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Abstract: Zinc (Zn)-regulated and iron (Fe)-regulated transporter-like proteins (ZIP) are key players
involved in the accumulation of cadmium (Cd) and Zn in plants. Sedum plumbizincicola X.H. Guo
et S.B. Zhou ex L.H. Wu (S. plumbizincicola) is a Crassulaceae Cd/Zn hyperaccumulator found in
China, but the role of ZIPs in S. plumbizincicola remains largely unexplored. Here, we identified
12 members of ZIP family genes by transcriptome analysis in S. plumbizincicola and cloned the SpZIP2
gene with functional analysis. The expression of SpZIP2 in roots was higher than that in the shoots,
and Cd stress significantly decreased its expression in the roots but increased its expression in leaves.
Protein sequence characteristics and structural analysis showed that the content of alanine and leucine
residues in the SpZIP2 sequence was higher than other residues, and several serine, threonine and
tyrosine sites can be phosphorylated. Transmembrane domain analysis showed that SpZIP2 has the
classic eight transmembrane regions. The evolutionary analysis found that SpZIP2 is closely related
to OsZIP2, followed by AtZIP11, OsZIP1 and AtZIP2. Sequence alignment showed that most of the
conserved sequences among these members were located in the transmembrane regions. A further
metal sensitivity assay using yeast mutant ∆yap1 showed that the expression of SpZIP2 increased the
sensitivity of the transformants to Cd but failed to change the resistance to Zn. The subsequent ion
content determination showed that the expression of SpZIP2 increased the accumulation of Cd in
yeast. Subcellular localization showed that SpZIP2 was localized to membrane systems, including
the plasma membrane and endoplasmic reticulum. The above results indicate that ZIP member
SpZIP2 participates in the uptake and accumulation of Cd into cells and might contribute to Cd
hyperaccumulation in S. plumbizincicola.

Keywords: S. plumbizincicola; ZIP2; Cd tolerance; Cd accumulation

1. Introduction

As a non-essential mineral element in plants, cadmium (Cd) is absorbed and translo-
cated by plants through the transport system of other elements such as Zinc (Zn), man-
ganese (Mn) and iron (Fe), and its presence in the food chain threatens human health [1].
Elucidation of the underlying mechanisms would be of great importance to either reduc-
ing heavy metal translocation into food chains or performing phytoremediation of the
Cd-polluted soils.

Sedum plumbizincicola X.H. Guo et S.B. Zhou ex L.H. Wu (S. plumbizincicola) is a Cd/Zn
hyperaccumulator found in China that can accumulate high amounts of heavy metals without
any obvious physiological toxicity to the plant [2–5]. Thus, S. plumbizincicola is widely used
for the effective remediation of Cd-contaminated agricultural soils [6–8] and is capable of
achieving high remediation efficiency using appropriate agronomic strategies [9–11], even in
alkaline soil [12] and highly polluted soils [13]. S. plumbizincicola also plays an important
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role in enhancing the fertility of calcareous soil [14] and the mobilization of less active
metal fractions [15] during remediation. Moreover, S. plumbizincicola can obtain transgenic
plants using the agrobacterium-mediated genetic transformation method [16] and thus,
it is becoming an important research object to analyze the accumulation and tolerance of
Cd in plants. The cell wall and several key genes were identified as key players in the
process of Cd hyperaccumulation for S. plumbizincicola. The chloroplast-located SpHMA1
is involved in the efflux of Cd from the chloroplast, thereby preventing the accumulation
of Cd in the chloroplast to protect photosynthesis [17]. Meanwhile, SpHMA3 is localized
to the vacuolar membrane and has a specific ability to transport Cd ions into the vacuole
for compartmentalization and realize cytoplasmic detoxification [18]. The overexpression
of SpbZIP60 in Arabidopsis thaliana (A. thaliana) increases the ability of Cd tolerance in
transgenic plants [19]. The overexpression of SpHMA7 in yeast was found to increase yeast
sensitivity to Cd [20], whereas the expression of SpMT2 and MTL in yeast increased its
tolerance to Cd [21,22]. Compared with the non-hyperaccumulator Sedum alfredii (S. alfredii),
the increased expression level and protein sequence variation of MTL in S. plumbizincicol is
crucial for its Cd hyperaccumulation and hypertolerance [21].

