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Abstract: Feed efficiency (FE) is a very important trait affecting the economic benefits of pig breed-
ing enterprises. Adipose tissue can modulate a variety of processes such as feed intake, energy
metabolism and systemic physiological processes. However, the mechanism by which microRNAs
(miRNAs) in adipose tissues regulate FE remains largely unknown. Therefore, this study aimed to
screen potential miRNAs related to FE through miRNA sequencing. The miRNA profiles in porcine
adipose tissues were obtained and 14 miRNAs were identified differentially expressed in adipose tis-
sues of pigs with extreme differences in FE, of which 9 were down-regulated and 5 were up-regulated.
GO and KEGG analyses indicated that these miRNAs were significantly related to lipid metabolism
and these miRNAs modulated FE by regulating lipid metabolism. Subsequently, quantitative reverse
transcription–polymerase chain reaction (qRT-PCR) of five randomly selected DEMs was used to
verify the reliability of miRNA-seq data. Furthermore, 39 differentially expressed target genes of
these DEMs were obtained, and DEMs–target mRNA interaction networks were constructed. In
addition, the most significantly down-regulated miRNAs, ssc-miR-122-5p and ssc-miR-192, might
be the key miRNAs for FE. Our results reveal the mechanism by which adipose miRNAs regulate
feed efficiency in pigs. This study provides a theoretical basis for the further study of swine feed
efficiency improvement.
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1. Introduction

Both inputs and outputs are the main factors affecting pig producers’ profit, and input
cost reduction can improve the economic profits of pig-breeding enterprises [1]. Feed cost
is a major input cost, accounting for about two-thirds of the total cost of pig breeding [2].
Feed efficiency (FE) is defined as the ratio of input (feed intake, FI) to output (production),
and thus FE improvement can decrease feed cost in pig enterprises. Residual feed intake
(RFI) is one of the most common measurements for FE, and RFI is defined as the difference
between the actual FI and the predicted FI calculated based on the animal’s body size and
growth rate over a period of time [3–5]. Since a low RFI means high FE and low FI, RFI can
be used as a negative selection trait to improve FE [6–8]. Additionally, the exploration of
the molecular mechanism of RFI will be helpful in the improvement of feed efficiency.

Continuous selection of low RFI in pigs for multiple generations can effectively im-
prove the feed efficiency of pigs. It has been reported that low-RFI pigs exhibit similar
growth rate but lower FI and feed conversion ratio (FCR) compared to high-RFI pigs [9,10].
Nutrient utilization and metabolism in the tissues of low-RFI pigs differ from those of high-
RFI pigs. What’s more, low-RFI pigs have lower oxidase activities and lower glycolytic
capacity in skeletal muscles [9,11]. Low-RFI pigs have been reported to reduce the oxidation
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of nutrients to generate more ATP which is subsequently released as heat [12–14]. Lower
antioxidant protein expression and lower ROS (reactive oxygen species) production have
been reported in the longissimus muscle mitochondria of low-RFI pigs [15,16]. Some stud-
ies of the physiological processes of individuals with extreme RFI have explained part of the
variation mechanism of RFI, but the mechanism of FE remains to be further investigated.

miRNAs are noncoding RNA molecules of roughly 19 to 25 nt in length, and they
can regulate the expression levels of gene by binding to specific messenger RNA (mRNA)
sequences [17,18]. In domestic animals, miRNAs have been reported to play a pivotal part
in regulating skeletal muscle and fat development as well as immune response [19–21].
miRNAs are key regulators of FE. In Nelore cattle, one miRNA in skeletal muscle and
four miRNAs in liver have been found to regulate feed-efficiency-related biological path-
ways [22]. In the livers of cattle, 49 DEMs have been identified to be related to RFI, of
which 33 down-regulated DEMs in low-RFI cattle played important roles in physiological
pathways associated with FE [23]. A total of 15 DEMs were identified in skeletal muscle
between high- and low-RFI pigs, and they mainly take part in skeletal muscle growth
and development [24]. In addition, 14 DEMs have been found in the liver of pigs with
significant RFI differences, and they are mainly related to the signaling pathways of insulin,
GnRH and mTOR [25]. These results indicate that miRNAs are vital regulators of FE.

