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Abstract: Using radiogenomics methods, the differences between tumor imaging data and genetic
data in Chinese and Western breast cancer (BC) patients were analyzed, and the correlation between
phenotypic data and genetic data was explored. In this paper, we analyzed BC patients’ image char-
acteristics and transcriptome data separately, then correlated the magnetic resonance imaging (MRI)
phenotype with the transcriptome data through a computational method to develop a radiogenomics
feature. The data was fed into the designed random forest (RF) model, which used the area under
the receiver operating curve (AUC) as the evaluation index. Next, we analyzed the hub genes in the
differentially expressed genes (DEGs) and obtained seven hub genes, which may cause Chinese and
Western BC patients to behave differently in the clinic. We demonstrated that combining relevant
genetic data and imaging features could better classify Chinese and Western patients than using genes
or imaging characteristics alone. The AUC values of 0.74, 0.81, and 0.95 were obtained separately
using the image characteristics, DEGs, and radiogenomics features. We screened SYT4, GABRG2,
CHGA, SLC6A17, NEUROG2, COL2A1, and MATN4 and found that these genes were positively or
negatively correlated with certain imaging characteristics. In addition, we found that the SLC6A17,
NEUROG2, CHGA, and MATN4 genes were associated with clinical features.
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1. Introduction

According to the GLOBOCAN estimate for 2020, BC has become the leading cause
of global cancer incidence worldwide [1]. New BC morbidity and mortality in China are
increasing yearly, with 0.42 million BC patients diagnosed in 2020, accounting for about
18.4% of the global BC cases [2,3]. China has the most significant BC deaths, accounting
for approximately 17.1% of all cancer deaths [3]. BC has substantial racial differences in
diagnosis, prognosis, and survival [4]. The age of vulnerability for BC in China is between
55 and 60 years old, while the average age of onset in many western countries is between
60 and 70 years old [3,5]. In addition, compared with the United States, the proportion
of Chinese BC patients with stage I, negative lymph nodes, positive ER rates, and 5 year
survival are lower [6–9], and the mean tumor size at diagnosis is relatively larger [10].
The understanding and treatment of BC are based mainly on Western research and data.
However, arising contrasts in BC epidemiology, histopathological, genetic, and biological
across different races may have implications for clinical treatment [11,12]. Therefore,
studying the differences between Chinese and Western BC will help to better understand
BC’s pathogenesis and provide theoretical support for implementing precision medicine
for BC patients in China.

As gene sequencing technology develops by leaps and bounds [13], scientists have
explored racial differences in BC at the molecular level. For example, there are differences
in the prevalence of BRCA1 and BRCA2 mutations between Asian and Western countries.
White patients are more likely to have BRCA1 mutations, while the opposite is true for
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Chinese patients [14,15]. Chinese patients with BC identified BRCA2 mutations, which
occur almost twice as frequently as BRCA1 mutations [15,16]. The gene that contributes
the most to the risk of BC is BRCA2, compared to BRCA1 in studies of European or
African descent [17]. Through the analysis of high-throughput sequencing data, Chinese
BC patients are more prone to somatic mutations such as PIK3CA, PIK3R1, AKT3, and
PTEN [18].

MRI is a non-invasive procedure for characterizing and diagnosing BC. Extracting
these imaging features allows tumor phenotypes to be described quantitatively. It is known
that, compared with white women, Asian female breasts have the characteristics of smaller
gland size and dense tissue [19–21], but these are far from enough to describe the differences
in imaging. Radiogenomics is a discipline that integrates tumor characteristics and genomic
data [22,23] to achieve complementary advantages through high-throughput extraction
of tumor phenotype characteristics [24], capturing tumor heterogeneity, and correlating it
with specific gene expression patterns [25,26]. In a study of patients with liver cancer, Segal
et al. demonstrated that the features extracted from CT images reflected the changes in
gene expression modules [27]. Zhu et al. found that BC tumor size, blurred margins, and
morphological irregularity positively correlate with the transcriptional activity of multiple
genetic pathways. As proof, miRNA expression was associated with tumor size and texture
enhancement [28]. Wu et al. found that BC tumor volume was positively correlated with
the level of tumor-infiltrating lymphocytes (TILs), and the Cluster shade of the signal
enhancement ratio was negatively correlated with TILs [29].

