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Abstract: Machilus chuanchienensis is an ecological tree distributed in southwestern China. It has a
significant valuation with making Hawk tea using its leaves, an ethnic traditional tea-like beverage
with a long history in Chinese tea culture. The whole chloroplast (cp) genome is an ideal model for
the phylogenetic study of Lauraceae because of its simple structure and highly conserved features.
There have been numerous reports of complete cp genome sequences in Lauraceae, but little is known
about M. chuanchienensis. Here, the next-generation sequencing (NGS) was used to sequence the M.
chuanchienensis cp genome. Then, a comprehensive comparative genome analysis was performed.
The results revealed that the M. chuanchienensis’s cp genome measured 152,748 base pairs (bp) with a
GC content of 39.15% and coded 126 genes annotated, including comprising eight ribosomal RNA
(rRNA), 36 transporter RNA (tRNA), and 82 protein-coding genes. In addition, the cp genome
presented a typical quadripartite structure comprising a large single-copy (LSC; 93,811) region, a
small single-copy (SSC; 18,803) region, and the inverted repeats (IRs; 20,067) region and contained
92 simple sequence repeat (SSR) locus in total. Phylogenetic relationships of 37 species indicated that
M. chuanchienensis was a sister to M. balansae, M. melanophylla, and M. minutiflora. Further research on
this crucial species may benefit significantly from these findings.

Keywords: Machilus chuanchienensis S. Lee; comparative plastid genomics; Illumina sequencing;
genome skimming

1. Introduction

Machilus chuanchienensis S. Lee, an indeciduate tree belonging to the Lauraceae family,
is distributed in low-altitude montane forests in southeastern China. It contains substances
such as terpenoids and flavonoids, quercitrin, kaempferol, hyperin, astragalin, isoquercitrin,
and quercetin [1]. As a tea-like plant, M. chuanchienensis can be utilized to make a traditional
folk beverage Hawk tea [2], one of the non-Camellia teas, which has yellowish-red tea soup
with camphor-aromatic smell [3]. According to the Compendium of Materia Medica, a classic
book of traditional Chinese medicine, M. chuanchienensis can be used as Chinese medicine
because of rich in polyphenols, flavonoids, vitamins, minerals, and other compounds and
is free from caffeine. Moreover, due to the pharmacological effects of Hawk tea, such as
antidiabetic [4], acting antioxidant, hypolipidemic, and anti-inflammatory properties [5],
consumers sincerely like this beverage [6], and in some places, its consumption is even
higher than that of green tea [7].

Lauraceae species are extensively spread in the world’s tropical and subtropical
regions, which contain about 2500–3000 species from around 50 genera [8]. Lauraceae is an
evolutionarily complex and taxonomically controversial group in which the phylogenetic
location in the disputed genera (such as Actinodaphne Nees and Sassafras J. Presl) has been
controversial [9,10]. Although Litsea coreana var. lanuginose is one of the most researched
primary raw materials for making Hawk tea [11], there is a lack of relevant research on
other plants belonging to Lauraceae species [12], especially for Machilus chuanchienensis,
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making it challenging to explore Hawk tea germplasm resources and study the phylogenetic
relationships of its material-species.

As important plastids in plant cells, chloroplasts are involved in the main functions,
including photosynthesis [13], carbon sequestration, starch storage, nitrogen metabolism,
fatty acids, and nucleic acid synthesis [14]. In addition, they self-replicate organelles with
their DNA and RNA and have relatively independent genetic replication mechanisms like
mitochondria [15]. Although the structure of the cp genome is remarkably conserved [16],
its size and gene content have polymorphism related to genes reorganization and IRs
region growth and contraction [17], which has been used for molecular identification,
population genetics, endangered species conservation, and phylogenetic analysis [18,19].
High-throughput technologies’ successful development has made the sequencing of chloro-
plast genomes economical and efficient, significantly developing chloroplast-based related
studies. One of the most valuable methods at the moment is building a phylogenetic tree of
the Lauraceae utilizing the cp genomes, provided that the technology for sequencing and
assembling nuclear and mitochondrial genomes of Lauraceae is not to be universal [20].
However, using whole genome sequencing (WGS) technologies to research M. chuanchienen-
sis’ genome has yet to be reported, and its taxonomic position within Lauraceae has not
been precisely placed.