Adipose tissue is a major sensor that modulates various processes such as FI, en-
ergy homeostasis, fat metabolism and whole-body physiological processes [26,27]. Lipid
metabolism in adipose tissue has been reported to play an important role in regulating
the FE of pigs [28–31]. Fatness traits, including backfat thickness and intramuscular fat
content, were weakly negatively correlated with FE, so could not be used as an indicator to
improve growth rate [32,33]. In this study, we used miRNA sequencing to identify multiple
DEMs from the adipose tissues of pigs with significantly different RFIs. GO and KEGG
pathway analyses of target genes of the DEMs were performed. Subsequently, we analyzed
the interactions between DEMs identified in this study and our previously reported DEGs
and visualized them. Our findings provide a theoretical basis for the further study of
swine-feed-efficiency improvement.

2. Materials and Methods
2.1. Sample Preparation and RNA Isolation

This study selected six castrated boars with no difference in body weight and extreme
differences in FE based on the RFI value (3 high RFI versus 3 low RFI) for the experiments
(Table S1). The individuals were from populations of Yorkshire pigs (n = 236), and the
feed intake was measured by ACEMA64 (ACEMO, Pontivy, France) automated individual
feeding systems [24]. The RFI values of the population were calculated and the distribution
of RFI (−0.03188 ± 0.2051) in the population is shown in Figure 1. The performances
of individuals with extreme RFI differences (n = 50) were compared (Table 1) and the
results showed that FI and fat deposition were significantly reduced in low-RFI (high-
FE) pigs, which is compatible with the results reported in previous studies [34,35]. The
experiments in which animals used for miRNA-sequencing were raised, slaughtered and
sampled were approved by the Animal Care and Use Ethics Committee of Huazhong
Agricultural University (permit number: HZAUMU2013-0005). According to the results of
RFI, dorsal subcutaneous adipose tissue samples comprising all fat layers were sampled
from 6 animals with extreme RFI differences at the last rib level and immediately immersed
in liquid nitrogen within 30 min, and subsequently transferred to −80 ◦C for storage. For
total RNA extraction, all samples of the frozen subcutaneous adipose tissue were extracted
using TRIzol reagent (Invitrogen, Carlsbad, CA, USA). The RNA integrity and purity were
examined using a Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA, USA) and a
NanoDrop 2000 spectrophotometer (Thermo Scientific, Waltham, MA, USA).
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Figure 1. Summary of RFI in the populations of Yorkshire pigs. (A) The distribution of RFI in the
populations of Yorkshire pigs. (B) The RFI of the sequencing individual. *** represent p ≤ 0.001,
meaning the RFI between High-FE and Low-FE significant differences.

Table 1. Animal performance of Yorkshire pigs with FE-extreme individuals.

High FE (n = 50) Low FE (n = 50) p-Value

FCR 2.23 ± 0.20 2.92 ± 0.31 9.60694 × 10−24

RFI (kg/day) −0.28 ± 0.14 0.24 ± 0.13 2.228 × 10−36

FI 1.78 ± 0.29 2.35 ± 0.28 3.02393 × 10−16

ADG 0.80 ± 0.14 0.82 ± 0.14 0.67
Initial BW (kg) 38.87 ± 2.12 39.27 ± 2.94 0.37
Final BW (kg) 90.13 ± 3.41 90.84 ± 4.27 0.24

AMBW 21.98 ± 0.82 22.19 ± 0.62 0.45
ABF (mm) 18.68 ± 2.74 21.49 ± 2.23 1.0061 × 10−5

LMA (cm2) 45.75 ± 6.22 44.78 ± 6.87 0.46
FE, feed efficiency. FCR, feed conversion ratio. RFI, residual feed intake. FI, feed intake. ADG, average daily gain.
BW, body weight. AMBW, average metabolic body weight. ABF, average of back fat thicknesses (mm) measured
at three points between 6th and 7th ribs (6th–7th BF) and at the 10th rib (10th BF). LMA, loin muscle area (cm2)
measured between the 10th and 11th. p-value as calculated by t-test.

2.2. Small RNA Library Construction and Sequencing

Six miRNA-sequencing libraries were constructed from 3 high-RFI pigs and 3 low-RFI
pigs by TruSeq® Small RNA library Kit (ILLumina®, San Diego, CA, USA). The obtained
miRNA-sequencing libraries were purified with AMPure XP system, and the quality was
assessed on the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA).
After quality control, the high-quality miRNA-sequencing libraries were sequenced on
Illumina HiSeq3000 platform (Illumina, San Diego, CA, USA).

