set size filters set to min = 15 and
max = 500. Significantly enriched pathways were visualized with enrichment maps using
Cytoscape 3.8.0 [36] with EnrichmentMap 3.3.0 [37] and AutoAnnotate 1.3.3 [38] plug-ins,
with overlap coefficient 0.1 and FDR 0.05 as parameters. Gene sets sharing similar functions
were clustered manually based on Reactome hierarchy.

Proteomics analysis workflow was similar, except for alterations described below. For
PCA and HCL, MetaboAnalyst [39] with data filtering by interquartile range was used,
apart from MeV. Statistical significance was calculated with two-sided unpaired Student’s
t-test, also with Benjamini–Hochberg correction. GSEA was run on datasets with protein
abundances in every sample from patients and controls with gene set size filters min = 5
and max = 1500.

For the assessment of correlation between proteomic and transcriptomic findings,
scatterplots were created in R with ggplot2 based on merged data from GSEA. Enrichment
maps were created to present the overlap between significantly expressed gene sets in pro-
teomics and transcriptomics as intersections of initial datasets. Finally, an enrichment map
comparing pathways significant both in proteomics and transcriptomics between ALMS
and BBS were created by combining the two previously created maps with exclusion of
gene sets simultaneously upregulated in transcriptomics and downregulated in proteomics.

The potential associations of the dysregulated pathways with patterns of drug activity
were evaluated using the Connectivity Map 2.0 (Cmap 2.0, Broad Institute, Cambridge, MA,
USA. https://www.broadinstitute.org/connectivity-map-cmap) analysis platform which
correlates the observed pathway dysregulation with the known effects of experimentally
tested drugs on multiple cell lines [40].

3. Results

To portray the transcriptomic landscape of ALMS and BBS syndromes, we subjected
iPS cells derived from two patients with ALMS, two patients with BBS (two samples from
each) and from one healthy individual (one sample) to microarray assay. After initial pre-
processing, we had the expressions of 19,442 genes to analyze. The PCA of the transcripts
showed a good clustering of samples from the same patient and revealed a clear separation
between individuals with diseases and the control across the first principal component,
which explained 32.43% of variance. Moreover, ALMS and BBS were clustered separately
along the second principal component with 17.21% explained variance (Figure 2A).

https://www.broadinstitute.org/connectivity-map-cmap
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Figure 2. Transcriptomic characteristics of ALMS and BBS. Principal component analysis (PCA) of
transcripts in ALMS, BBS and control (A); Venn diagram showing number of transcripts significantly
up- and downregulated in ALMS and BBS (B); volcano plot for differential gene expression in
ALMS (C); volcano plot for BBS (D); hierarchical clustering heatmap of the top 50 genes with the
highest variance (E).

The HCL of the dataset restricted to 50 transcripts with the highest variance con-
firmed good separation between patients and control, as well as a really good match of
biological replicates (Figure 2E). Differential expression enabled us to identify genes in
the transcriptomic analysis which discriminated studied diseases from healthy individ-
uals the most. In case of ALMS, 11 genes exceeded threshold for significant upregula-
tion (FC > 1.5, FDR < 0.05) and 35 genes were identified as significantly downregulated
(FC < 0.67, FDR < 0.05), as shown in Figure 2C. In BBS, there were 10 significantly upregu-
lated and 41 significantly downregulated genes (Figure 2D). An exact list of these genes
can be found in Table S1. The overlap of differently expressed transcripts between the
two diseases exceeded 60% for upregulated and 50% for downregulated genes (Figure 2E).
Interestingly, we found several transcripts, such as PAX6, PAX7, ZIC1, TBX1, FOXA1 and
OLIG3, that were downregulated in both syndromes (Figure 2B and Table S1).

To look beyond individual significantly expressed transcripts and to assess the biolog-
ical meaning of differences in expression of all the pathways of genes in the transcriptomic
analysis, we performed GSEA using Reactome Gene Set collection. In ALMS, 29 pathways
appeared to be statistically significant and differentially expressed (FDR < 0.05) and so did
183 gene sets in BBS. The visual summary of these gene sets and their areas of actions are
shown in Figure 3 (for ALMS and BBS, respectively).
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Figure 3. Enrichment maps on transcriptomics data presenting reactome gene set significance
(FDR < 0.05) in ALMS (A) and BBS (B). Lines connecting pathways represent genes common to
these pathways.