Members from the Zinc (Zn)-regulated and iron (Fe)-regulated transporter-like pro-
teins (ZIP) family can transport metal elements, such as Zn, Mn, Fe and Cd, and display
differential substrate transport activity [23–25]. A total of 15 ZIP members have been
identified in A. thaliana [26]. AtIRT1, the first reported ZIP member, is a key component in
maintaining iron homeostasis in A. thaliana [27,28]. AtZIP1-AtZIP4 can functionally com-
plement Zn-uptake-deficient yeast strains [29]. Additionally, AtZIP1 and AtZIP2 are also
involved in the transport of Mn from roots to shoots [30]. In rice, there are 16 ZIP members,
including 14 Zn-regulated transporters and 2 Fe-regulated transporters (IRT) [23]. ZIP
family members such as OsIRT1 [31,32], OsIRT2 [33], OsZIP1 [34], OsZIP3 [35], OsZIP4 [36],
OsZIP5 [37], OsZIP7 [38–40], OsZIP8 [38,41] and ZIP9 [42] were reported to transport Zn
and/or Fe. ZIP family members have also been found to participate in transmembrane
Cd transport. For example, AtIRT1, AtIRT2, OsIRT1, OsIRT2, OsZIP5 and OsZIP9 are
involved in the uptake and transport of Cd by rice roots [32,42–45]. OsZIP6 mediated
Cd uptake when expressed in Xenopus oocytes [46]. Expressing OsZIP1 and OsZIP3 in
yeast could enhance Cd sensitivity and promote Cd accumulation [45]. The co-expression
of OsLCT1-OsHMA2-OsZIP3 in rice effectively reduced Cd accumulation in grains [47].
Moreover, transgenic rice plants with higher expression levels of OsZIP1 were shown to
reduce Cd accumulation and toxicity [34].

There is sufficient evidence to conclude that ZIP members are key players in Cd and Zn
accumulation; however, SpZIPs in the Cd/Zn hyperaccumulator S. plumbizincicola are still
unreported. In this study, we identified 12 ZIP genes in Sedum. Among the higher expressed
ZIP members, ZIP2 was the only lower expressed ZIP gene in S. plumbizincicola than in
S. alfredii, indicating that ZIP2 might have a special function in Cd/Zn hyperaccumulation
compared with other ZIPs. We therefore designed a study to isolate SpZIP2 and investigate
its basic features and transport activity, aiming to provide clues for further uncovering the
mechanism of Cd/Zn hyperaccumulation in S. plumbizincicola.

2. Materials and Methods
2.1. Plant Materials and Growth Conditions

S. plumbizincicola and S. alfredii were collected from a discarded mine (N29.22, E118.78,
Huiping town, Zhejiang Province). Young and healthy lateral shoots from plants at a
similar growth stage were cut off and grown in non-contaminated soils in phytotron for
several generations. Then, young lateral shoots at a similar growth stage were cultivated in
hydroponic solution in phytotron at 24–26 ◦C with 16 h light/8 h dark cycles, as described
in [21]. The details of cultivation are as follows: Several big pots were used for cultivating
enough S. plumbizincicola and S. alfredii plants for further experiments. Each pot contained
6 L of nutrient solution and 24 seedlings. The solution was replaced every 2–3 days. After
hydroponic cultivation for about 8 weeks, S. plumbizincicola and S. alfredii plants were
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treated with either normal hydroponic solution or a solution containing 50 µM Cd for
another 3 days using several small pots. Each experimental small pot contained 3 L of
nutrient solution and 6 seedlings.

2.2. Analyses of Expression Pattern for SpZIP in S. plumbizincicola and S. alfredii

The transcriptome and genome sequencing methods used were described previ-
ously [3] and used to obtain FPKM values of genes annotated as ZIPs. Then, a heatmap
was constructed using OECloud tools at https://cloud.oebiotech.cn (accessed on 8 August
2022) with default parameters. Quantitative RT-PCR analysis was conducted as follows:
8-week-old S. plumbizincicola plants were treated with normal or 50 µM Cd solution for
another 3 days, following which roots and shoots were harvested, and gene expression
levels were detected. The primer sequences are provided in Table S1.