2.3. Analysis of miRNA Sequencing Data

The raw reads obtained by miRNA sequencing were processed with Trimmomatic
(v0.39) to trim adapter contaminants and remove substandard reads. Subsequently, the
clean reads were aligned to the pig reference genome with miRdeep2 [36]. In pigs, known
pig miRNAs were identified by aligning all clean reads to the pig miRNA reference se-
quences in miRBase database (version 22). The sequences matching mature miRNAs in
miRBase database and aligned to pig reference genome were identified as known miR-
NAs reads. The sequences aligned to the pig reference genome and matching miRNA
databases were considered as potential miRNA reads. MiRDeep (v2.0.0.7) was used to
predict novel miRNAs for those sequences unmatched to known pig miRNAs [37]. The
secondary structures of novel miRNA were plotted using RNAfold software.

2.4. Identification of DEMs and Their qRT-PCR Validation

The miRNA expression level was normalized by transcript per million (TPM). The
DEMs between the high-FE and low-FE pigs were analyzed with the DESeq R package
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(v4.0.3). The thresholds to determine the DEMs were set as following: p-value less than
0.05 and absolute value of log2 (Fold change) greater than or equal to 1.

In order to check the reliability of miRNA sequencing, 5 adipose samples from high FE
pigs and 5 from low FE pigs were selected to quantify the relative expression of the DEMs by
qRT-PCR. A total of 5 miRNAs were randomly selected for qRT-PCR validation; the primer
sequences of miRNAs are listed in Table S2. The miRNA was reverse transcribed into cDNA.
The cDNA was reverse transcribed with 1 µg of total RNA using the Mir-X miRNA First-
Strand Synthesis Kit (TaKaRa, Tokyo, Japan) according to the manufacturer’s instructions.
The qRT-PCR was performed following standard protocols on Roche Lightcycler 480 Real-
Time PCR System with SYBR Green PCR Master Mix (TOYOBO, QPK201) and porcine U6
snRNA was used as an internal control for miRNA. Reactions were performed thrice and
each well contained 1 µL cDNA, 5 µL 2 × SYBR Green PCR Master Mixture, 0.1 µL each
primers and 3.6 µL RNase-free water. The reaction conditions were preincubated at 95 ◦C
for 5 min and 40 PCR amplification cycles of 95 ◦C for 30 s, 60 ◦C for 30 s and 72 ◦C for 15 s;
at the end of amplification process dissociation curves were generated to validate the data
quality. The relative expression levels of miRNAs were calculated using the 2−∆∆Ct method
and Student’s t-test was used to analyze the expression difference between the high-FE and
low-FE pigs.

2.5. Prediction of miRNA Target Gene, Gene Ontology (GO) and KEGG Pathway
Enrichment Analyses

DIANA miRPath (v.3), an online miRNA target-prediction tool, predicted miRNA
targets in CDS or 3′-UTR regions, and homologous human miRNAs were used to predict
the potential target genes of DEMs. Go and KEGG pathway-enrichment analyses of target
genes of miRNAs were performed using the DAVID Bioinformatics Resources. The overlap
between differentially expressed genes which were identified in our previous paper [38]
and potential target genes were considered as the differentially expressed target genes. The
network of 12 differentially expressed miRNAs and 39 differentially expressed target genes
in high- and low-FE pigs was plotted using Cytoscape v3.6.1.

3. Results
3.1. Characterization of miRNA-Sequencing Data

In order to identify DEMs in the adipose tissue between the high-FE group and
the low-FE group, three samples per group were sequenced using Solexa sequencings
(Table S1). A total of 12.83~26.77 million raw reads were generated from each sample. After
excluding short reads and low-quality adaptor sequences, 10.61~20.01 million clean reads
were retained for each sample, accounting for 82.7~91.2% of the raw reads per sample
(Table 2). The clean reads length mainly ranged from 21 to 23 nt with 22 nt exhibiting the
peak, indicating that sRNAs were mainly miRNAs (Figure S1).

Table 2. Summary of miRNA-seq data.

