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Abstract: Background: The fragile X premutation carrier state (PM) (55–200 CGG repeats in the
fragile X messenger ribonucleoprotein 1, FMR1 gene) is associated with several conditions, including
fragile X-associated primary ovarian insufficiency (FXPOI) and fragile X-associated tremor ataxia
(FXTAS), with current literature largely primarily investigating older PM individuals. The aim of this
study was to identify the prevalence of fragile X-associated neurodevelopmental disorders (FXAND)
in a sample of young PM individuals. Methods: This was a retrospective study conducted through a
medical record review of PM individuals who were seen either for clinical concerns (probands, 45.9%)
or identified through the cascade testing (non-probands, 54.1%) of an affected sibling with fragile X
syndrome. Information on the presence of autism spectrum disorder, attention deficit hyperactivity
disorder, anxiety, depression, long-term psychiatric medication intake, and cognitive function, based
on standardized assessments, was obtained. Molecular data, including CGG repeat number and
FMR1 mRNA levels, were also available for a subset of participants. Analysis included descriptive
statistics and a test of comparison to describe the clinical profile of PM individuals pertinent to
FXAND. Results: Participants included 61 individuals (52 males and 9 females) aged 7.8 to 20.0 years
(mean 12.6 ± 3.4) with a mean full-scale IQ of 90.9 ± 22.7. The majority (N = 52; 85.2%) had at least
one mental health disorder, with anxiety being the most common (82.0% of subjects), followed by
ADHD (66.5%), and ASD (32.8%). Twenty-seven (87.1%) of non-probands also had at least one mental
health condition, with probands having lower cognitive and adaptive skills than non-probands. ASD
was present in 20 participants (17/52 males and 3/9 females; 15 probands) with significantly lower
FSIQ in those with ASD (mean 73.5 vs. 98.0, p < 0.001). Participants with ASD had a higher number of
long-term medications compared to those without (2.32 vs. 1.3, p = 0.002). Conclusions: Our findings
indicate a high rate of FXAND diagnoses within a cohort of young PM individuals, including those
identified via cascade testing, although this was not a population sample. An awareness of the entity
of FXAND and the early recognition of the symptoms of associated conditions may facilitate timely
and appropriate care for PM individuals.
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1. Background

While the clinical entity of fragile X syndrome (FXS) has been well defined and charac-
terized over the past four decades, the associated phenotypes of the fragile X premutation
(PM) is relatively newly recognized, since the early 2000s. FXS is caused by a full ex-
pansion of the CGG repeats (≥200 repeats) in the 5′ region of the fragile X messenger
ribonucleoprotein 1 (FMR1) gene, resulting in the loss of function of the gene and the
consequent deficiency or absence of the FMR1 protein (FMRP) [1]. FXS is the most common
monogenetic cause of intellectual disability (ID) and autism spectrum disorder (ASD), with
an estimated prevalence of 1 in 5000 males and 1 in 8000 females, and hallmark clinical
features of ID, facial dysmorphism, language delays, and aggressive behavior [2–4]. In turn,
the PM state refers to individuals who have between 55 and 200 CGG repeats, and whereby,
the progeny of females can have a full expansion of the CGG repeats to result in FXS [5].
The PM state is more common than the full mutation, occurring in 1 in 200 women and
in 1 in 400 men [2]. Several conditions have been associated with the PM state, including
fragile X-associated primary ovarian insufficiency (FXPOI) [6,7] and fragile X-associated
tremor ataxia (FXTAS) [8–11]. The pathophysiology of these conditions is attributed with
the RNA toxicity caused by elevated levels of FMR1 mRNA in PM individuals [12].

Recently, a newly recognized implication of the PM state was labeled in 2018 as fragile
X-associated neurodevelopmental disorders (FXAND) [13]. The most common conditions
under this umbrella include anxiety and depression, but several other neurodevelopmental
disorders, including phobias and obsessive-compulsive disorders, have also been reported
as being part of this entity, with a higher incidence occurring in PM individuals compared
to controls without the premutation [14–16]. However, these initial studies have primarily
focused on adult PM individuals to profile their FXAND conditions in adulthood. The
literature is currently sparse on the clinical profile of young PM individuals, and the
presence and onset (if applicable) of FXAND in the early years of life. Of note, there
is also a growing body of literature highlighting the increased occurrence of ASD and
attention-deficit hyperactivity disorder (ADHD) in PM individuals, which would fall
under FXAND [17–19]. Previous research studies have made the distinction between
PM individuals referred to for clinical concerns of FXAND disorders, and those with no
apparent clinical concerns but that have been identified through the cascade testing of a
sibling with FXS or the premutation. The rates of FXAND disorders are typically higher in
those with clinical concerns compared to those included through cascade testing. Among
those identified through cascade testing, the rates tend to be either similar to or slightly
increased to the population prevalence rates of these conditions [18,20]. Given that these
are primarily childhood-based neuropsychiatric disorders that can respond to treatment, it
would be worthwhile to examine this further in order to study FXAND and its associations
in greater detail.