2.3. Sequence Characterization and Transmembrane Region Prediction

The amino acid compositions of SpZIP2 were analyzed by Expasy (https://web.
expasy.org/protparam/, accessed on 1 November 2022) with default parameters [48].
Transmembrane domains of SpZIP2 were analyzed using Phobius (http://phobius.sbc.
su.se/, accessed on 4 August 2022) [49]. Protein phosphorylation sites of SpZIP2 were
predicted using NetPhos-3.1 (https://services.healthtech.dtu.dk/service.php? NetPhos-3.1,
accessed on 14 July 2022) [50].

2.4. Phylogenetic Analysis and Sequence Alignment

The amino acid sequences of ZIPs from A. thaliana and rice were downloaded from the
websites using gene accession numbers as below: AtIRT1(AT4G19690.2), AtIRT2(AT4G19680.2),
AtIRT3(AT1G60960.1), AtZIP1(AT3G12750.1), AtZIP2(AT5G59520.1), AtZIP3(AT2G32270.1),
AtZIP4(AT1G10970.1), AtZIP5(AT1G05300.1), AtZIP6(AT2G30080.1), AtZIP7(AT2G04032.1),
AtZIP8(AAL83293.1, The European Nucleotide Archive), AtZIP9(AT4G33020.2), AtZIP10(AT1-
G31260.1), AtZIP11(AT1G55910.1), AtZIP12(AT5G62160.1), OsIRT1(LOC_Os03g46470.1), OsI-
RT2(LOC_Os03g46454.1), OsZIP1(LOC_Os01g74110.1), OsZIP2(LOC_Os03g29850.1), Os-
ZIP3(LOC_Os04g52310.1), OsZIP4(LOC_Os08g10630.1), OsZIP5(LOC_Os05g39560.1), Os-
ZIP6(LOC_Os05g07210.1), OsZIP7(LOC_Os05g10940.1), OsZIP8(LOC_Os07g12890.1), Os-
ZIP9(LOC_Os05g39540.1), OsZIP10(LOC_Os06g37010.1), OsZIP11(LOC_Os05g25194.1), Os-
ZIP13(LOC_Os02g10230.1), OsZIP14(LOC_Os08g36420.3) and OsZIP16(LOC_Os08g01030.1).
Sequence alignment analysis was performed using CLUSTALW (https://www.genome.jp/
tools-bin/clustalw, accessed on 8 August 2022) with default parameters, and the results were
displayed by ESPript3.x (https://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi, accessed on 8
August 2022) [51]. The phylogenetic tree was constructed online (https://ngphylogeny.fr/,
accessed on 8 August 2022) with default parameters [52] and then displayed using the iTOL
tool (https://itol.embl.de/, accessed on 8 August 2022) [53].

2.5. Cd Tolerance and Accumulation Analyses Using Yeast Strain

The CDS region of SpZIP2 was amplified with primers SpZIP2-BL and SpZIP2-ER
(Table S1) using S. plumbizincicola cDNA as the template and inserted into vector pYES2
with BamH1 and EcoR1 restriction sites to generate pYES2-SpZIP2. Empty vector pYES2
and the constructed pYES2-SpZIP2 vector were each transformed into yeast ∆yap1, and the
empty vector pYES2 was also transformed into wild-type yeast Y252 as described in [54].
The correct clone was selected to be grown in liquid to log phase for further analysis.

Metal sensitivity assay: The cultures were gradient diluted as indicated, dropped onto
SD plates containing different Cd concentrations and then grown at 30 ◦C for about 7 days
before being photographed.