This paper discussed the differences in BC between various races from a radiogenomics
perspective. First, we analyzed the diversity in imaging and omics expression between
Chinese and Western BC derived from The Cancer Imaging Archive (TCIA) [30] and
The Cancer Genome Atlas (TCGA) [31]. Then, imaging markers that can reflect gene
expression activity were screened by establishing a mapping relationship between MRI
image quantitative features and gene expression. Additionally, machine learning methods
were used to verify the validity of these features. Finally, we analyzed the hub gene to
explore its relationship to image features and clinical outcomes. The diagram of the whole
scheme is shown in Figure 1.
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2. Materials and Methods
2.1. Genomic and Picture Datasets

In this work, our main concern was to analyze the differences in image characteris-
tics and transcriptome data between Chinese and Western BC patients. We derived the
radiogenomic characterization using the below datasets:

1. Downloaded the TCGA-BRCA dataset from the TCIA database. To reduce the image
quality difference between cases in multiple institutions, we selected MRI images
obtained by the same scanner, and a total of 91 patients were obtained;

2. Downloaded the gene expression RNAseq data from the GDC TCGA Breast Cancer
dataset from UCSC Xena [32] (http://xena.ucsc.edu/ accessed on 1 November 2021).
These transcriptome data correspond to patients with imaging data;

3. Downloaded GSE116180 [33], GSE197894 [34], and GSE198545 [35] from the GEO
database as validation datasets.

Currently, the public dataset lacks a Chinese breast cancer dataset containing imaging
and omics data. We screened the corresponding patients in the TCGA-BRCA dataset
according to the omics characteristics of Chinese BC patients to approximate them. It is
known that the somatic mutagenic genes of Chinese breast cancer patients are PIK3CA,
PIK3R1, AKT3, and PTEN [18], so we screened patients with the above mutations and
labeled them as Chinese patients, and the remaining cases were Western patients.

2.2. Picture Data Analysis

TCIA imaging data were downloaded, and the image of the GE 1.5T instrument
obtained was chosen. Image enhancement was performed by applying square, exponential,
and wavelet transfers to the original image.

For the same patient, three different doctors marked the tumor area. According to
the position marked by the doctor. Image features were obtained using the Python pack-
age ‘pyradiomics’ [36]. The extracted feature types included shape, first-order statistical,
grayscale co-occurrence matrix, grayscale dependence matrix, grayscale run length matrix,
gray level size zone matrix, and neighboring gray-tone difference matrix features. A total
of 1033 image features were obtained for further research. The least absolute shrinkage and
selection operator (Lasso) model was used for feature selection to avoid data redundancy.
The filtered features were input into the RF model, and the AUC of classification was used
to evaluate the features.

Through intra-group correlation analysis, the features were similar when extracted
from the areas of interest marked by three different doctors. By taking the average value,
other characteristics of each patient have unique values for subsequent analysis.

2.3. Transcriptomedata Analysis

For the downloaded transcriptome data, we screened genes with encoded proteins,
removed duplicate data by averaging, and selected genes with expression greater than
1 to remove low counts data. The R package ‘DESeq2’ [37] was used to identify DEGs
between Chinese and Western BC patients, defining|log2 (fold change)|>1 and padj < 0.05.
The volcanic map of DEGs was drawn with the R package ‘ggplot2’ [38]. After using
the ‘org.hs.eg.db’ program to convert the DEGs identifier, the Gene Ontology (GO) [39]
enrichment analysis of DEGs was carried out with the R package ‘clusterProfiler’ [40].

2.4. Association between Transcriptome and Image Features

In this step, we calculated the Pearson’s correlation coefficient between each image
feature and the level of DEGs. For subsequent analysis, we only retained the significant
correlation between image features and genes (p < 0.05). On this basis, genes with corr > 0.4
were screened for protein interaction network analysis (PPI) in string online databases [41],
and the hub genes were screened in Cytoscape using cytoHubba [42] and MCODE [43].

http://xena.ucsc.edu/
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We also investigated the correlation coefficients between image features and genes that
indicate the linear relationship’s strength and direction.