Reads High FE-1 High FE-2 High FE-3 Low FE-1 Low FE-2 Low FE-3

Total reads 20,197,804 12,835,372 20,920,937 26,772,081 17,184,327 23,376,133
Clean
reads 18,424,875 10,611,213 18,687,418 22,321,137 15,274,616 20,018,461

Qualified% 0.912 0.827 0.893 0.834 0.889 0.856
mapped 4,251,042 2,045,141 4,265,705 6,004,627 5,288,460 4,190,707

unmapped 14,173,833 8,566,072 14,421,713 16,316,510 9,986,156 15,827,754
mapped% 0.231 0.193 0.228 0.269 0.346 0.209
unmapped% 0.769 0.807 0.772 0.731 0.654 0.791

3.2. Differentially Expressed miRNAs between High-FE and Low-FE Pigs

To reveal the role of miRNAs in regulating FE in adipose tissues, we identified dif-
ferentially expressed miRNAs (DEMs) in adipose tissues between high-FE and low-FE
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pigs. A total of 14 DEMs were identified, of which 5 miRNAs (ssc-miR-582-5p, ssc-miR-150,
ssc-miR-155-5p, ssc-miR-331-5p and ssc-miR-196a) were up-regulated and 9 miRNAs (ssc-
miR-129a-5p, ssc-miR-9, ssc-miR-138, ssc-miR-194b-5p, ssc-miR-194a-5p, ssc-miR-192, ssc-
miR-10386, ssc-miR-136-5p and ssc-miR-122-5p) were down-regulated (Figure 2, Table 3).
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Figure 2. Volcano plot of DEMs in adipose tissues between high-FE and low-FE pigs. The blue dots
represent the DEMs; the red dots represent the miRNAs with no significant expression differences.

Table 3. A list of 14 differentially expressed miRNAs in adipose tissues between high-FE and low-FE pigs.

miRNA Ref miRNA
(Human)

Fold Change
(High/Low) p-Value Mature Sequences

ssc-miR-122-5p miR-122-5p −3.50 1.64483 × 10−5 uggagugugacaaugguguuu
ssc-miR-192 miR-192-5p −2.98 0.000328674 cugaccuaugaauugacagccag

ssc-miR-194a-5p miR-194-5p −2.76 0.000665162 uguaacagcaacuccaugugga
ssc-miR-10386 −3.18 0.000765051 gucguccucucccucccuccu
ssc-miR-155-5p miR-155-5p 2.29 0.001718442 uuaaugcuaauugugauaggggu

ssc-miR-150 miR-150-5p 2.71 0.001962553 ucucccaacccuuguaccagug
ssc-miR-194b-5p miR-194-5p −2.43 0.00437337 uguaacagcgacuccaugugga
ssc-miR-582-5p miR-582-5p 3.55 0.015997654 uacaguuguucaaccaguuacu
ssc-miR-331-5p miR-331-3p 2.08 0.019987215 gccccugggccuauccuagaac
ssc-miR-136-5p miR-136-3p −3.32 0.020242907 caucaucgucucaaaugagucu
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Table 3. Cont.

miRNA Ref miRNA
(Human)

Fold Change
(High/Low) p-Value Mature Sequences

ssc-miR-129a-5p miR-129-5p −2.02 0.020370961 cuuuuugcggucugggcuugc
ssc-miR-9 miR-9-5p −2.22 0.023102635 ucuuugguuaucuagcuguauga

ssc-miR-138 miR-138-5p −2.27 0.039803139 agcugguguugugaaucaggccgu
ssc-miR-196a miR-196a-5p 2.07 0.04389995 uagguaguuucauguuguuggg

Of these 14 DEMs, 13 were homologous to human miRNAs and 1 miRNA (ssc-
miR-10386) was not homologous to human miRNAs (Figure 3). Cluster analysis showed
that the high-FE group was separated from the low-FE group, and that the expression
patterns of miRNAs exhibited significant differences between the high-FE group and the
low-FE group.
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3.3. Verification of miRNA Sequencing Data by qRT-PCR

We randomly selected five DEMs (ssc-miR-122-5p, ssc-miR-192, ssc-miR-155-5p, ssc-
miR-150 and ssc-miR-9) for qRT-PCR so as to validate the accuracy of miRNA sequencing
data. The results revealed that the expression levels of ssc-miR-155-5p and ssc-miR-150
were higher in the high-FE group than in the low-FE group; nevertheless, the expression
levels of ssc-miR-122-5p, ssc-miR-192 and ssc-miR-9 were lower in the high-FE group than
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in the low-FE group. The results of the five randomly selected miRNAs showed that the
results of qRT-PCR were compatible with the results of miRNA sequencing, suggesting the
miRNA sequencing data is reliable (Figure 4).
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Figure 4. Validation of the RNA sequencing using qRT-PCR. U6 snRNA was used for samples
standardization. (A) qRT-PCR validation of five DEMs in adipose tissues. (B) Line-fit plot of qRT-PCR
results and RNA-sequencing data for selected DEMs. Mark * in (A) represent the expression level
significantly different between two group (p < 0.05).