Metal accumulation assay: Yeast cells were cultured to log phase in liquid SD medium
and then allowed to grow for another 6 h in liquid SD medium with 50 µM CdCl2. Yeast
cells were collected, washed and dried, and then the Cd content in the cells was determined
by ICP-MS as described [21].

https://cloud.oebiotech.cn
https://web.expasy.org/protparam/
https://web.expasy.org/protparam/
http://phobius.sbc.su.se/
http://phobius.sbc.su.se/
https://services.healthtech.dtu.dk/service.php?
https://www.genome.jp/tools-bin/clustalw
https://www.genome.jp/tools-bin/clustalw
https://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi
https://ngphylogeny.fr/
https://itol.embl.de/
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2.6. Subcellular Localization Analyses

The CDS region of SpZIP2 was amplified with primers SpZIP2-BL and SpZIP2-E-R2
(Table S1) and then inserted into the pYES2-mRFP vector using restriction sites BamH1 and
EcoR1 to generate pYES2-mRFP-SpZIP2. Vectors pYES2-mRFP and pYES2-mRFP-SpZIP2 were
each transformed into yeast ∆yap1. The correct clone was identified and cultured to log phase
in liquid SD medium. Fluorescence was observed by a confocal laser microscope. A Cd
sensitivity assay was carried out according to the method described in Section 3.4. Subcellular
localization of SpZIP2 in plants was predicted by Plant-mPLoc [55] with default parameters.

2.7. Statistical Analyses

Statistical significance was tested by two-tailed Student’s t-tests using Microsoft Excel
2010 (Version number is 14.0.7268.5000, and was sourced from Changsha, China). Differ-
ences were deemed significant at p < 0.05 (*).

3. Results
3.1. Expression Pattern of SpZIP2

We analyzed the genes’ response to Cd treatment in S. plumbizincicola and S. alfredii by
combining comparative transcriptomic and genomic sequencing obtained previously [3].
The results revealed that the expressions of ZIP family genes SpZIP1 (c33410_g1), SpZIP3
(c31670_g1) and SpZIP4 (c36833_g1) were much higher in S. plumbizincicola than those in
S. alfredii [3]. Further analysis identified 12 ZIP family members in S. plumbizincicola and
S. alfredii. In S. plumbizincicola, the expression level of SpZIP2 was higher in roots than in
shoots, and both were lower than SpZIP1 and SpZIP4 but higher than SpZIP3 (Figure 1A).
Interestingly, the expression level of ZIP2 (c34395_g1) in S. alfredii was higher than that
in S. plumbizincicola under normal conditions, and this difference was enlarged after Cd
treatment (Figure 1B). Quantitative RT-PCR results indicated that the expression of SpZIP2
was repressed in roots and induced in leaves in response to Cd treatment (Figure 1C).

3.2. Structure and Characteristics of SpZIP2

Based on the transcriptome and genome sequencing, we obtained the coding sequences
and amino acid sequences of the SpZIPs (Table S2). The basic characteristics of SpZIP2
were further analyzed using bioinformatics methods. Amino acid composition analysis
showed that SpZIP2 consisted of 340 amino acids, among which the proportion of alanine
residues was the highest at 12.6%, followed by leucine at 11.8%; the two least-contented
amino acids residues were cysteine and asparagine, accounting for 1.2% and 1.5%, re-
spectively (Figure 2A). Phosphorylation site prediction analysis showed that SpZIP2 had
31 possible sites that could be phosphorylated, including 19 serine sites, 9 threonine sites
and 3 tyrosine sites (Figure 2B). Transmembrane domain analysis indicated that SpZIP2 has
eight potential transmembrane domains with a long variable region between the third and
fourth transmembrane regions (Figure 2C), which is consistent with the other ZIP family
members [25].

3.3. Phylogenetic Analyses and Sequence Alignment of SpZIP2 with Other ZIP Members

We further obtained rice and A. thaliana ZIP family protein sequences and performed
an evolutionary analysis with SpZIP2. The results showed that SpZIP2 is more closely
related to OsZIP1 and OsZIP2 in rice and AtZIP11 and AtZIP2 in A. thaliana (Figure 3),
suggesting that these members might have similar functions.