2.5. Model Development and Statistical Analysis

In this experiment, RF models were developed using Python to evaluate features.
The model parameters were optimized through the gridsearchcv function and 10-fold
cross-validation, and the best parameters were selected in the learning process, such as
criterion = ‘entry’, n_ Estimators = 50, etc. We randomly selected 30% of the data as the
test set and 70% as the training dataset and added the stratify function to make the class
distribution of the training and test set similar to that of the whole dataset.

We fed the image data, the DEGs, and the combination of these two types of data to
the RF model separately. The AUC values were used to judge the classification performance
of the three datasets. For the validation of the hub gene, ROC curve analysis was carried
out through the R package ‘proc’ [44] to evaluate the performance of the hub gene in
other datasets.

3. Results
3.1. Radiomic Features

The Lasso model was established to filter image features. We found λ.min and λ.1se
through 20× cross-validation and built the model_lasso_min and model_lasso_1se model,
respectively. We used a boxplot to visualize the predictions of both models and a Wilcoxon
Signed-Rank Test to test whether the predictions were valid. Relative to model_lasso_1se,
model_lasso_min performed better in terms of AUC values, as shown in Figure 2. So,
we selected model_lasso_min to screen the image features and filtered out 47 image
features (Table 1).
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Figure 2. Lasso reduces the dimension of the feature. (a) Change track of the independent variable
coefficient. (b) The dashed line on the left represents the λ.min value, and the dashed line on the right
is λ.1se. (c) model_lasso_min and model_lasso_1se predictions. (d) The area under the ROC curve of
the model_lasso_min and model_lasso_1se.
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Table 1. Forty-seven features were associated with RNA expression.

Type of Feature Feature

Gray level co-occurrence matrix
features (glcm)

Inverse Variance

Correlation

Informational Measure of Correlation

Contrast

Inverse Difference Moment Normalized

Cluster Prominence

Cluster Shade

Joint Energy

Maximal Correlation Coefficient

Difference Variance

Inverse Variance

Gray level size zone matrix features
(glszm)

Small Area Emphasis

Small Area, High Gray Level, Emphasis

Zone Variance

Zone Entropy

High Gray Level Zone Emphasis

Large Area, High Gray Level, Emphasis

Gray Level, Non-Uniformity, Normalized

Shape features (2D)
Major Axis Length

Maximum 2D diameter

First order features

Interquartile Range

Robust Mean Absolute Deviation

Tenth percentile

Skewness

Median

Uniformity

Mean

Variance

Minimum

Neighboring gray tone difference matrix features (ngtdm)

Busyness

Complexity

Coarseness

Gray level run length matrix features (glrlm)

Gray Level, Non-Uniformity, Normalized

Low Gray Level Run Emphasis

Gray Level Variance

3.2. Transcriptome Data Characteristics

There were remarkable differences in the transcriptome expression of patients in the
two groups. A total of 328 DEGs were obtained, including 270 downregulated genes and
58 upregulated genes. Go enrichment analysis showed the potential biological functions of
DEGs in BC. The downregulated genes are mainly involved in biological processes such
as potential regulation, amine transport, and hormone secretion; the upregulated genes
are primarily interested in sleep, molecular transmembrane transporter activity, and other
functions, as shown in Figure 3.
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Different colors represent correlation values, red squares indicate a positive correlation, and blue
squares represent a negative correlation. (b) Differential gene volcano plot, blue points were the
downregulated significant genes, and red points indicate upregulated significant genes. (c) GO
enrichment analysis map.