In this study, we first assembled the whole cp genome sequence of M. chuanchienensis
using NGS technology. In addition, a comprehensive analysis of the whole cp genomic
features was performed. Then, a phylogenetic tree was constructed using the cp genome
sequences to explore the phylogenetic relationship between M. chuanchienensis and other
species, which provided some theoretical basis for understanding the genomic features of
M. chuanchienensis and its phylogenetic relationships.

2. Materials and Methods
2.1. Experimental Materials and DNA Extraction

Ya’an city, Sichuan Province, China’s habitats were the locations where the samples
were taken (103◦00′ E, 29◦98′ N), and the fresh leaves were picked in the form of one
bud and two leaves. The voucher specimen was stored at the Herbarium of Forestry
College, Guizhou University. The accession number is YA202108MC02. The genomic
DNA of M. chuanchienensis was extracted from healthy fresh young leaves by modified
CTAB method [21] and was detected by ultraviolet spectrophotometer and 1% agarose gel
electrophoresis [22].

2.2. DNA Sequencing, Genome Assembly and Annotations

Genomic DNA qualified for library construction that constructs a pair-end library
with an insertion size of 150 bp was sequenced using the Illumina NovaSeq 6000 platform
in NGS. Sequencing data was acquired for quality control, and then the GetOrganelle script
was run on a Linux system to assemble the genome [23]. Bandage software was used to
visualize if it is a circle [24]. The Neolitsea homilantha cp genome sequence was used as a
reference to annotate genome using the cp genome annotation website CPGAVAS2 and
the annotation results provided collinear analysis, gene function classification information,
and intron information tables [25]. The tRNA was then identified by the tRNAscan-SE
1.21 program [26], and a circle diagram of the cp genome was drawn using the Organel-
larGenomeDRAW v.1.3.1 [27].

2.3. Simple Sequence Repeats (SSRs) and Repeat Sequences Analysis

SSRs in the cp genome of M. chuanchienensis were identified by the microsatellite
identification online tool (MISA) [28]. The search parameters for a minimum number of
repeats were set as follows: 10 for mononucleotide repeats, five for dinucleotide repeats,
four for trinucleotide repeats, and three for tetra-, penta-, and hexanucleotide repeats. In
addition, ‘100 bp’ was selected as the minimum distance between the two SSRs. The two
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SSRs were considered to be a compound microsatellites if the distance was less than 100 bp.
REPuter [29,30] was used to identify repeat sequences with the parameters reported [31–33].

2.4. Putative RNA Editing Site and Codon Usage

The coding sequences (CDS) were obtained by the CPGAVAS2 online software to
anticipate the potential RNA editing sites in the M. chuanchienensis chloroplast genome.
Then, they were submitted to the predictive RNA editors for the plant chloroplast (PREP-cp)
database [34]. The M. chuanchienensis’s relative synonymous codon usage (RCSU) and
codon usage count were examined using MEGA X [35].

2.5. Genomic Comparison with Other Species in Machilus

The M. chuanchienensis cp genome and four related species were homogeneously
compared using the mVISTA program [36] made a homogeneity comparison. Of the
M. chuanchienensis cp genome and the four related species, including M. balansae, M. grijsii,
M. robusta, and M. yunnanensis, all of which were in the genus Machilus. Among them, the
M. chuanchienensis cp genome was selected as the reference with the Shuffle-LAGAN.

The PhyloSuite software [37] extracted 76 common protein-coding genes from M. bal-
ansae, M. grijsii, M. chuanchienensis, M. robusta, and M. yunnanensis. The extracted gene
sequences were initially aligned using the MAFFT software [38,39]. Then, the ratios of
nonsynonymous (Ka) to synonymous (Ks) substitutions (Ka/Ks) were calculated by the
DnaSP software [40]. The expansion and contraction of IR boundaries were detected using
the web program IRscope [41]. Analyzing the nucleotide diversity (Pi) value also utilized
the DnaSP program [40]. 500 bp was chosen as the step size and window length.