Of note, pathways associated with the metabolism of lipids and of glycosaminoglycan,
as well as with protein–protein interactions at synapses and the transport of small molecules
were concomitantly downregulated in both diseases. Similarly, transcripts associated with
immune system, DNA replication and cell cycle checkpoints were accordingly upregulated.

Next, we looked into the proteomic landscape of the two disorders. To achieve this, we
collected samples from three patients with ALMS, three patients with BBS and two healthy
individuals, and we subjected them to mass spectrometry in triplicates in two batches
(ALMS with controls in the first, BBS with controls in the second). After the merging of the
acquired data and pre-processing, we obtained 6596 proteins with determined expression in
each of the studied conditions. We started analysis with PCA performed separately on data
from each batch. Data from ALMS batch showed very poor separation between samples
from patients and healthy controls, while data from BBS presented a more noticeable split
between disease and control (Figure 4A,B).

In order to directly investigate the separation between ALMS and BBS, we calculated
PCA using the fold changes between proteins’ expressions in disease and their mean ex-
pressions in matching controls—this revealed a high similarity between proteomic profiles
of these two conditions (Figure 4C). At this level of proteomic analysis, we excluded an
outlier protein CYBA—its fold changes were by several orders of magnitude higher than
other proteins’ due to very low expressions detected in some controls and moderate levels
in ALMS and BBS samples. Despite high similarity between studied maladies and controls,
the HCL of 25 proteins with the highest statistical significance of difference showed a very
clear separation between ALMS, BBS samples and controls (Figure 4D,E). Differential ex-
pression analysis in proteomics identified 12 proteins as significantly upregulated (FC > 1.5,
FDR < 0.05) and 13 as significantly downregulated (FC < 0.67, FDR < 0.05) in ALMS and,
respectively, 16 upregulated and 5 downregulated in BBS (Figure 4F,G; Table S2). Among
these, CRYZ and NAB2 appeared to be concomitantly upregulated, while GPC4 and IFITM3
were accordingly downregulated (Figure 4H). Furthermore, proteins with FDR < 0.15 and
FC > 1.5 and FC < 0.67 (as upregulated and downregulated) were selected for Connec-
tivity Map (CMAP) analysis. The top 10 compounds with the most negative tau scores
were selected for ALMS and BBS analysis. These two lists were then combined and the
10 medicines with the lowest tau scores in both ALMS and BBS were plotted (Figure 5).
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Figure 4. Proteomic characteristics of ALMS and BBS. Principal component analysis (PCA) of proteins
abundance in ALMS and control (A); PCA of proteins abundance in BBS and control (B); PCA of
ALMS and BBS patient samples calculated on protein to mean control ratios (C); hierarchical clustering
of top 25 proteins in ALMS with the highest p value in a t-test (D); hierarchical clustering of top
25 proteins in BBS with the highest p value in a t-test (E); volcano plot of ALMS (F); volcano plot of
BBS (G); Venn diagram showing number of proteins significantly up- and downregulated in ALMS
and BBS (H).

GSEA identified 247 pathways in ALMS and 285 in BBS as significantly expressed in
proteomic analysis (FDR < 0.05). For the easier interpretation of the results, we changed
the significance threshold for this analysis to FDR = 0.01, receiving 146 significant gene
sets in ALMS and 170 in BBS, then we displayed them on two separate enrichment maps
(Figure 6).

Both of these showed significant changes in metabolism: the downregulation of fatty
acid metabolism, tricarboxylic acid cycle and glycosaminoglycan metabolism and the
upregulation of glycogen metabolism, among others. Respiratory electron transport, mito-
chondrial and peroxisomal protein import were also downregulated, whereas autophagy
and apoptosis processes appeared to be upregulated. Notably, a pathway associated with
cilium assembly was upregulated in both ciliopathies.
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Subsequently, we wanted to compare the expression of genes and pathways at the
proteomic and transcriptomic levels. The list of significantly upregulated and downregu-
lated genes (Table S1) did not overlap with the catalogue of significantly expressed proteins
(Table S2), which could be explained by a three times larger set of genes analyzed in the
transcriptomic experiment. Hence, we sought upregulated and downregulated genes
among those, which were identified both in proteomics and transcriptomics. In this setting
there was also no overlap between significantly expressed proteins and genes, neither in
ALMS nor in BBS (Figure 7A,B).
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Figure 7. Comparison of proteomic and transcriptomic findings. Venn diagrams show significantly
regulated proteins and genes in ALMS (A) and BBS (B). Reactome gene sets and their normalized
enrichment scores calculated on proteomics and transcriptomics data for ALMS (C) and BBS (D). Sig-
nificance of gene sets according to the color key: Brown—significant in proteomics; Green—significant
in transcriptomics; Grey—not significant; Black—significant in both. (E) Enrichment map of path-
ways significant (FDR < 0.05) both in proteomics and transcriptomics between ALMS and BBS.
Inner part of the circle shows NES in ALMS, outer part depicts NES in BBS accordingly with the
color code: significant upregulation in both proteomics and transcriptomics is shown in red and,
accordingly, downregulation is in blue, no significant expression or mismatch between proteomics
and transcriptomics is coded with white.

