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Abstract: Long-haired individuals in the Tianzhu white yak population are a unique genetic resource,
and have important landscape value. Copy number variation (CNV) is an important source of
phenotypic variation in mammals. In this study, we used resequencing technology to detect the
whole genome of 10 long-haired Tianzhu white yaks (LTWY) and 10 normal-haired Tianzhu white
yaks (NTWY), and analyzed the differences of CNV in the genome of LTWYs and NTWYs. A total of
110268 CNVs were identified, 2006 CNVRs were defined, and the distribution map of these CNVRs
on chromosomes was constructed. The comparison of LTWYs and NTWYs identified 80 differential
CNVR-harbored genes, which were enriched in lipid metabolism, cell migration and other functions.
Notably, some differential genes were identified as associated with hair growth and hair-follicle
development (e.g., ASTN2, ATM, COL22A1, GK5, SLIT3, PM20D1, and SGCZ). In general, we present
the first genome-wide analysis of CNV in LTWYs and NTWYs. Our results can provide new insights
into the phenotypic variation of different hair lengths in Tianzhu white yaks.

Keywords: Tianzhu white yaks; copy number variation; long-haired trait; resequencing

1. Introduction

Yak (Bos grunniens) is the main livestock living on the Qinghai–Tibet Plateau and
its surrounding areas [1]. It can provide meat, milk, hair and fuel for people in pastoral
areas, and is closely related to the life of people in the plateau area [2]. White individuals
are rare in yak populations, and coat color is not stably inherited. The Tianzhu white
yak is a unique local breed in the Tianzhu Tibetan Autonomous County, Gansu Province,
with a large population size. Its coat is white, easy to dye, and can be used to make wool
products, which has a very high economic value. In recent years, researchers have found
some long-haired individuals in the Tianzhu white yak population, which are characterized
by longer hair-length and density on the forehead and body sides than the normal-haired
Tianzhu white yak (Figure 1). Based on data from the breeding base, the LTWY has a
forehead hair-length of more than 13 cm and the NTWY has a forehead hair-length of less
than 13 cm [3]. At present, the number of the Tianzhu white yak population is 69,000, and
the number of the long-haired-type core population is more than 600. Because of its unique
value in the landscape and its genetic hair resources, studying and breeding long-haired
individuals of the white yak is of great significance.

Copy number variation (CNV) is a kind of microscopic and submicroscopic structural
variation on the genome, which is usually manifested as the insertion, deletion or repetition
of a genome sequence [4,5]. It ranges from 50 bp to larger DNA fragments, and it is an
important factor leading to the genetic diversity of organisms [6]. SNP and indel are also im-
portant factors leading to biological genetic diversity [7,8]. However, differently from SNP
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and indel, CNV affects gene expression, individual phenotypic differences and the adapta-
tion of phenotypic changes by changing gene dosage and the gene regulatory region [9].
In the study of important economic traits of livestock and poultry, association studies of
SNP have been widely used [10–13]. However, with the development of molecular biology
and the progress of sequencing technology, more and more CNVs have been able to be
accurately detected, and the research on CNV has become a research hotspot [14–16]. In
recent years, researchers have transitioned their research on CNV from genetic diseases
related to humans, to diseases and traits of livestock and poultry, and more and more
research results show that CNV is closely related to traits of livestock and poultry [17,18].
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Figure 1. (a) Long-haired Tianzhu white yak; (b) Normal-haired Tianzhu white yak.

Previous studies have shown that CNV is associated with important economic traits
in livestock. For example, DNA dosage and EST expression of Netrin-1 (Ntn1) gene
overlapped with CNV region may affect pork quality [19]. In the study of local cattle
breeds in China, it was found that CNV of the MLLT10 gene had positive effects on growth
traits [20]. The CNV region can inhibit the expression of the GBP6 gene, and affect the
body-weight traits of cattle [21]. In addition, some studies have shown that CNV of the
ASIP allele is associated with different coat colors in different breeds of goats and Tibetan
sheep [22,23]. Therefore, we can explore the causes of phenotypic differences in Tianzhu
white yak hair by studying copy number variation.