Hence in this study, our primary goal is to utilize a cohort of young PM individuals to
assess the presence, relationship, and implications of various FXAND-related conditions
(including ASD, ADHD, anxiety, and depression). Our secondary aim is to identify the
clinical correlates of the presence of these disorders.

2. Methods

This was a retrospective cross-sectional study conducted through a medical record
review of young PM individuals. Institutional review board (IRB) approval was obtained
for all study-related activities from the UC Davis IRB (study number 254134).

2.1. Subjects

PM individuals, between 8 and 21 years of age inclusive, who were either non-
probands identified through cascade testing (the routine genetic testing of family members
after the identification of a proband) of an affected sibling with FXS (N = 33, 54.1%) or
probands who were seen for clinical concerns at the Fragile X Treatment and Research
Center at the University of California Davis MIND Institute, a tertiary healthcare center,
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between 2004 and 2022 (N = 28, 45.9%) were included. All study participants had the docu-
mentation of their PM state confirmed via the detection of a premutation allele through
DNA diagnostic testing, which included both polymerase chain reaction and southern
blot analysis.

2.2. Study Measures
2.2.1. Clinical Phenotype-Related Measures

Clinical information about the PM participants was obtained using a structured data
abstraction form, and included demographic data and details on the presence and severity
of conditions of interest, including ASD, ADHD, anxiety, depression, obsessive compulsive
disorder, specific phobias, and panic disorders (referred to as FXAND-related conditions).
The presence of these conditions were determined by licensed and research-reliable health-
care providers in accordance with the Diagnostic and Statistical Manual—5th Edition
(DSM-5) criteria. In addition, the diagnosis of ASD was made using the Autism Diagnostic
Observation Schedule (ADOS) [21]. Data related to ASD diagnoses were available for
50 participants. Information on cognitive assessment based on standardized testing was
also obtained. Given the varying age range of the participants, a variety of standardized
cognitive assessments were used across the study participants. This included the Wech-
sler Intelligence Scale for Children, Third or Fourth Edition (WISC-III or WISC-IV) [22],
the Stanford Binet Intelligence Scales, Fifth Edition (SB-5) [23], and the Wechsler Adult
Intelligence Scale, Third or Fourth Edition (WAIS-III or WAIS-IV) [24], as per participant
age and clinical profile. Adaptive functioning was assessed using the Vineland Adaptive
Behavior Scales—Second Edition (VABS–II) [25], which provides an adaptive behavior
composite score (ABC) and sub-domain scores in Communication, Socialization and Daily
Living Skills. The presence of mental health disorders was made using the Structured
Clinical Interview for DSM-IV Axis I Personality Disorders (SCID) [26]. Information on
long-term psychiatric medication intake was also obtained; this included but was not
limited to medications such as antidepressants, antipsychotics, and stimulant groups of
medications. Medications in other related classes/fields of medicine such as anti-epileptics
were also documented.

2.2.2. Molecular Data

Molecular data (CGG repeat number, and FMR1 mRNA levels) were also available for
a subset of the study sample, and were recorded for analysis. Their PM state was previously
confirmed and determined using Southern Blot and PCR-based CGG repeat genotyping on
genomic DNA isolated from whole blood. The details are as described in Tassone et al., 2008,
and Filipovick et al., 2010 [27,28]. The expression levels of FMR1 mRNA and FMR1 protein
(FMRP) were measured as previously described (Tassone et al., 2000) [12]. Data related to
the FMR1 mRNA and FMRP levels were available for 47 and 15 participants, respectively.