2.6. Phylogenetic Analysis

To create a maximum likelihood (ML) phylogenetic tree, we retrieved the cp genome
sequences of 34 species from the Lauraceae family and two outgroup species from the
Calycanthaceae, including Chimonanthus nitens (NC_042745) and Idiospermum australiense
(NC_042743). Eighty-one CDS_NCU genes were extracted, aligned, and merged using Phy-
loSuit software [37]. The ML phylogenetic tree was conducted by IQ-TREE version 2 [42],
with a TVM + F + I + G4 model chosen based on the Bayesian Information Criterion [43]
from the result of ModelFinder.

3. Results
3.1. Structure and Characteristics of the M. chuanchienensis Chloroplast Genome

The M. chuanchienensis cp genome, like that of most angiosperms, is a covalently
closed double-stranded cyclic molecule with a total length of 152,748 bp, including a small
single-copy (SSC) region (18,803 bp), a large single-copy (LSC) region (93,811 bp) and a
pair of inverted repeats (IRs) regions (20,067 bp) (Figure 1). The total GC content of the
chloroplast genome was 39.15%, and the AT content was 60.85%, which had evident AT
bias. In addition, there were some differences in the GC content for the IR, LSC, and SSC
regions. The IR region had the highest GC content (44.43%), followed by the LSC region
(37.94%) and the SSC region (33.92%) because the IR region’s rRNA genes have a high GC
content. (Figure 2).

The chloroplast genome annotation results showed that M. chuanchienensis contained
126 functional genes, of which 82, 8, and 36, respectively, were protein-coding, rRNA, and
tRNA genes. Of these genes, six tRNA genes (trnA-UGC, trnL-CAA, trnI-GAU, trnR-ACG,
trnV-GAC, trnN-GUU), three protein-coding genes (rps7, rps12, ndhB), and four rRNA genes
(rrn5, rrn23, rrn4.5, rrn16) were located in the IR region, all of which were duplicated once
in the IRs regions (Table 1). In addition, the rps12 gene had a trans-spliced structure, with
its 5′ end in the LSC region and its 3′ end in the IR region.
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Figure 1. Chloroplast genome map of M. chuanchienensis. Genes on the outside of the main circle are 
transcribed clockwise, while genes on the inside are transcribed counterclockwise. The Organellar 
Genome Draw (OGDraw) online software was used to draw this map. Genes with different func-
tions are represented by different colors. The gray portion of the inner circle indicates the GC content 
of the chloroplast genome. 

Figure 1. Chloroplast genome map of M. chuanchienensis. Genes on the outside of the main circle are
transcribed clockwise, while genes on the inside are transcribed counterclockwise. The Organellar
Genome Draw (OGDraw) online software was used to draw this map. Genes with different functions
are represented by different colors. The gray portion of the inner circle indicates the GC content of
the chloroplast genome.

Introns contribute significantly to the regulation of gene expression. There are 18 intron-
containing genes in the M. chuanchienensis cp genome, including six tRNA (trnG-UCC,
trnI-GAU, trnA-UGC, trnK-UUU, trnL-UAA, trnV-UAC) and 12 protein-coding genes (rps12,
ycf3, rps16, rpl16, petB, rpl2, petD, atpF, clpP, ndhA, rpoC1, ndhB). The clpP, rps12, and ycf3
contain two introns, and the others contain one intron (Table 2). The trnK-UUU gene
contains the protein-coded gene matK and the maximum intron with a length of 2507 bp,
which has similar properties to other green plants [44].
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Figure 2. GC content of the M. chuanchienensis. This map was created using the web program GCView
Server. The black portion represents changes in GC content in different regions of the genome. The
deviation of G and C content in each single strand is called GC skew. The specific calculation method
is (nG − nC)/(nG + nC), so GC skew + (green portion) means that the content of G is greater than
that of C, and GC skew − (magenta portion) means that the content of G is less than that of C.