We then performed sequence alignment analysis with SpZIP2 and its closely related
members OsZIP1, OsZIP2, AtZIP11 and AtZIP2. These members have low sequence
similarity between the N-terminal and the regions between the third and fourth transmem-
brane domains. Meanwhile, most of the highly conserved sequences are located in the
transmembrane region (Figure 4).
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treatment. 10S: Shoots with Cd treatment. ZIP1: c33410_g1; ZIP2: c34395_g1; ZIP3: c31670_g1; ZIP4: 
c36833_g1. (B) FPKM values of ZIP2 in roots and shoots under normal or Cd stress conditions in S. 
plumbizincicola and S. alfredii. (C) Expression of SpZIP2 in roots, stems and leaves in response to Cd 
treatment in S. plumbizincicola. Values are means ± SD, n = 3. Statistical significance was tested by 
Student’s t-tests. Differences were deemed significant at p < 0.05 (*). 
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c36833_g1. (B) FPKM values of ZIP2 in roots and shoots under normal or Cd stress conditions in
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treatment in S. plumbizincicola. Values are means ± SD, n = 3. Statistical significance was tested by
Student’s t-tests. Differences were deemed significant at p < 0.05 (*).
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3.4. SpZIP2-Mediated Cd Tolerance and Accumulation in Yeast

Given that S. plumbizincicola is a Cd/Zn hyperaccumulator plant, we then analyzed
the roles of SpZIP2 for Cd and Zn tolerance in the heavy-metal-sensitive yeast mutant
∆yap1. The yeast ∆yap1 expressing SpZIP2 hardly grew under external 25 µM Cd treatment,
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while the∆yap1 transformed with an empty vector showed a more effective growth status
(Figure 5A), indicating that the yeast ∆yap1 expressing SpZIP2 was more sensitive to Cd.
Notably, there was no significant growth difference between pYES2-SpZIP2 and empty
vector pYES2 transformants under external Zn treatment conditions (Figure 5B). The above
results indicate that SpZIP2 expression in yeast specifically improved the sensitivity of
yeast to Cd.
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To further uncover the details of SpZIP2 in increasing Cd sensitivity in yeast, we
measured the Cd content in yeast. As shown in Figure 6, the Cd content in yeast ∆yap1
expressing SpZIP2 reached 64.92 µg/g (dry weight), while the Cd content in yeast trans-
formed with the empty vector was only 48.46 µg/g yeast dry weight, which was much
lower than the former. This indicates that expression of SpZIP2 in yeast can greatly increase
the Cd content, and SpZIP2 could effectively uptake external Cd into yeast cells.
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3.5. SpZIP2 Localized to Membrane Systems Include Plasma Membrane

Expression of SpZIP2 led to more sensitivity to Cd and increased the Cd content in
yeast, indicating that it was likely to mediate the transmembrane transport of Cd across
the yeast plasma membrane. We then constructed the pYES2-SpZIP2-mRFP vector and
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performed subcellular localization analysis. The results showed that the fluorescence of
SpZIP2-mRFP was detected in multiple membrane systems, including the plasma mem-
brane (Figure 7A). SpZIP2-mRFP fusion was proven functional by a Cd sensitivity assay
which showed that yeast expressing the SpZIP2-mRFP fusion protein exhibited a Cd-
sensitive phenotype compared to yeast expressing mRFP alone (Figure 7B). Those results,
together with the results from Figures 5 and 6, suggest that SpZIP2 is involved in the uptake
of external Cd in yeast. Notably, a subcellular localization prediction analysis for plant
proteins indicated that SpZIP2 is a plasma-membrane-localized protein (Figure 7C).
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4. Discussion