2.2.3. Statistical Analysis

Statistical analysis was performed using the Statistical Package for Social Sciences
(SPSS) for Windows [29]. Descriptive statistics were used to examine the demographic
and clinical variables of interest, including various FXAND conditions. The results were
expressed as mean ± standard deviation of mean. Tests of comparison (two sample t-tests,
Fisher’s exact, and Chi-squared tests) were used to examine for differences in clinical
phenotype based on the ages of the subjects, number of CGG repeats, and the presence of
the main FXAND conditions of anxiety, ASD, and depression. All significance values were
set to p < 0.05. Figures were created on GraphPad Prism Version 9.

3. Results

A total of 61 participants (52 males and 9 females) were included in the final analy-
sis. The mean age of the whole sample was 12.6 years (SD 3.4; median 12.0, age range:
7.8–20.0 years). Table 1 shows the descriptive demographic, clinical, and molecular data
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of all study participants. Females were older and had a lower CGG repeat allele size,
as compared to males. There were no other significant differences in terms of gender,
except for FMRP levels, which were higher in females as compared to males (however,
these data were available only for 15 participants, 7 males, and 8 females). The mean
full-scale IQ (FSIQ) of the cohort was 90.9 (SD 22.7), which is within the average range, as
expected; there were no differences in IQ profile between males and females. The mean
number of CGG repeats was 96.7 (SD 41.2); 21 subjects had >100 CGG repeats. Comparing
probands and non-probands, there were no statistically significant differences in terms of
gender, age, and molecular data (CGG repeats, FMRP levels, and mRNA levels). However,
non-probands had significantly higher FSIQ (99.3 ± 16.6) scores as compared to probands
(79.0 ± 25.0; p = 0.001), and higher adaptive behavior scores as well (VABS ABC 89.8 ± 9.1
vs. 71.9 ± 14.7, p = 0.004). Scores on the performance IQ (PIQ), verbal IQ (VIQ), VABS
Socialization and Daily Living domains were also higher in non-probands as compared to
probands (Table 1).
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Table 1. Descriptive data of study subjects.

Variable All Males Females p-Value Probands Non-Probands p-Value

N (%) 61 52 (85.2) 9 (14.5) / 28 33 /
Males (%) / / / / 24 (86) 28 (85) 1.0

Age range (years) 7.8–20.0 8–20 9–19 / 8–19 8–20 /
Mean age (years) 12.6 ± 3.4 12.2 ± 3.3 14.7 ± 3.5 0.04 12.8 ± 3.6 12.2 ± 3.2 0.47

Mean (SD)

CGG repeat size 96.7 ± 41.2 101.0 ± 42.4 73.0 ± 24.0 0.01 98.5 ± 46.3 95.0 ± 36.9 0.75
Mean mRNA level (AU) 2.8 ± 1.1 † 2.9 ± 1.1 † 1.6 ± 0 NA 2.9 ± 1.2 2.8 ± 1.1 0.76
Mean FMRP level (AU) 1.1 ± 0.4 0.9 ± 0.4 ‡ 1.3 ± 0.3 ‡ 0.04 1.1 ± 0.3 1.1 ± 0.4 1.00

FSIQ 90.9 ± 22.7 91.2 ± 21.8 89.3 ± 28.1 0.83 79.0 ± 25.0 99.3 ± 16.6 0.001
PIQ 93.0 ± 20.9 91.1 ± 20.9 98.6 ± 21.5 0.42 78.6 ± 21.1 101.5 ± 16.0 0.004
VIQ 96.5 ± 25.2 95.7 ± 27.1 98.7 ± 20.4 0.79 83.3 ± 32.5 103.8 ± 17.1 0.04

VABS ABC 81.8 ± 14.7 81.1 ± 15.4 88.0 ± 3.6 0.54 71.9 ± 14.7 89.8 ± 9.1 0.004
VABS Communication 79.5.5 ± 15.7 79.4 ± 16.1 81.0 ± 17.0 0.89 72.8 ± 11.8 85.6 ± 16.9 0.0750

VABS Socialization 86.1 ± 16.3 84.1 ± 16.1 102.0 ± 2.8 0.15 75.0 ± 17.6 94.9 ± 7.9 0.005
VABS Daily living 85.8 ± 17.8 85.1 ± 18.7 91.5 ± 6.4 0.64 74.8 ± 18.1 95.7 ± 10.6 0.006

Abbreviations: FMRP = FMR1 protein, FSIQ = Full Scale IQ, PIQ = Performance IQ, VIQ = Verbal IQ, VABS = Vineland Adaptive Behavior Scales, ABC = Adaptive Behavior Composite;
† The mRNA level was obtained for 46 males and 1 female; ‡ The FMRP level was obtained for 7 males and 8 females. Statistically significant p values are bolded.
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4. FXAND-Related Conditions