Table 1. Genes found in the assembled M. chuanchienensis chloroplast genome.

Category of Genes Group of Genes Name of Genes

RNA genes Transfer RNA

trnH-GUG, trnK-UUU b, trnQ-UUG, trnS-GCU, trnG-UCC b,
trnR-UCU, trnC-GCA, trnD-GUC, trnY-GUA, trnE-UUC,
trnT-GGU, trnS-UGA, trnG-GCC, trnfM-CAU, trnS-GGA,

trnT-UGU, trnL-UAA b, trnF-GAA, trnV-UAC b, trnM-CAU,
trnW-CCA, trnP-UGG, trnI-CAU, trnL-CAA (×2), trnV-GAC

(×2), trnI-GAU b (×2), trnA-UGC b (×2), trnR-ACG (×2),
trnN-GUU (×2), trnL-UAG

Ribosomal RNA rrn23 (×2), rrn16 (×2), rrn5 (×2), rrn4.5(×2)

Transcription and
translation related genes

DNA dependent RNA polymerase rpoA, rpoB, rpoC1 b, rpoC2
Large subunit of ribosome rpl2 b, rpl14, rpl16 b, rpl20, rpl22, rpl23, rpl32, rpl33, rpl36

Small subunit of ribosome rps2, rps3, rps4, rps7 (×2), rps8, rps11, rps12 ac (×2), rps14,
rps15, rps16 b, rps18, rps19

Photosynthesis-related
genes

ATP synthase atpA, atpB, atpE, atpF b, atpH, atpI
Photosystem I psaA, psaB, psaC, psaI, psaJ

Photosystem II psbA, psbB, psbC, psbD, psbE, psbF, psbI, psbJ, psbK, psbM, psbN,
psbT, psbZ

Cytochrome b/f complex petA, petB b, petD b, petG, petL, petN
Large subunit of rubisco rbcL
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Table 1. Cont.

Category of Genes Group of Genes Name of Genes

NADH dehydrogenase ndhA b, ndhB b (×2), ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI,
ndhJ, ndhK

Other genes

Translational initiation factor infA
Acetyl-CoA carboxylase accD

Maturase matK
Protease clpP a

Envelop membrane protein cemA
c-type cytochrom synthesis gene ccsA

Unknown function Conserved open reading frames ycf1, ycf2, ycf3 a, ycf4

Note: a Gene containing two introns; b gene containing a single intron; c gene divided into two independent
transcription units; (×2) gene with two copies.

Table 2. Location and length of genes containing introns in M. chuanchienensis chloroplast.

Gene Location ExonI(bp) IntronI(bp) ExonII (bp) IntronII (bp) ExonIII (bp)

ndhA + SSC 553 1119 539
atpF − LSC 145 725 410
clpP − LSC 71 776 294 652 244
petB + LSC 6 790 642
petD + LSC 8 716 475

rpoC1 − LSC 453 718 1620
rps16 − LSC 40 852 230

trnG-UCC + LSC 23 765 48
rpl16 − LSC 9 976 396
rpl2 − LSC 392 672 430

trnK-UUU − LSC 37 2507 35
trnL-UAA + LSC 35 479 50

rps12 # LSC 114 — 232 536 26
trnV-UAC- LSC 39 589 35

ycf3 − LSC 124 734 230 730 153
ndhB + IR 721 702 758
ndhB − IR 721 702 758

trnA-UGC + IR 38 798 35
trnA-UGC − IR 38 798 35
trnI-GAU + IR 37 945 35
trnI-GAU − IR 37 945 35

Note: + Exon is transcribed counterclockwise in Figure 1; − Exon is transcribed clockwise in Figure 1; — spliceo-
somal intron; # rps12 is a trans-spliced gene with the 5′ end located in the large single copy (LSC) region; it is
duplicated in the 3′ end in the IR regions.