3.4. Target-Gene Prediction of DEMs

In animals, miRNA can mediate the level of the post-transcriptional genes by com-
plementing the 2nd to 7th nucleotides of the 3′UTR [39,40]. In order to investigate the role
of DEMs in the adipose tissues of pigs with extreme FE differences, homologous human
miRNAs of pig DEMs were employed to predict the target genes. As a result, 8962 target
genes were obtained from 12 homologous human miRNAs of pig DEMs, and 5927 target
genes were retained after removing the duplicates (Table S3).

3.5. Functional Enrichment Analysis of DEMs in Adipose Tissues

To investigate the biological functions of DEMs, the target genes of DEMs were en-
riched by GO and analyzed by KEGG pathway. The GO enrichment analysis identified
1034 significantly enriched biological process GO terms, 288 significantly enriched cel-
lular component GO terms and 259 significantly enriched molecular function GO terms
(Table S4). GO enrichment analysis showed that the top 20 biological processes in which
the target genes were significantly enriched mainly included positive/negative regula-
tion of transcription from RNA polymerase II promoter, positive/negative regulation of
transcription (DNA-templated), cell division, cellular response to DNA damage stimulus,
cell cycle and protein phosphorylation. Cellular components in which most target genes
were significantly enriched mainly consisted of nucleoplasm, nucleus, cytosol, membrane
and cytoplasm. Molecular functions in which the target genes were significantly enriched
mainly involved protein binding, chromatin binding, cadherin binding and metal-ion
binding. The top 20 significant GO enrichments are shown in Figure 5.

KEGG analysis results showed that 57 pathways were significantly enriched with
the target genes of DEMs (Table S5), of which the top 20 are shown in Figure 6. The
significantly enriched KEGG pathways mainly involved the AMPK signaling pathway,
ubiquitin-mediated proteolysis, insulin resistance, Hippo signaling pathway, FoxO sig-
naling pathway, insulin signaling pathway and p53 signaling pathway. The hierarchical
clustering analysis results of the relationships between DEMs and their target gene path-
ways showed that functionally similar miRNAs were clustered together (Figure 7). The
miRNAs with similar functional categories and the same regulation pattern were clustered
together, for example miR-129-5p and miR-196a-5p were clustered together. The miR-129-5p
and miR-196a-5p have similar functions and are often reported simultaneously [41,42].
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3.6. miRNA–mRNA Association Analysis

In order to understand the molecular mechanism of FE, we investigated a large number
of DEGs from adipose tissues of high-FE and low-FE pigs [38]. By integrated analysis of
147 of our previously reported DEGs (Table S6) and 12 DEMs obtained in this study, we
obtained 39 candidate target genes from 12 miRNAs, and all these 39 target genes were
differentially expressed in adipose tissues between the high-FE group and the low-FE group
(Figure 8).
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4. Discussion

As a vital trait, FE strongly affects feed cost and economic benefits in pig-breeding
enterprises. Selection of pigs with high FE can effectively reduce feed intake so as to save
feed costs [34]. Previous studies have shown that energy metabolism contributes to the FE
of pigs [24,43]. Adipose tissue is one of the most crucial tissues that take part in energy
metabolism and is associated with the FE of pigs [38]. Furthermore, adipose tissue can se-
crete many adipocytokines to mediate appetite, energy homeostasis, and lipid and glucose
metabolism [44]. Adipose tissue growth, extracellular matrix formation, lipid metabolism,
inflammatory response and immune response have been reported related to FE in pigs [45].
Moreover, the phenotypes of high-FE pigs were compared with those of the low-FE pigs; it
was found that high-FE pigs have thinner backfat depth and lower fat content [11,34,46]. In
our study, the backfat thickness was also decreased in high-FE pigs; although the decrease
was small, the difference was significant. Lipogenesis and fat partitioning in adipose tissue
have been reported to be related to energetic efficiency [47,48]. In addition, it has been
reported that subcutaneous adipose tissue thickness contributes to 2~5% of variation in
feed intake [49]. Therefore, adipose tissue acts as an energy depot to mediate metabolic
homeostasis and nutrient availability, thereby further regulating feed efficiency [50]. miR-
NAs can modulate various biological processes through modulating tissue that takes part
in energy metabolism and is associated with pig feed efficiency [24,25,51–53]. In this study,
the miRNA expression profiles of adipose tissues from high-FE and low-FE pigs were
compared to reveal the miRNA-mediated regulation of FE. We identified 14 DEMs in the
adipose tissues of high-FE and low-FE pigs, and the identification of miRNAs, target genes
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and the concerning important signaling pathways will be useful in the development of
strategies for improving FE.