Figure 1A and Table 2 present data regarding FXAND-related conditions in the sample
of young PM carriers. The majority (57/61, 93.4%) of participants had at least one FXAND-
related condition (Figure 1A), with anxiety being the most common (total: 50/61, and
43/52 males and 7/9 females) and ASD being present in 20 participants (17/52 males
and 3/9 females). ADHD occurred more frequently in males as compared to females
(39/52 vs. 1/9, p < 0.001; Table 2); there were no other differences based on gender. There
was no difference between the average number of FXAND-related conditions between
probands and non-probands (2.9 ± 1.3 vs. 2.4 ± 1.3, p = 0.20, Figure 1B). Even among non-
probands, 30/33 participants had at least one FXAND-related condition. Non-probands
were less likely to have ASD as compared to those presenting clinically (5/25 vs. 15/25,
χ2 = 8.3, p = 0.04; Table 2). However, the other FXAND conditions were equally likely
to occur in both participants identified via cascade testing and via clinical concerns. The
number of CGG repeats or FMR1 mRNA levels were not significantly associated with the
presence of any FXAND conditions (p > 0.05)).

4.1. Factors Associated with Clinical Phenotype Features

The presence of ASD was significantly correlated with IQ, with those having ASD
having lower FSIQ (73.5 ± 21.7 vs. 98.0 ± 20.0, p < 0.001). This applied to verbal and
non-verbal IQ as well, as shown in Table 3. Those with a diagnosis of ASD also had a higher
number of long-term medications being prescribed, compared to those without (2.32 ± 1.0
vs. 1.3 ± 1.11, p = 0.002). The presence of any other FXAND condition was not significantly
associated with cognition or medication use. Probands with ASD had significantly lower
FSIQ scores than non-probands with ASD (62.1 ± 14.6 vs. 94.0 ± 16.8, p = 0.003). The VIQ,
PIQ, and VABS daily living scores were also lower for probands with ASD, compared to
non-probands with ASD (Table 3).

4.2. Psychotropic Medication Intake

Table 4 details data pertinent to long-term psychotropic medication use by the study
sample. The majority (57/61, 93.4%) were on some form of long-term medications, with
common categories of medication being stimulants and selective serotonin reuptake in-
hibitors (SSRIs). This was not surprising, given that anxiety and ADHD were frequent
within the sample. Nearly half of the sample (28/61, 45.9%) were on two or more medi-
cations, with the range varying from 0 to 5 medications. There was no difference in the
types of medications being used by males and females (Table 4). Probands more frequently
used antipsychotics than non-probands (35.7% vs. 6.1%, p = 0.005, Table 4). There were no
differences in the usage of other psychiatric drugs between probands and non-probands.
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Table 2. FXAND-related conditions in the samples of young PM carriers.

Condition All
(N = 61)

Male
(N = 52)

Female
(N = 9) p-Value Probands

(N = 28)
Non-Probands

(N = 33) p-Value

ASD (N, %) 20 (32.8) 17 (32.7) 3 (33.3) 1 15 (53.6) 5 (15.2) 0.04
ADHD (N, %) 40 (65.6) 39 (97.5) 1 (11.1) 0.0004 18 (64.3) 22 (66.7) 0.37
OCD (N, %) 20 (32.8) 19 (36.5) 1 (11.1) 0.24 11 (39.3) 9 (27.3) 0.27

Anxiety (N, %) 50 (82.0) 43 (82.7) 7 (77.8) 1 23 (82.1) 27 (81.2) 0.38
Social Phobia (N, %) 14 (23.0) 13 (25.0) 1 (11.1) 0.44 6 (21.4) 8 (24.2) 0.86
Depression (N, %) 12 (19.7) 10 (19.2) 2 (22.2) 1 5 (17.9) 7 (21.2) 0.85

Abbreviations: ASD = autism spectrum disorder, ADHD = attention deficit hyperactivity disorder, OCD = obsessive compulsive disorder; Fisher Exact Probability Test was used due to
numbers in some cells being less than 5. Statistically significant p values are bolded.
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Table 3. Presence of ASD in young PM carriers and its associated variables.