3.2. Analysis of SSRs and Long Repeats

SSRs analysis showed that there were 92 SSRs loci, including 67 mononucleotides,
ten dinucleotides, three trinucleotides, ten tetranucleotides, one pentanucleotide, and one
hexanucleotide repeats. Mononucleotide SSRs were the most abundant, accounting for
72.83%. Moreover, A/T, AT/AT, and AAAT/ATTT motifs were 80.43%, indicating that
SSRs of M. chuanchienensis preferred to use A and T bases (Table S1). Except for SSRs, a
repeat (≥30 bp is considered a long repeat sequence. The M. chuanchienensis chloroplast
genome had 31 long repeats in total, including 13 forward, 5 reverses, 2 complement, and
11 palindrome repeats (Table S2). The size of the repeats ranged from 30 to 72 bp, of which
the longest repeat resided in the LSC region (72 bp).

3.3. Codon Usage and Putative RNA Editing Site within M. chuanchienensis

The M. chuanchienensis cp genome had 23,598 codons in its all protein-coding genes.
(Table S3). Among these codons, the three most numerous amino acids were leucine (2396,
10.15%), isoleucine (2003, 8.49%), and serine (1847, 7.83%), while the three least numerous
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amino acids were cysteine (272, 1.15%), tryptophan (405, 1.72%), and methionine (557,
2.36%). Based on the calculation of relative synonymous codon use (RSCU), 31 codons
with an A or T ending had RSCU >1 except TTG (Leucine, 1.27) and TCC (Serine, 1.03),
and 31 codons had RSCU < 1, the vast majority of which ended in C or G, with only CTA
(Leucine, 0.89) and ATA (Isoleucine, 0.92) ending in A. In addition, ATG and TGG had no
codon bias (RSCU = 1) (Figure 3).
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Prediction of putative RNA editing sites for M. chuanchienensis cp genes revealed a
total of 123 editing sites, all with expected C-U transitions (Table S4). Of the 82 protein-
coding genes, 32 genes had RNA edits. All editing caused amino acid changes, of which
the S→L transformed form occurred most frequently. Among all genes in which editing
occurred, the ndhB had the most abundant editing sites (up to 15). In addition, analysis of
the codon positions where editing occurred revealed that editing occurred at the first and
second codon positions but not at the third.

3.4. Genomic Comparison with Other Species in Machilus

The M. chuanchienensis chloroplast genome (NC_062133) was used as a reference
for the global comparison via the online genome comparison tool mVISTA [36], and a
comparison of the chloroplast genome sequences of its four related species revealed that
these sequences were little changed overall, except for individual sequences in certain
regions. First, compared to the conservative protein-coding regions, the intergenic spacer
regions in the genomic sequences of the five chloroplasts were significantly more variable.
There was little alteration in the rRNA genes, which were largely conserved. The rRNA
genes were highly conserved with little variation. The genes in coding regions, such as ndhF,
ycf1, ccsA, rps15, rpl23, and ycf2, were highly variable and visualized with large differences
in peak maps (Figure 4). In the intergenic regions, psbA-trnH-GUG, trnQ-UUG-rps16,
trnD-GUC-trnY-GUA, ndhK-atpB, ycf4-cemA, rbcL-accD, psbE-petL, petA-psbJ, ndhH-ndhA,
rpl32-trnL-UAG, and rpl32-ndhF had a higher divergence. In addition, compared to the IR
region, the LSC and SSC regions had much higher genetic variability.

The chloroplast genes of M. chuanchienensis with the other four species in Machilus
were compared using the nonsynonymous (Ka) and synonymous (Ks) replacement rates to
determine whether selection had taken place. (Table S5). We calculated the Ka/Ks values of
76 common protein-coding genes, and those with a Ka or Ks value of 0 were not included
in the statistics. The results showed that the Ka/Ks ratio of M. chuanchienensis to M. balansae
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was between 0.0488 (rpoC1) and 1 (ndhB); M. chuanchienensis to M. grijsii was between 0.0583
(rpoC1) and 2.6552 (matK); M. chuanchienensis to M. robusta was between 0.015 (psaA) and
1.3509 (matK); and M. chuanchienensis to Machilus yunnanensis was between 0.0583 (rpoC1)
and 2.6552 (matK). The two ndhA and matK exceeded 1.0, whereas most genes were below
1.0, suggesting that most genes have undergone purifying selection.