In this study, we obtained the whole genome sequence of the Tianzhu white yak,
based on whole-genome resequencing technology, and explored the CNV in the genomes
of long-haired and normal-haired types of Tianzhu white yak, and explored candidate
genes related to the hair length of the Tianzhu white yak.

2. Materials and Methods
2.1. Animal Welfare

The Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS (No.
LIHPS-CAAS-2017-115) approve all experiments in this study. We took the blood samples
of yaks in accordance with the guidelines for the care and use of laboratory animals.

2.2. Sample Collection, Sequencing and Sequence Alignment

The experimental subjects were 20 healthy, female, Tianzhu white yaks, including
10 long-haired yaks and 10 normal-haired yaks. All yaks were from the same breeding
farm, and their feeding management and growth environment were consistent. Neck
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venous-blood samples were collected and stored in blood anticoagulant tubes at −20 ◦C
for whole-genome resequencing.

Genomic DNA was extracted from the blood of Tianzhu white yaks using the blood
Genome Extraction Kit (Tien Biotechnology, Beijing, China). The integrity and quality
of the extracted DNA were examined using the Thermo Science NanoDrop 2000C (Ther-
moFisher Science Inc, Waltham, MA, USA) and 1.0% agarose-gel electrophoresis. The DNA
library with 200–300 bp insertion fragments was constructed using the end-pairing method,
and then the qualified DNA library was sequenced, based on the BGISEQ-500 platform.
The clean reads after filtering out the low-quality reads were mapped to the Bos grun-
niens reference genome (LU_Bosgru_v3.0.105), using the BWA-MEM (0.7.10-r789) with
default parameters.

2.3. Detection of Genome CNV Distribution

In this study, the Read Depth (RD) method was mainly used for genome-wide copy-
number-variation detection, and the CNVnator (v0.3.2) software based on the RD method
was used [24]. To decrease the rate of false-positive findings and obviate erroneous results,
only CNVS larger than 0.5 KB were retained for further analysis [25,26].

2.4. Merging of CNV

The region of copy-number variation (CNVR) refers to the region formed by the com-
bination of overlapping CNVS on the genome. By extending the boundary of overlapping
CNVS, CNVs with 1 bp or more overlapped by different individuals were merged into
CNVR [27]. CNVRs of 10 samples with the same phenotype were combined to obtain
two VCF files containing the information for 10 individual CNVRs. In order to further
decrease the false-positive detection rate, only CNVRs present in four or more samples
were used for functional and comparative analysis, to minimize bias due to consistency in
sequencing coverage [28,29].

2.5. Validation of CNVRs using Quantitative PCR (qPCR)

In order to test the accuracy of CNV allocation, quantitative PCR (qPCR) was used
to verify the inferred CNVR. Six normal-haired and six long-haired individuals were
randomly selected to verify 8 CNVRS. The qPCR primers were designed by the NCBI
online design primer tool (https://www.ncbi.nlm.nih.gov/tools/primer-blast/, accessed
on 29 August 2022). The bovine basic transcription factor 3 gene (BTF3) was selected as the
internal reference gene. All primer sequences were synthesized by Tsingke Biotechnology
(Beijing, China) and these primers are listed in Table S1.

The real-time qPCR experiments were carried out in accordance with the manufac-
turer‘s instructions. The total reaction volume was 20 µL, containing 50 ng of template DNA,
10 mM primers, and reagents from SYBR Green Premix Pro Taq HS qPCR Kit (Accurate
Biology, Hunan, China). All real-time reactions were performed using the LightCycler 96 In-
strument (Roche, Basel, Switzerland), with 3 technical replicates per sample. Copy-number
differences were determined using the standard ∆∆CT method.