KEGG pathway analyses of target genes of the DEMs contribute to understanding the
regulatory mechanism of DEMs. The significantly enriched KEGG pathways are involved
in the AMPK signaling pathway, mTOR signaling pathway, ubiquitin-mediated proteolysis,
Hippo signaling pathway, insulin signaling pathway and adipocytokine signaling pathway.
In the hypothalamus, the mTOR signaling pathway has been identified to be associated
with FE, and the genes related to this pathway are down-regulated in high-FE pigs [54].
RNA sequencing in the muscle of the Pacific white shrimp showed that the PI3K-Akt
signaling pathway, AMPK signaling pathway and mTOR signaling pathway mediated
the level of the genes associated with FE [55]. The Hippo signaling pathway, insulin
signaling pathway and adipocytokine signaling pathway are important pathways related
to FE [56–58]. Thus, miRNAs can affect these pathways through mediating the level of the
target genes.

Of the 14 DEMs, 9 were down-regulated in the adipose tissues in high-FE pigs, relative
to low-FE pigs, with the expressions of ssc-miR-122-5p and ssc-miR-192 exhibiting the
maximum down-regulation. Previous studies have demonstrated that ssc-miR-122-5p
and ssc-miR-192 participate in fat metabolism [59–63]. ssc-miR-122 is a key regulator of
lipid metabolism [64,65], and our previous study has revealed that B4GALT6 (a predicted
target gene of ssc-miR-122) is down-regulated in the adipose tissue of high-FE pigs, in
contrast to that of low-FE pigs [38]. B4GALT6 has been reported to take part in the lipid
biosynthetic process of adipose tissue [66]. It is worth noting that ssc-mir-122 has been
found to be a candidate miRNA for average daily gain (ADG) and days (AGE) traits of
pigs [67]. As a key miRNA for lipogenesis, ssc-miR-192 can regulate adipose deposition and
differentiation [68,69], and it can also target the B4GALT6 gene to regulate lipid metabolism
in adipose tissue. Our KEGG pathway analysis showed that the target genes of these two
miRNAs were mainly enriched in the AMPK signaling pathway, Wnt signaling pathway,
fatty acid metabolism, insulin resistance, insulin signaling pathway and TGF-β signaling
pathway. Thus, ssc-miR-122 and ssc-miR-192 in the porcine adipose tissues might modulate
the FE by regulating lipid metabolism.

A previous study has revealed that ssc-miR-194a-5p is involved in lipid and cholesterol
metabolism through the target genes Apoa5 and Hmgcs2 [70,71], and our data showed that
this miRNA was significantly reduced in the adipose tissues of high-FE pigs. ELOVL7, a
predicted target gene of miR-194, has been found to be involved in the lipid biosynthetic
processes of adipose tissues and the synthesis of FE-related polyunsaturated fatty acids
(PUFAs) in pigs, and our previous study has indicated down-regulation in the adipose tissue
of high-FE pigs, relative to that of low-FE pigs [38,72–75]. miR-9, a fat-formation-related
biomarker, was also predicted to target ELOVL7 and was down-regulated in the adipose
tissues of high-FE pigs. It has been reported that miR-9 can induce the differentiation of
preadipocytes [76]. In pigs, miR-9 is highly expressed in obese pigs, and it contributes to
lipid accumulation [77].