The expansion and contraction of IR boundaries among five Machilus species (Figure 5),
including M. robusta, M. salicina, M. chuanchienensis, M. bonil, and M. calcicola, showed that
there were fewer differences in these five species’ IR regions’ chloroplast genome lengths
(20,067–20,092 bp) and that the IR/SC boundaries were distributed with ycf2, ycf1, ndhF, and
trnH genes. In addition, the chloroplast genome of M. chuanchienensis had some noticeable
structural differences compared with the other four species. For instance, the ndhF gene
was located in the SSC region but not at the same site as other species, and ycf1 was not at
the JSA site.
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To examine levels of sequence divergence of the M. balansae, M. grijsii, M. robusta, M.
chuanchienensis, and M. yunnanensis, we calculated the values of nucleotide variability (Pi).
The Pi values within 500 bp among the five genomes vary from 0 to 0.1618 with a mean of
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0.0176. In addition, we identified seven hypervariable loci (Pi > 0.15), which are ndhH-ndhA
(0.1618), ndhF (0.1564), ndhA (0.1554, 0.1525) ycf1 (0.1545, 0.1502), rps15 (0.1543), rps15-ndhH
(0.1511), psaC-ndhD (0.1504). They are all in the SSC region (Figure 6), indicating that the
SSC regions were much more divergent than IR and LSC regions and that the IR regions
were highly conserved, consistent with the above analysis.
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3.5. Phylogenetic Analyses

In order to clarify the phylogenetic status and evolutionary relationship of M. chuanchienen-
sis in Lauraceae, the whole chloroplast genome sequences of 36 reported species were
selected to construct the ML phylogenetic tree with two Calycanthaceae species as out-
groups. According to the findings, two distinct groupings can be made up of all Lauraceae
species: the genera Machilus, Neocinnamomum, and Cassytha clustered into one group, while
Cryptocarya, Endiandra, and Beilschmiedia clustered into another. M. chuanchienensis was the
first to be separated from the sister clade of the genus Machilus with a 100% bootstrap value
(Figure 7).
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4. Discussion

The published lengths of the cp genomes of the genus Machilus ranged from 152,621
to 153,943 bp [19,45,46]. In comparison, the total length of the whole cp sequence of M.
chuanchienensis assembled in this study was 152,748 bp, indicating that its cp genome size
was in line with the traits of the Machilus species. Furthermore, the cp genome of the
Machilus was found to be highly conserved when the M. chuanchienensis and the reported
Machilus species in the Lauraceae family were compared. Additionally, it has been reported
that the genus Machilus has 113–128 total cp genes. In this study, M. chuanchienensis cp
genome was annotated to 126 genes (82 protein-coding genes, 36 tRNA genes, and eight
rRNA genes). The cp genome GC content of Machilus species was similar at 39.15% to
39.16%. However, the GC content in the LSC region (37.93% to 33.95%) and SSC region
(33.90% to 34.04%) was significantly lower than that in the IR region (41.43%), probably
because the eight rRNA genes with higher GC content were distributed in the IR region in
this study, which is similar to previous studies on other angiosperms cp genomes [47,48].
Furthermore, similar to other studies [49,50], three genes (clpP, rps12, and ycf3) in the
cp genome of Machilus contained two intron regions. ClpP encodes the Clp proteolytic
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enzyme subunit, whose function is primarily responsible for the degradation of abnormal
proteins and is associated with maintaining the normal metabolism of chloroplasts [51].
Moreover, Boudreau et al. [52] showed that the gene ycf3 interacts with the PSI subunits at
the post-translational level [53] and is required for the accumulation of the photosystem I
(PSI) complex. Therefore, more research on these genes is required.