2.6. Gene Annotation and Ontology

Based on the yak reference genome(Bos_grunniens.LU_Bosgru_v3.0.105, https://asia.
ensembl.org/Bos_grunniens/Info/Index, accessed on 29 August 2022) and annotation files,
a yak-genome annotation library was constructed using a local server, and then SnpEff
(v4.5) was used to annotate the VCF files of the two analyzed populations. In accordance
with the annotation information obtained, the intronic regions were removed to obtain
meaningful variants and search for related genes. Then the functions of related genes were
searched, through the gene database of the NCBI website(https://www.ncbi.nlm.nih.gov/,
accessed on 29 August 2022), and the functional annotation of genes was carried out based
on relevant literature reports. The gene-ontology (GO) enrichment analysis of the annotated
genes was conducted using the online tool DAVID (https://david.ncifcrf.gov/, accessed on
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29 August 2022). FDR was used to adjust the p-value, and the critical value of the adjusted
p-value was set to 0.05.

3. Results
3.1. Resequencing Data Results

In this study, 20 individual samples of the white yak were resequenced, and the average
sequencing depth was 7.48×. The statistical results showed that a total of 3,014,148,570 reads
were obtained from 20 individuals, covering an average of 98.33 % of the reference
genome (Table 1).

Table 1. Summary statistics of resequencing reads.

Sample Name Number Raw Reads Mapped Reads Properly Paired Reads Average Coverage Average Fold

Long-haired 10 1,520,934,131 1,495,623,348 1,409,965,496 98.33% 7.38×
Normal-haired 10 1,544,406,470 1,518,525,222 1,428,802,730 98.33% 7.58×

Total 20 3,065,340,601 3,014,148,570 2,838,768,226 98.33% 7.48×

3.2. CNV Test Results

Genome-wide CNV detection of resequencing data using CNVnator software revealed
a total of 110,268 CNVs in 20 samples, and these CNVs were composed of deletion and
duplication mutation-events (Table 2, Figure 2). There were 53,099 CNVs in the long-haired
samples, including 9634 duplicate events and 43465 deletion events, with an average of
5310 CNVs, 963 duplicate events, and 4347 deletion events, per individual. The size of
CNVs ranged from 0.6 kb to 359.1 kb, with an average size of 13.9 kb and a median size of
9.9 kb. There were 57,169 CNVs in the normal-haired-type sample, including 8863 duplicate
events and 48,306 deletion events, with an average of 5717 CNVs, 886 duplicate events,
and 4831 deletion events, per individual. The size of CNVs ranged from 0.6 kb to 385.2 kb,
with an average size of 13.2 kb and a median size of 9.3 kb. A total of 2006 CNVRs were
obtained by combining CNVs from 10 long-haired individuals, and a total of 2699 CNVRs
were obtained by combining CNVs from 10 normal-haired individuals. The accuracy of the
identified CNVRS was confirmed using qPCR analysis. The results showed that 89% of the
CNVS had accurate copy numbers (Table S1).
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Table 2. Summary of CNV testing.

Sample Name Number CNVs Duplication Deletion Individual
Average CNVs

Long-haired 10 53,099 9634 43,465 5310
Normal-haired 10 57,169 8863 48,306 5717

Total 20 110,268 18,497 91,771 5513
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3.3. Distribution of CNV on Chromosomes

Based on the CMplot package in the R language, we mapped the chromosomal
distribution of CNV in the genomes of LTWY and NTWY (Figure 3). The distribution
of CNV was found on each chromosome of LTWY and NTWY, but the distribution of
CNV on each chromosome was not uniform, and the distribution density of CNV on each
chromosome was not directly related to the length of chromosome.
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3.4. Gene Annotation and Functional Analysis