Variables ASD Present
(N = 20)

ASD Absent
(N = 30) p-Value Probands with ASD

(N = 15)
Non-Probands with ASD

(N = 5) p-Value

Mean (SD)

Age in years 12.7 (+3.5) 12.3 (3.2) 0.60 14.0 (3.2) 9.2 (1.34) 0.005
CGG repeat size 95.9 (46.4) 96.1 (39.3) 0.99 100 (47.8) 81.5 (44.0) 0.50

mRNA level (AU) 2.8 (1.3) 2.8 (1.1) 0.87 3.1 (1.4) 2.1 (0.4) 0.19
FSIQ 73.5 (21.7) 98.0 (20.0) 0.001 62.1 (14.6) 94.0 (16.8) 0.003
VIQ 75.1 (20.4) 102.9 (23.2) 0.009 64.2 (11.3) 93.3 (20.1) 0.04
PIQ 77.6 (16.3) 101.0 (20.2) 0.01 70.2 (11.3) 96.0 (11.3) 0.04

VABS ABC 76.8 (15.0) 86.7 (13.4) 0.14 69.7 (14.3) 87.5 (9.0) 0.06
VABS Communication 76.6 (15.1) 82.8 (16.7) 0.41 71.2 (12.3) 84.8 (16.8) 0.17

VABS Socialization 81.0 (17.2) 91.1 (14.4) 0.12 73.0 (19.1) 91.0 (7.8) 0.12
VABS Daily living 82.0 (19.9) 90.0 (15.0) 0.34 72.3 (17.0) 96.5 (15.7) 0.05

Number of prescribed medications 2.32 (1.0) 1.3 (1.11) 0.002 2.3 (1.1) 2.4 (0.9) 0.83

Number of Males (%) 17 (85.0) 27 (90.0) 0.59 12 (80) 5 (100) 0.54
Number with ADHD (%) 14 (70.0) 19 (63.3) 0.15 9 (60) 5 (100) 0.26

Number with Depression (%) 1 (5.0) 9 (30.0) 0.17 1 (7) 0 (0) >0.99
Number with Anxiety (%) 16 (80.0) 24 (80.0) 0.89 12 (80) 4 (80) >0.99

Abbreviations: FSIQ = Full-scale IQ, VIQ = Verbal IQ, PIQ = Performance IQ, VABS = Vineland Adaptive Behavior Scales, ABC = Adaptive Behavior Composite. Statistically significant
p values are bolded.
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Table 4. Psychotropic medication intake in the samples of young PM carriers.

Intake of Medications (Yes/No) All
(N = 61)

Males
(N = 52)

Female
(N = 9) p-Value Probands

(N = 28)
Non-Probands

(N = 33) p-Value

N (%)

Antipsychotics 12 (19.7) 12 (23.1) 0 (0) NA 10 (35.7) 2 (6.1) 0.005
Antidepressants (All) 45 (75.0) 40 (76.9) 5 (55.5) 0.57 20 (71.4) 25 (75.7) 0.69

SSRIs 42 (68.9) 36 (69.2) 6 (66.7) 0.55 18 (64.28) 24 (72.7) 0.48
Stimulants 20 (32.8) 19 (36.5) 1 (11.1) NA 8 (28.57) 12 (36.4) 0.52
α agonists 5 (8.2) 4 (7.7) 1 (11.1) NA 2 (7.14) 3 (9.1) 1 †

Melatonin 2 (3.3) 2 (3.8) 0 (0) NA 0 (0) 2 (6.1) 0.49 †

Other Medications 10 (16.4) 6 (11.5) 4 (44.4) 0.60 8 (28.57) 2 (6.1) 0.03

Abbreviations: SSRI: Selective serotonin reuptake inhibitors; Other Medications: anti-epileptics and minocycline. † —Fisher’s Exact Probability Test. Statistically significant p values are bolded.
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5. Discussion

In this study, we demonstrate that FXAND-related conditions among young individu-
als (probands and non-probands) with the PM state occurred frequently, with anxiety and
ADHD being the most common. Further, the presence of ASD in the study’s cohort was
associated with lower cognitive skills, and similarly, probands with ASD had significantly
lower IQ than non-probands with ASD. Finally, the presence of ASD was associated with a
greater number of long-term medication intake, with SSRIs being the most frequently used
drugs in this cohort. Interestingly, antipsychotic medications were more frequently used in
probands than in non-probands.