Then, we correlated proteomic GSEA results with transcriptomic ones, using statistical
significance threshold FDR = 0.05 for both datasets (Figure 7C,D). Among the gene sets,
which were significantly enriched at both the proteomic and transcriptomic level, the
majority showed consistent regulation, yet one gene set in ALMS and four in BBS did
not—reactome rRNA modification in the nucleus and cytosol, reactome mitochondrial
translation, reactome transport of mature transcript to cytoplasm and reactome translation
were upregulated in transcriptomics and downregulated in proteomics (Table S3). To
uncover which pathways concomitantly regulated in proteomics and transcriptomics were
responsible, we created an enrichment map showing their expression in ALMS and BBS
(Figures 7E and 8).

Upregulated pathways were mainly involved in signal transduction, immune system,
controlling cell cycle and DNA replication, as well as DNA repair. Among downregulated
gene sets, those that prevailed were involved in glycosaminoglycan metabolism, fatty acid
metabolism and SLC (solute-carrier)-mediated transport. Notably, there was an absolute
consistency in the direction of the enrichment of significantly expressed gene sets between
ALMS and BBS.

Finally, we wanted to investigate pathways specifically associated with the GLI1 gene.
After a search of the reactome database, we focused on three gene sets: the reactome
degradation of Gli1 by proteasome, reactome Hedgehog ON state and reactome Hedgehog
OFF state. In proteomics analysis, all of these appeared to be significantly upregulated in
both ALMS and BBS (Figure 9).
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(D). Enrichment plot and a heatmap of reactome Hedgehog OFF state in ALMS (E) and BBS (F).
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4. Discussion

Our study outlines the first comprehensive analysis of transcriptomic and proteomic
landscapes of ALMS and BBS. The upregulation of genes in pathways related to the immune
system, DNA replication and cell cycle checkpoints was observed in both diseases, while
genes involved in lipid and glycosaminoglycan metabolism, protein–protein interaction at
synapses and small molecule transport were downregulated. This corresponded with the
results obtained in the proteomic analysis, where we additionally observed downregulated
respiratory chain electron transport, mitochondrial and peroxisomal protein import, with
upregulated processes related to autophagy and apoptosis. This may confirm earlier reports
of a molecular mechanism involved in autophagy, a process of recycling intracellular
material that also participates in ciliogenesis [41,42] and suggest the presence of a new
pathological mechanism related to the development of both diseases, which requires
further research.

Moreover, our results remain consistent with studies performed by the transcriptome
analysis by RNA sequencing in zebrafish models of the ALMS and BBS [43]. The authors
also found many pathways common to both disease models, as well as those unique to each
model. In particular, they identified a significant gene reduction in pathways important for
visual system deficits and obesity in both diseases. In contrast, neuronal pathways were
significantly degraded only in the BBS model but not in ALMS model [43]. Interestingly,
we found several transcripts downregulated in both syndromes, such as PAX6, PAX7, ZIC1,
TBX1, FOXA1 and OLIG3, which are important transcription factors for cell differentiation
processes, the disruption of which may be relevant for both diseases [44–49].

Furthermore, the proteomic analysis showed increased levels of CRYZ and NAB2
proteins common to both syndromes, with decreased levels of GPC4 and IFITM3. This
may indicate a protective role of crystallin zeta (CRYZ) in the renal medullary collecting
duct cells, which would be beneficial for patients with ALMS and BBS, in which renal
involvement is common [1,7,50]. It may also prove the involvement of the NAB2 protein
(NGFI-A binding protein 2 or EGR-1 binding protein 2) and its potential inhibitory role
in the EGR-1-dependent invasive processes in cardiac smooth muscle, blood vessels and
nerves [51]. Of great interest is also the deficiency of GPC4 (glypican 4) found in both syn-
dromes, which is a regulator of neuronal differentiation and a new marker characterizing
neuronal cells [52] and, on the other hand, is considered a new adipokine associated with
obesity and insulin resistance [53]. Furthermore, it is interesting to note the deficiency of
the antiviral protein interferon-inducible transmembrane protein 3 (IFITM3), which we
observed in both syndromes and which has recently been identified as a novel protein-
modulating neuroinflammation, thereby increasing the risk of neurodegeneration and
Alzheimer’s disease [54].