Our data showed that miR-155, a brown adipogenesis inhibitor, was up-regulated in
the adipose tissue of high-FE pigs, compared with that of low-FE pigs [78,79]. Previous
studies have shown that miR-155 knockout can produce more heat and increase insulin
sensitivity, and that overexpressing miR-155 in mice can reduce brown adipose tissue mass
and the level of thermogenic markers [79]. In pigs, miR-155 is highly expressed in the fat
tissues, and it is a key positive regulator of the TLR3/TLR4 signaling pathway [80]. Our
data showed that miR-150 was up-regulated in the adipose tissues of high-FE pigs, and
this miRNA has been reported to modulate adipose tissue function [81]. Overexpression of
miR-150 can facilitate the proliferation of adipocytes, suppress adipocyte differentiation
and decrease the formation of lipid droplets [82]. miR-138, an inhibitor of adipogenesis,
is down-regulated in the adipose tissues of high-FE pigs, in contrast to that of low-FE
pigs [83]. It has been reported that overexpression of miR-138 can inhibit lipid-droplet
accumulation [84]. miR-129 and miR-196a have similar functions. It has been reported
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that miR-129 is involved in regulating lipid accumulation and thermogenesis [85,86], and
our data showed that miR-129 was significantly reduced in the adipose tissues of high-FE
pigs. Previous studies have shown that overexpression of miR-129 can inhibit adipogenesis
and inhibiting the expression of miR-129 can promote adipogenic differentiation [87,88].
miR-196a is a key regulator of fat deposition [89,90], and our data showed that miR-196a is
up-regulated in the adipose tissue of high-FE pigs, in contrast to that of low-FE pigs. In
pigs, miR-196a has been reported to be associated with preadipocyte differentiation and
adipogenesis [91,92]. Overexpression of miR-196a can increase lipid accumulation and
promote preadipocyte differentiation [93]. miR-331, a microRNA participating in regulating
the proliferation, differentiation and fatty-acid accumulation of porcine preadipocytes, was
up-regulated in the adipose tissues of high-FE pigs [94]. Overexpressing miR-331 can
increased fatty-acid synthesis [95]. All of these miRNAs can regulate energy metabolism
and adipocytokine secretion by influencing lipogenesis and fat partitioning in adipose
tissue, thereby affecting feed efficiency.

The miRNA–mRNA association analysis revealed 39 candidate target genes from
12 miRNAs. Adiponectin, an endocrine factor secreted by adipose tissue, is involved in
regulating food intake and energy expenditure [96,97]. ALDH1A3 and CYP3A5, the DEGs
predicted as miR-9 and miR-122-5p targets, participate in adiponectin expression through
regulating retinoic acid metabolic [98–100]. Ca2+ can mediate the feed efficiency by the
cAMP signaling pathway [38]. Suppression of CLIC4, the DEGs predicted as miR-122-5p,
miR-155-5p, miR-196a and miR-9 targets, can significantly enhanced Ca(2+) release [101].
GABRE, the DEGs predicted as miR-122-5p, are involved in GABA signaling and mediate
Ca2+ signals [102]. It has been reported that ATP synthesis is associated with FE [103]; the
genes OAS1, MET, RHOBTB3, HSPA4L, KIF20A, MST1R and MKI67 are related to ATP
binding and there were DEGs predicted as DEM targets. Therefore, DEMs may affect the
FE of pigs by targeting the DEGs involved in lipid metabolism and energy metabolism.

5. Conclusions

In conclusion, a total of 14 significant DEMs were identified from the adipose tissues of
high-FE pigs and low-FE pigs, of which 13 miRNAs were homologous to human miRNAs.
The functional analysis of miRNAs and target genes showed that these DEMs modulated FE
by regulating lipid metabolism, adiponectin, energy metabolism and appetite. The DEMs
mediated the level of adipocytokine and fatty-acid accumulation by targeting the DEGs;
subsequently, adipocytokines were secreted by the adipose tissue to regulate systemic
metabolism to affect feed efficiency. Taken together, our findings give a new insight into
the molecular mechanisms of miRNAs in regulating pig feed efficiency.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13122406/s1, Figure S1: Length disribution of the miRNA
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predicted by miRPath; Table S4: GO analysis for genes targeted by DE miRNAs between adipose
tissues from high and low FE Yorkshire pigs; Table S5: KEGG pathways significantly related with
genes targeted by DE miRNAs between adipose tissues from high and low FE Yorkshire pigs; Table
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