SnpEff (V4.5) was used to annotate two VCF files containing CNV in the genome
of LTWY and NTWY. A total of 103 genes were annotated in the long-haired-type file,
23 genes were annotated in the normal-haired-type file, and 80 genes were differentially
annotated between the long-haired type and the normal-haired type (Table S2). All genes
annotated in the normal-haired-type population were included in the long-haired-type
population. We carried out GO enrichment analysis of the differential genes, to understand
their biological functions. The results showed that 80 differential genes were significantly
enriched in 8 pathways (Table 3), (such as the glycerol-3-phosphate biosynthetic process,
the regulation of the cholesterol metabolic process, the glycerol metabolic process, protein
autophosphorylation, the DNA damage checkpoint, the triglyceride metabolic process, and
the LINC complex). These pathways may affect the hair growth of the Tianzhu white yak.
Moreover, it is worth noting that several differential genes (e.g., ASTN2, ATM, COL22A1,
GK5, SLIT3, PM20D1, and SGCZ) have been identified as associated with hair growth or
hair-follicle development in mammals.

Table 3. The significant GO categories of CNVR-harbored genes.

GO ID Function GO Type Adjusted p-Value Name of CNV
Harbored Genes

GO:0021817
nucleokinesis involved in cell

motility in cerebral-cortex
radial glia-guided migration

biological process 0.010975072 SUN1, SYNE2

GO:0046167 glycerol-3-phosphate
biosynthetic process biological process 0.018225877 GK5, FGGY

GO:0090181 regulation of cholesterol
metabolic process biological process 0.036124919 EPHX2, TTC39B

GO:0006071 glycerol metabolic process biological process 0.039666016 GK5, FGGY
GO:0034993 LINC complex cellular component 0.032183984 SUN1, SYNE2

GO:0005887 integral component of
plasma membrane cellular component 0.063910999

TSPAN15, INSR,
TSPAN18, PCDH15,

TAS1R2, HTR3B, ASIC2
GO:0004370 glycerol kinase activity molecular function 0.015268554 GK5, FGGY

GO:0016773 phosphotransferase activity,
alcohol group as acceptor molecular function 0.033288799 GK5, FGGY
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4. Discussion

Hair length is a simple recessive-inheritance in animals. To reveal the potential
contribution of CNV to hair growth in white yaks, we performed copy-number-variation
analysis, based on whole-genome resequencing data from 10 long-haired and 10 normal-
haired Tianzhu white yaks. We identified 2006 CNVRs and 130 genes in the long-haired
type and 2699 CNVRs and 23 genes in the normal-haired type. The results showed that
all the genes annotated from the normal-haired-type population were included in the
long-haired-type population, indicating that the two populations were closely related.
The Tianzhu white yak has been in a state of artificial breeding for a long time, and the
long-haired type is a subgroup which emerged in a short time [3], and which is closely
related to the normal-haired type. In addition, the results of the q-PCR showed that 89% of
CNVs had an accurate copy-number. It is worth noting that not all CNVRs can be detected
by qPCR, especially some low-copy repeats with low sequence-similarity [28,29].

In this work, a total of 80 differential genes were annotated, and they were the unique
genes annotated in the long-haired type. These differential genes were significantly en-
riched in the GO terms of lipid synthesis and metabolism, and cell migration. Several
studies have identified relationships between lipids and skin, hair follicles, and hair growth.
Jiang et al. found that phospholipids and triglycerides affect the formation and function of
the epidermal permeability barrier, and changes in lipid metabolism in the skin had a detri-
mental effect on the hair of mice [30]. Cholesterol has long been suspected of affecting hair
biology, and Panicker et al. found that changes in cholesterol production within hair-follicle
cells inhibited hair growth, eliciting immune responses and leading to hair loss [31]. Palmer
et al. showed that dysregulation of cholesterol homeostasis is associated with several
hair-growth and circulation disorders [32]. The LINC complex is a cell component enriched
in our study. Studies have shown that the LINC complex is involved in the epidermal
stem-cell differentiation, and affects the accessibility of epidermal differentiation genes [33].
In conclusion, these differential genes may affect hair growth, through lipid metabolism
and other pathways.