However, proteomics also confirmed the increased expression of proteins involved
in cilium assembly in both syndromes. So far, it has been shown that the ALMS protein
is a component of the centrosome of cilium and participates in pericentrioral material
assembly [55]. The proteins of the BBS complex, located in the basal body and axoneme
of cilium, are also responsible for transport to the primary cilia or participate in their
proper functioning [17,18,56]. Furthermore, in the present study, we also observed the
increased activation of all pathways involved in Hedgehog signaling and proteasome
degradation of Gli1 proteins, which are transcriptional effectors of the Hedgehog pathway.
It is well established now that primary cilia are required for the Hedgehog signaling
pathway and that all the essential components of this mechanism are localized in the cilia
during signal transduction [57]. The Gli-dependent signaling pathway is important for
proper embryonic development and in regulating metabolism. New research in an animal
model has demonstrated the expression of this pathway modulated in a fasting-dependent
manner in hypothalamic neurons [58]. Other recent studies on BBS1, BBS5 and BBS10
knock-out human fibroblast lines have shown a reduction in Hh signaling associated with
ciliary SMO (smoothened) accumulation [59]. These results confirm the association of
Gli-dependent Hh signaling with BBS proteins. On the other hand, the same studies have
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shown an association of Hedgehog signaling with key clinical manifestations present in
ALMS and BBS syndromes, such as photoreceptor degeneration and the hyperphagia of
central origin, leading to obesity [58,59]. This observation is consistent with the essential
role of the primary cilium in Hedgehog signaling.

Furthermore, proteomics-based CMAP analysis allowed the selection of 10 compounds
most likely to oppose the effects observed in ALMS and BBS syndromes. These agents
included anti-tumor drugs, such as vincristine, L733060, GW-843682X and cloforabine, as
well as a haemostatic drug (hydrastine), a protein phosphatase inhibitor calyculin, the
synthetic fluoxyprednisolone (triamcinolone), but also the cardiac glycosides digoxin and
digitoxin and the PPARδ agonist L165041. The latter is of particular interest due to its
evidenced effect in animal models on reducing fat mass, improving lipid profile and insulin
sensitivity, as well as its demonstrated neuroprotective activity [60–62], all key symptoms
found in patients with ALMS and BBS syndromes.

Thus, our results on iPS cells obtained from the urine of patients with ALMS and
BBS confirm the numerous changes in transcript and protein levels observed in these
diseases, both common and distinct for the syndromes. The results of transcriptional
and proteomic studies were not always consistent for reactome pathways. However, this
seems reasonable when considering the influence of genetic modifiers; transcription factors;
epigenetic disorders, including methylation abnormalities; and distant gene promoters.

A limitation of this analysis appears to be the low abundance of models obtained
from patients and controls and the use of cellular models derived from BBS patients with
mutations in several genes, which does not reflect the full genetic variability present in
this syndrome. We also did not evaluate the obtained iPSC cells in terms of the number
and length of primary cilia. In addition, no further validation of the results obtained in the
patient validation group was carried out, nor was a genomic integrity study, due to the
small amount of biological material and the high cost of the analyses, which stopped us
from investigating the mutation stability in the culture in depth.

5. Conclusions

In conclusion, the results obtained confirm that primary cilium dysfunction in the
course of ALMS and BBS is only a part of the observed abnormalities and is closely related
to impaired cell differentiation. This comprehensive assessment can contribute to the
development of targeted therapeutic interventions. However, our results are preliminary.
Further studies involving patient tissue samples and animal models are needed to deter-
mine whether the observed iPSC gene expression profiles reflect pathogenic mechanisms
or are specific to cultured cells.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/genes13122370/s1, Table S1: List of significantly up- and downregulated
transcripts in ALMS and BBS; Table S2: List of significantly up- and downregulated proteins in ALMS
and BBS; Table S3: List of reactome pathways significantly up- and downregulated by both proteomic
and transcriptomic analysis in ALMS and BBS syndromes. P—proteomics; T—transcriptomics.
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