Members of the ZIP family play an important role in the uptake and accumulation of
metals in plants. ZIP family members have been functionally identified in many species,
including A. thaliana and rice. Through genome-wide identification and analysis, 12, 12, 21, 20,
30, 33 and 14 ZIP family members were identified in maize, potato, poplar, lettuce, peanut,
wild emmer wheat and hexaploid wheat, respectively [43,56–62]. Based on transcriptome and
genome sequencing, we identified 12 ZIP members in S. plumbizincicola and S. alfredii, among
which the expression levels of ZIP1, ZIP3 and ZIP4 were much higher in S. plumbizincicola than
those in S. alfredii. The expression levels of ZIP1, ZIP3 and ZIP4 in the roots of S. plumbizincicola
are much higher than those in the shoots (Figure 1A). Given that the roots are responsible for
Cd uptake from the soil and its translocation to shoots [1], these three members may therefore
play a role in the above-mentioned process. However, the accurate function of these three
members requires further evidence, including ion transport activity and tissue/subcellular
localization data. Interestingly, the expression level of ZIP2 was lower in S. plumbizincicola than
that in S. alfredii and was the highest expressed ZIP member in S. alfredii (Figure 1), suggesting
that the gene may play a unique function.

S. plumbizincicola is a Cd/Zn hyperaccumulator, and the ZIP gene is widely involved
in the Cd/Zn transport process in plants [25]. Heterologous expression of SpZIP2 in
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yeast effectively mediated the transport of Cd and increased Cd accumulation in yeast
(Figures 5 and 6). Previous studies have shown that OsZIP1 and OsZIP3 could increase
Cd sensitivity and accumulation when expressed in yeast cells [45]. These genes might
mediate Cd uptake into cells.

Members from the ZIP family could transport Cd, Mn, Fe, Zn and other elements [23,25]
and different members show differential transport activities for different substrates, which
is dependent on the sequence specificity between the third and fourth transmembrane
segments [25]. SpZIP2 is closely related to OsZIP1, OsZIP2, AtZIP11 and AtZIP2, and the
highly similar sequences between those members are mostly located in the transmembrane
region, while the similarity between the third and fourth transmembrane regions is very
low (Figure 4), which might lead to differences in their substrate transport activity. SpZIP2
may mediate the transport of Cd, but not Zn (Figures 5 and 6); AtZIP2 can transport Zn
and Mn, but not Cu and Fe [30]; OsZIP1 can mediate the efflux of Cd, Zn and Cu [34].

The subcellular localization of SpZIP2 in yeast involves multiple membrane systems,
including the plasma membrane and the endoplasmic reticulum, suggesting functional
diversity. OsZIP1, which is closely related to SpZIP2, is localized to the endoplasmic
reticulum and plasma membrane [34], while another closely related member, AtZIP2, is
localized to the plasma membrane [30]. Based on the results from Figures 5–7, we speculate
that SpZIP2 may be involved in cell Cd influx in S. plumbizincicola.

The accumulation of Cd by plants involves several key physiological processes, in-
cluding the absorption of external Cd by roots and its subsequent transport from roots
to shoots [1]. These processes need several key members, among which the absorption
of external Cd by roots is mainly controlled by the plasma-membrane-localized protein
Nramp5 [63,64], while the process of root transport to the shoot mainly depends on the
tonoplast-localized P1B-type heavy metal ATPase HMA3, which reduces the transfer of
Cd to the shoots by compartmentalizing it to the vacuoles [65,66]. Gene expression results
showed that the expression of ZIP2 in the roots of S. plumbizincicola was inhibited by Cd,
but was induced in S. alfredii, and the expression level was higher in S. alfredii than that
in S. plumbizincicola. Given that S. plumbizincicola is a hyperaccumulator and S. alfredii
is a non-hyperaccumulating control [3,16], it was suggested that SpZIP2 might not be a
main participant in the process of absorbing Cd from the outside. Considering that SpZIP2
functions to uptake Cd into cells, it might play a role in the process of unloading Cd from
vascular tissues when expressed in roots, thereby reducing the Cd transfer to the shoots.

However, the clear role of SpZIP2 in plants needs to be further elucidated in combina-
tion with tissue localization analysis and plant genetic materials.

5. Conclusions

Using transcriptome analysis, we isolated SpZIP2 from S. plumbizincicola. SpZIP2, with
a structure and characteristics similar to ZIP members, could enhance the accumulation
of Cd in yeast, thus leading to greater Cd sensitivity. Therefore, SpZIP2 contributes to the
uptake and accumulation of Cd into cells and might participate in Cd hyperaccumulation
in S. plumbizincicola.
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