3.3. Association between DEGs and Radiomics Features
3.3.1. Diagnostic Role of Radiogenomics Signature

The radiogenomics correlation plot describes the Pearson’s correlation coefficient
analysis between imaging features and DEGs (p < 0.05). Radiogenomics features comprised
genetic data and imaging features that correlate greater than 0.4. We entered parts into the
RF model and achieved an AUC of 0.95 in the validation dataset. The AUC value for the
input of 47 imaging features was 0.74. The results suggest that, compared with imaging
features or genetic data alone, radiogenomics features for the classification of Chinese and
Western BC patients can further improve the classification validity of the model (Figure 4).
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3.3.2. Validation of the Hub Genes for the Differential Diagnosis of Chinese and Western
BC Samples

We combined the results of cytoHubba and MCODE to get a total of 13 hub genes,
as illustrated in Figure 5. The ROC curve verification of the hub genes was performed
to verify the differences between these genes in Chinese and Western BC patients. We
downloaded RNA sequence data from the GEO database for BC patients in China and
the United States. A total of three datasets were downloaded, namely 12 cases of Chinese
data in GSE116180, 10 cases of Chinese data in GSE197894, and 38 cases of American data
in GSE198545, resulting in an extensive dataset of 22 Chinese patients and 38 cases of
American patients.
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As shown in Table 2, the AUC values of SYT4, GABRG2, CHGA, SLC6A17, NEU-
ROG2, COL2A1, and MATN4 genes were more significant than 0.6, and the AUC values of
GABRG2 and NEUROG2 reached 0.865 and 0.876, respectively. The values demonstrated
substantial differences in these genes between the two groups of patients in the valida-
tion set, so the hub gene was finally determined as SYT4, GABRG2, CHGA, SLC6A17,
NEUROG2, COL2A1, and MATN4.

Table 2. The GEO dataset validated the results of the hub genes.

GENE AUC

SYT4 0.628
GABRG2 0.865

CHGA 0.660
SLC6A17 0.605

NEUROG2 0.876
COL2A1 0.789
MATN4 0.693
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3.3.3. Association between Hub Genes and Imaging Features

Next, we studied the link between the hub genes and the imaging features. We found
that the expression of the SYT4 and CHGA genes were positively associated with the
square_firstorder_10Percentile imaging characteristics; the two genes were co-expressed
in the protein-protein interaction network, and the regulatory pathway of catecholamine
secretion was positively related to this feature; GABRG2 and COL2A1 were positively
associated with square_ngtdm_Busyness, with the correlation value of GABRG2 reach-
ing about 0.902, indicating that the γ-aminobutyric acid signaling pathway was related
to the square_ngtdm_Busyness characteristics. SLC6A17 was involved in membrane
potential regulation and was positively correlated with three image features, namely
original_glszm_ZoneVariance, wavelet.HLL_glcm_JointEnergy, and wavelet. LHH_glcm
_JointEnergy; NEUROG2 was negatively correlated with wavelet.HLL_firstorder_Median
feature; and MATN4 was positively correlated with original_glszm_ZoneVariance
(Figure 5).

4. Discussion

BC has noticeable ethnic differences [12], which are affected by factors such as environ-
ment, social development level, genetics [45], and lifestyle. Different gene mutations may
lead to differences in drug resistance [46,47], and various gland and tissue characteristics
may affect the type of surgery and the sensitivity to cancer detection [15]. To determine
the mapping relationship between the radiogenomics characteristics, genes, and imaging
characteristics of Chinese and Western BC patients, we comprehensively analyzed the
combination of BC transcriptome and imaging data from TCGA and TCIA. Firstly, ac-
cording to the doctor’s marked area of interest, the high-throughput image features were
extracted by pyradiomics. The feature screening was realized by establishing the Lasso
model, and 47 two-dimensional quantitative features were selected. Secondly, DESeq2
difference analysis was performed on genes, and GO enrichment was carried out to reveal
their biological significance. The different genes and imaging characteristics were analyzed
for the Pearson’s correlation coefficient; the highly relevant genes were input into the RF
model, and the model’s performance was improved. Finally, we identified seven hub
genes through cytoHubba, MCODE, and external data verification, further analyzing the
relationship between hub genes and imaging features.

Through experiments, we found that the hub genes with different transcriptome data
in Chinese and Western BC patients were SYT4, GABRG2, CHGA, SLC6A17, NEUROG2,
COL2A1, and MATN. Through the verification of external data, the AUC values of these
genes for the classification of patients in China and the United States were greater than
0.6. In addition, through the analysis of clinical data on TCGA-BRCA, we found that the
SLC6A17 and NEUROG2 genes were related to the age of onset, and their expression was
higher in the lower age group. CHGA is associated with survival in BC patients. Differences
in the expression of MATN4 across stages of BC were statistically valid (Figure 6). Further
analysis showed that the presentation of the hub gene would be shown in the image
characteristics, and the distribution of voxel intensity, adjacent grayscale difference matrix,
grayscale symbiosis matrix, gray level size area matrix, and other radiological features in
the first-order feature image region were displayed.