Our results with respect to FXAND conditions in young individuals with PM add
to the existing literature by showing the occurrence of these conditions in as young as
early childhood. Consistent with previous similar studies, more than four-fifths of our
included participants had anxiety. The incidence of anxiety in this cohort was similar to the
study by Cordeiro et al., which also looked at young premutation carriers and described
the incidence of anxiety in more than two-thirds of that study’s participants [30]. These
rates are significantly higher than the general population prevalence rates (2.4–10.7%) in
children and young adults [31–33]. Similarly rates of ADHD and depression in this cohort
are much higher than that in the general population, which is typically at around 9.8% and
4.4%, respectively [32,33].

In particular, the common neurodevelopmental disorders of ASD and ADHD occurred
frequently in this current study’s cohort. Indeed, the incidence of ASD was much higher
in this cohort (32.8%) as compared to the 1.0–2.3% prevalence rates in the general popu-
lation [34,35]. Previous studies have also highlighted higher rates of ASD and ASD traits
in PM carriers as compared to the general population [17,18,36]. For example, Farzin and
colleagues (2006) suggested that PM carriers, even those who do not present clinically, may
be at increased risk for ASD and/or ADHD, based on a small sample size (14 male probands
who presented to clinic, 13 male non-probands, and control group of 16 male siblings) [18].
Our findings of ASD being more common in probands than in non-probands is also in
agreement with this study and also with the one by Chonchaiva et al. (2011) [18,20]. In
addition, polypharmacy is known to be higher in individuals with ASD as compared to the
general population, and this is likely due to multiple factors, including a higher incidence
of comorbidities and challenging behaviors, necessitating multiple medications [37,38]. PM
carriers may also be at a higher risk of having additional genetic hits that may contribute to
the presence of ASD, exacerbating cognitive deficits [39,40]. The intrinsic vulnerability of
the PM state to environmental toxins such as alcohol and pesticides may potentially be a
part of this relationship with the presence of FXAND disorders, including ASD [40].

Why some young individuals with the PM have ASD is thought to be associated with
several molecular factors. It could be related to the elevated levels of FMR1 mRNA in
carriers, which leads to toxicity via calcium dysregulation, mitochondrial dysfunction, and
DNA damage repair functions or other mechanisms [12,41–43]. This disruption of normal
molecular function is believed to occur in neurons and astrocytes throughout the brain, and
has been documented in individuals with FXTAS, which is a later stage disease in older
PM individuals [42,44,45]. Other possible underlying mechanisms of the presence of ASD
in these individuals could include mitochondrial dysfunction, and reduced levels of FMRP,
which can dysregulate the translation of other genes associated with ASD [40,46,47]. Our
findings also lend weight to the increased comorbidity associated with ASD in terms of
reduced cognitive scores, given the known occurrence of intellectual disability in 30–50%
of individuals with ASD [48,49].

Our findings also show that PM carriers as a whole have normal cognition and
adaptive behavior scores. This was the case for non-probands who did not have any clinical
concerns and who were identified through cascade testing. Given that probands were PM
carriers who had clinical concerns and hence sought treatment at the center, it is likely that
they had some form of impairment in their functioning; this could be related to the presence
of ASD, which occurred more commonly in probands as well. This would explain the lower
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IQ and adaptive behavior scores in probands compared to non-probands. However, even
among non-probands with normal cognition, we saw a substantial proportion with FXAND
conditions. The clinical implications of our results include the need for clinical providers
and personnel working with PM carriers to be aware of the existence and implications of
FXAND-related conditions. The monitoring of PM siblings of children with FXS may also
be useful. This will facilitate appropriate recognition, diagnosis, and intervention for these
conditions, if and when they arise in early childhood. Specifically, given the high rates
of anxiety within our cohort, a low threshold for further evaluations of PM individuals
experiencing symptoms of anxiety would be recommended to allow for the identification
and treatment of anxiety, as applicable.

This study has several limitations. First, we recognize the potential for sample bias,
as this was not a community/population-based sample. Hence, the results should be
interpreted with caution and will not be equivalent to population-level prevalence values.
Secondly, the relatively small sample size led to reduced statistical power for comparative
analysis between groups. Future studies will incorporate a larger cohort of PM carriers to
examine their clinical phenotype further.

6. Conclusions

The Fragile X premutation state is associated with several neurodevelopmental dis-
orders under the term FXAND, and these are present, even in childhood and young
adulthood. Clinical providers need to be aware of the entity of FXAND when counselling
and evaluating young PM individuals. The early identification and appropriate treatment
of these conditions will be crucial for long-term mental health and overall outcomes.
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