In addition, we found that some of these differential genes have been identified
as associated with hair growth in mammals. These genes, such as GK5, ASTN2, ATM,
COL22A1, SLIT3, PM20D1 and SGCZ, may be candidate genes affecting hair length of
the Tianzhu white yak. The GK5 gene is a skin-specific kinase primarily expressed in
sebaceous glands, and GK5 deficiency leads to elevated levels of lipids such as cholesterol,
triglycerides, and ceramide in the skin [34]. Studies have shown that changes in lipid
composition, including excessive production or accumulation of cholesterol precursors,
can lead to changes in hair-follicle development [35]. In addition, the biosynthesis of lipids
in the skin plays an important role in hair-follicle maintenance, hair-follicle morphogenesis,
and the formation of the epidermal permeability barrier [36–41].

ATM is a serine/threonine kinase that not only participates as a major component in
the DNA-damage-response (DDR) pathway, but also acts as an important sensor for reactive
oxygen species (ROS) in cells, and is activated by oxidative stress [42–44]. Studies have
shown that hair follicles have specific compartments of oxidative metabolism, and that the
production of endogenous ROS is essential for many cell-signaling processes, including hair
follicles, while oxidative stress induces hair-growth inhibition [45,46]. REDOX perception in
a state of hair-follicle growth and differentiation with significant complexity and effect, and
inhibition of ATM expression, promoted the oxidative-stress-induced loss of the activity
of hair-follicle melanocytes [42], in which ATM, in protecting hair-follicle growth and
differentiation from oxidative-stress damage can play a key role.

As a cell adhesion ligand for skin epithelial cells and fibroblasts, COL22A1 shows a
unique localization at the boundary between hair follicles and dermis in the skin during the
growth phase, and is expressed around the lower third of hair follicles in the skin, during
the growth phase [47]. Several studies have shown that the synergistic effect of TGF-β and
Wnt signaling plays a crucial part in controlling some developmental events, especially
hair-follicle formation [48–51]. Studies have found that COL22A1 is a top regulatory
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gene regulating the TGF-β pathway [52]. Therefore, COL22A1 may affect hair-follicle
development during the growth phase by affecting the the synergistic effect of the TGF-β
and Wnt signaling-pathways, leading to inconsistent hair growth.

The ASTN2 gene is an integrated membrane glycoprotein unique to vertebrates [53].
Planar-cell-polarity signals (PCP signals) not only have a major impact on many devel-
opmental processes, but also control the orientation of mammalian hair follicles [54]. It
has been reported that ASTN2 is expressed in various tissues during development, and
begins to be expressed at the earliest stage of hair-follicle development; studies on its endo-
somal localization have found that it may play a role in the recycling of plasma membrane
proteins [55,56]. Researchers have found that the PCP-protein complexes in the developing
epidermis are recycled, assembled and utilized at the plasma membrane, as cells divide [57].
These results suggest that alterations in ASTN2 may affect hair-follicle development by
affecting PCP-protein transport. Therefore, we hypothesized that the CNV of the ASTN2
gene may affect PCP-protein transport and PCP signaling, thus affecting the hair follicles
of the Tianzhu white yak. SLIT3, a collagen regulator secreted by fibroblasts, mainly exists
in fibrous collagen-producing cells, and negatively regulates cell growth [58,59]. Studies
have reported that, compared with normal mice, SLIT3-knockout mice have significantly
lower hair-follicle density [58], and some researchers have found that SLIT3 is associated
with wool traits of fine wool sheep [60]. PM20D1 encodes a protein of unknown func-
tion, but studies have shown that its expression affects the growth of human sebaceous
glands and mouse hair follicles [61,62]. SGCZ has been detected to be involved in fat
deposition and hair growth in sheep [63,64]. All these genes are related to hair growth
or hair-follicle development, and may be candidate genes affecting the hair length of the
Tianzhu white yak.

5. Conclusions

This is the first analysis of CNV in the whole genome of the Tianzhu white yak. By
comparing the CNV of long-haired with that of normal-haired Tianzhu white yaks, we
found that some genes which overlapped with CNVR may be candidate genes for affecting
hair growth in Tianzhu white yaks. This study provides valuable insights for phenotypic
variation and breeding of the Tianzhu white yak.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
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