The variation in SSR copy number in chloroplasts is an essential molecular marker
with a more significant taxonomic distance than nuclear and mitochondrial microsatellites.
It has various applications in plant population genetics, polymorphism, and evolutionary
studies [54,55]. A total of 92 simple sequence repeats and 31 long repeats were obtained
through in-line software analysis, which can provide candidate molecular markers for
related studies such as genetic diversity and conservation genetics of M. chuanchienensis.
According to studies, M. chuanchienensis’ cp genome’s SSRs were relatively abundant in
polyadenine (poly-A) or polythymine (poly-T) repeats and seldom contained tandem
guanine (G) or cytosine (C), which was similar to other plant cp genomes that have been
reported [32,56,57]. According to the results of this study, mononucleotide repeats (72.83%)
were the most repeated, which was in line with previous studies [58]. Additionally, a
high percentage of forward repetitions (41.94%) were discovered among the four types of
repeats, consistent with other studies that demonstrated forward repeats to be the most
prevalent [59].

Different species’ genomes exhibit varying relative synonymous codon usage (RSCU).
There are biases in codon usage, which can provide critical information for studying
species evolution [60]. In addition, codons play a role in vector design for chloroplast
genetic engineering and are generally optimized first for vector design [61]. The main
reason for codon preference selection is that some preferred codons are more efficient in
translation [62]. This study, 23,598 codons were found in all protein-coding genes in the
M. chuanchienensis cp genome. The most used codons were AAA, GAA, AUU, and AAU,
similar to the previous studies in other angiosperms [31,63,64].

The most conserved portion of the cp genome is the IR region, as is widely known. The
IR, LSC, and SSC regions’ growth and contraction are frequent evolutionary occurrences
and the main factor influencing variations in the length of the cp genome [65–67]. This study
showed that the length of the IR regions of the cp genome among the related species was
less different (20,067–20,092 bp). In addition, studies have shown that repetitive sequences
are the leading cause of fragment duplication, deletion, and rearrangement of the cp
genome [68]. The ycf1 and ndhF genes are significantly rearranged in the M. chuanchienensis
compared with the M. robusta, M. salicina, M. bonil, and M. calcicole. It was also found in
Dendrobium thyrsiflorum species [69], and it might be a variant in the cp genome’s boundary
area that changed the structure of the cp gene, which may be a variation in the boundary
region of the cp genome that led to changes in chloroplast gene structure [70]. The analysis
results based on the mVISTA software showed that the noncoding regions occurred at a
relatively higher level of divergence than the coding regions [63]. We identified that in
the intergenic regions, psbA-trnH-GUG, trnQ-UUG-rps16, trnD-GUC-trnY-GUA, ndhK-atpB,
rbcL-accD, ycf4-cemA, petA-psbJ, psbE-petL, ndhH-ndhA, rpl32-trnL-UAG, and rpl32-ndhF had
a higher divergence. At the species level, these areas could undergo faster replacement.
Understanding and mastering these mutation hotspots will make it easier to comprehend
the evolutionary characteristics of the genus Machilus cp genome and allow the design of
molecular markers based on these sequence fragments to identify molecular DNA barcode
screening in the genus [71].

The Ka/Ks ratio mainly reflects the selection pressure of protein-coding genes, which
is a meaningful way to detect whether protein-coding sequences have evolved. In this
study, the vast majority of Ka/Ks ratios were less than 1% (97%), indicating that most of
the genes in the Lauraceae family undergo purification selection, which was consistent
with the results of previous studies in the Lauraceae family [72]. Moreover, the results
showed that two Ka/Ks ratios were more significant than 1 (matK, ndhA), indicating that
they were significantly positively selected. The ndhA belongs to the NADH dehydrogenase
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subunit maturase gene. The chloroplast NDH monomer sensitive to bright light may have
undergone dramatic changes, resulting in the development of new anti-stress functions,
and positive selection has existed in the study of Quercus [73]. The matK gene is located in
an intron between two exons with a highly conserved chloroplast lysine tRNA gene (trnK),
with a sequence length of about 1500 bp. It is a single-copy coding gene encoding a mature
enzyme (maturase) involved in the cleavage of type II introns in RNA transcripts [74]. matK
is often used as a phylogenetic signal to address evolutionary relationships due to its high
amino acid replacement rates and nucleotide [74]. However, a positive selection site in matK
of Machilus suggests that this positive selection corrects beneficial variation of Machilus, and
positive selection has existed in the study of Chrysosplenium [75]. Unfortunately, there are
few Ka/ka analyses of Lauraceae. Previous studies found that only two genes, rpl16 and
ycf2, had Ka/Ks values greater than 1 through the analysis of nine Lauraceae species [72].
Sequence mutational hotspots, also known as hyper-variable regions, provide a reference
for designing accurate and efficient molecular markers and species barcodes [76]. The
analysis of nucleotide diversity value calculated by the DnaSP software revealed that the
SSC regions have high variability, which has also been found in other Lauraceae [77]. It
also proves SSCs generally have a higher nucleotide replacement rate than IRS in land
plants [78]. The ndhA requires our special attention and in-depth study, which has both
a high Ka/Ks value and a Pi value. These may indicate that the ndhA has undergone a
considerable mutation, which is crucial for the evolutionary process of the Machilus species.