For example, the expression of the SYT4 and CHGA genes is positively related to the
square_firstorder_10Percentile. SYT4, which is mainly present in the Golgi body and cytosol
of lymph nodes, belongs to the touch-binding protein (SYTs) family, which plays an essential
part in the process of immune cells [48,49]. It is now known that SYT4 has a role in gastric
adenocarcinoma and low-grade glioma and is associated with recurrence-free survival in
BC [49]. CHGA encodes pheochromophilin A, or parathyroid secretory protein. It is a
member of neuroendocrine secretory protein granules that reside in the secreting vesicles
of neurons and endocrine cells, such as islets in the pancreas β secretory granules [48].
CHGA protein can be used as a potential biomarker for colon and breast neuroendocrine
(NE) cancer diagnosis [50]. GABRG2 is mainly present in the cytoplasmic membrane, is
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involved in chemosynaptic transmission, and affects the expression of GABRA3, whose
high expression level is inversely correlated with the survival rate of breast cancer patients,
and which activates the Akt pathway and promotes the migration, invasion, and metastasis
of breast cancer cells [51]. GABRG2 variants may be resistant to valproic acid [52], and our
study found that GABRG2 is highly correlated with square_ngtdm_Busyness characteristics,
and GABRG2 may also be a possible therapeutic target for breast cancer. COL2A1 was
also positively related to square_ngtdm_Busyness. High COL2A1 expression delays the
time to recurrence in high-grade plasmacytic ovarian cancer [53], and upregulation of
COL2A1 reduces the migration and invasion of breast cancer cells [54]. The role of MATN4,
SLC6A17, and NEUROG2 genes in breast cancer is currently unknown, but they play a role
in other cancers, which may be an inspiration for future breast cancer gene research.
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in gastric adenocarcinoma and low-grade glioma and is associated with recurrence-free 
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tein. It is a member of neuroendocrine secretory protein granules that reside in the secret-
ing vesicles of neurons and endocrine cells, such as islets in the pancreas β secretory gran-
ules [48]. CHGA protein can be used as a potential biomarker for colon and breast neuro-
endocrine (NE) cancer diagnosis [50]. GABRG2 is mainly present in the cytoplasmic mem-
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Linking imaging features to omics features is an evolving area of research that provides
additional value for clinical imaging with relevant molecular biological information. One
of our findings helps to study the differences in BC between different ethnic groups and
implement precision medicine for the characteristics of BC patients in China. Limitations
of our research include incomplete BC imaging genomics data; in the currently published
dataset with both imaging and genetic data for a limited number of patients, we cannot
fully assess the characteristic differences in imaging genetics between Chinese and Western
BC patients, so this study downloaded sequencing data from Chinese and American BC
patients from the GEO dataset for verification. In addition, we have to acknowledge that
factors such as age, stage, and molecular subtype can cause differences between breast
cancer patients. We found that these factors had a similar distribution between the two
groups in our dataset (Fisher’s exact test, p > 0.05). Therefore, we mainly focused on the
effect of the race on the results. As fundamental research work, we did not do clinical trials
on related genes. Our work showed that these genes with protein expression not only have



Genes 2022, 13, 2416 10 of 12

ethnic differences in expression but also cause differences in image characteristics, which
may provide target genes for the precise treatment of breast cancer.

5. Conclusions

In conclusion, this study explored the differences in image and gene expression
between Chinese and Western BC patients. Our results suggested that radiogenomics
signatures are more differentiated between Chinese and Western patients than imaging and
genes alone. We obtained hub genes of DEGs and found that the expression of these genes
may be the factors that cause differences in age, survival, and stage between Chinese and
Western BC patients. In addition, we found that the expression of these hub genes could
be reflected in imaging features. Therefore, exploring the differences in radiogenomics
between Chinese and Western BC patients helped understand the relationship between
pathogenesis and imaging expression.
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