The plant cp genome is second only to the nuclear genome and has much genetic infor-
mation [79]. Therefore, whole-genome sequencing technology provides a new platform and
idea to study the evolution system of medicinal plants [80]. We employed next-generation
sequencing technologies for our sequencing. It is less expensive than first-generation se-
quencing technologies and does not need cloning, DNA sequence amplification, or strand
termination, thus increasing sequencing speed and throughput [81]. Currently, there are
two main methods to obtain cp genomes: one is to rely on traditional methods, first isolate
chloroplasts, then extract chloroplast DNA and send it for sequencing, and finally assemble
and splice to obtain cp genomes. Since the content of chloroplasts in plants is already
small, it is not easy to completely separate chloroplast DNA and nuclear genomic DNA.
This method is challenging to operate and takes a long time, so it is limited in terms of
application. The second is the more commonly used method we adopt, the total DNA
of the extract species is sequenced with high throughput, the chloroplast sequence of the
species’ close relatives is found as the reference sequence, and the results of the sequencing
are compared to find the reads belonging to the chloroplast, and finally assembled. This
method first breaks the shackles of traditional methods, eliminates the step of isolating
chloroplasts, reduces the time and expense of the experiment, and improves the accuracy
of the experiment. In this experiment, we used the second method to obtain the complete
cp genome of M. chuanchienensis and perform a phylogenetic analysis. As in previous
studies [82], the Machilus genera came together in this study. The results here showed that
all Lauraceae species could be divided into two broad groups, genera Machilus, Neocin-
namomum, and Cassytha clustered into one group; Cryptocarya, Endiandra, and Beilschmiedia
clustered into another. The phylogenetic relationship of the Machilus genera obtained in
this study was consistent with the results obtained by Wu et al. [45]. The results of this
study will contribute to the subsequent phylogenetic studies and species identification of
Machilus genera.

5. Conclusions

This study yielded the first complete sequence of the M. chuanchienensis cp genome.
A comparative analysis of the cp genomes in five Machilus species was performed. The
findings showed that all genomes of the species mentioned in this study exhibited a degree
of relative conservation in terms of their content, gene order, and structure. However,
the ycf1 and ndhF in the M. chuanchienensis were significantly rearranged. The position
of M. chuanchienensis inside a phylogenetic tree created using the whole cp genome was
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evident. In addition, 92 SSRs that can be employed in breeding, population genetics, and
evolutionary research were found. These findings may offer a clear foundation for the
phylogenetic relationships of the M. chuanchienensis and provide essential data for exploring
and utilizing tea-like species resources.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes13122402/s1, Table S1: Number of different SSRs types in M.
chuanchienensis; Table S2: Long repeat sequences in the M. chuanchienensis chloroplast genome; Ta-
ble S3: Codon usage of M. chuanchienensis chloroplast genome (used Universal Genetic code); Table S4:
Putative RNA editing sites in the M. chuanchienensis chloroplast genes; Table S5: The nonsynonymous
(Ka) and synonymous (Ks) replacement rates of the M. chuanchienensis chloroplast genome.
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