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Abstract: Rhizoctonia solani is a species complex composed of many genetically diverse anastomosis
groups (AG) and their subgroups. It causes economically important diseases of soybean worldwide.
However, the global genetic diversity and distribution of R. solani AG associated with soybean are
unknown to date. In this study, the global genetic diversity and distribution of AG associated with
soybean were investigated based on rDNA-ITS sequences deposited in GenBank and published
literature. The most prevalent AG, was AG-1 (40%), followed by AG-2 (19.13%), AG-4 (11.30%),
AG-7 (10.43%), AG-11 (8.70%), AG-3 (5.22%) and AG-5 (3.48%). Most of the AG were reported
from the USA and Brazil. Sequence analysis of internal transcribed spacers of ribosomal DNA
separated AG associated with soybean into two distinct clades. Clade I corresponded to distinct
subclades containing AG-2, AG-3, AG-5, AG-7 and AG-11. Clade II corresponded to subclades of AG-
1 subgroups. Furthermore, AG and/or AG subgroups were in close proximity without corresponding
to their geographical origin. Moreover, AG or AG subgroups within clade or subclades shared
higher percentages of sequence similarities. The principal coordinate analysis also supported the
phylogenetic and genetic diversity analyses. In conclusion, AG-1, AG-2, and AG-4 were the most
prevalent AG in soybean. The clade or subclades corresponded to AG or AG subgroups and did
not correspond to the AG’s geographical origin. The information on global genetic diversity and
distribution will be helpful if novel management measures are to be developed against soybean
diseases caused by R. solani.
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1. Introduction

Soybean (Glycine max L.) is one of the world’s most significant oilseed crops, account-
ing for 25% of all edible oil production [1]. About 176.6 million tons of soybeans are
produced over 75.5 million hectares of fertile land each year [2,3]. R solani Kuhn [teleo-
morph, Thanatephorus cucumeris (Frank) Donk] is a serious threat to soybean production
worldwide. The fungus causes blights (foliar and web), pre-and post-emerging damping-
off, root and hypocotyl rot diseases of soybean [4,5]. These diseases caused massive yield
losses in soybeans all over the world. For example, in Brazil and the United States, only
foliar blight has resulted in 30 to 69% yield losses [6–9]. Moreover, these diseases are
difficult to control because of soil born nature of R. solani and the broad host range [4].
Fungicides have been widely used to manage these diseases [10,11]. However, fungicides
have caused severe environmental and health concerns. The most cost-effective and en-
vironmentally sustainable option to manage R. solani is breeding resistant cultivars [12].
However, understanding the genetic diversity of R. solani is critical if novel management
measures, such as developing Rhizoctonia -resistant cultivars, are to be developed. R. solani
exhibits tremendous genetic diversity and is classified into different anastomosis groups
(AG). To date, 14 anastomosis groups (AG 1 to 13 and AG-BI) have been identified based
on the fusion of hyphae, morphology, virulence (pathogenicity), physiology, and DNA
homology [13,14]. Some of the AG have been further divided into subgroups based on
anastomosis frequency, physiological and morphological features, pathogenic, bimolecular,
biochemical, genetic, and DNA homology characteristics [15,16].For example, AG-1 has
been divided into six subgroups: IA, IB, IC, ID, IE, and IF [17]. Similarly, AG-4 has been
divided into three subgroups: HGI, HGII, and HGIII [18], and AG-2 has been divided into
nine subgroups such as 1, 2, t, Nt, 2IIIB, 2IV, 2LP, 3 and 4 [18]. AG-2, AG-4, AG-5, AG-3,
AG-7, and AG-11 are causing damping-off and root, and hypocotyls rot, whereas AG-1 is
responsible for the foliar and web blight of soybean [5,19–22].

To evaluate genetic diversity and to characterize AG of R. solani, numerous molecular
markers were used, which included inter-simple sequence repeats (ISSR) [23], simple
sequence repeats (SSR) [24,25], single nucleotide polymorphisms (SNPs) [26], amplified
fragment length polymorphism (AFLP) [27], restriction fragment length polymorphisms
(RFLP) [28], randomly amplified polymorphic DNA (RAPD) markers [29], electrophoretic
karyotype [30], DNA-DNA hybridization [31] and sequence analysis of rDNA ITS1-5.8
S-ITS2region [32–34]. Among these molecular markers, sequence analysis of rDNA ITS1-
5.8 S-ITS2 region, because of their presence of multiple copies of tandem repeats within
the genome of all fungi, has proven to be a more powerful tool for genetic diversity and
phylogenetic studies of AG and AG subgroups of R. solani [15,18,34–37]. Moreover, it
validates the grouping of AG on the basis of classical hyphal anastomosis reactions [38,39].
Furthermore, the rDNA ITS1-5.8S-ITS2 region sequences evolve quickly and are bordered
by highly conserved nucleotide sequences [40]. They are found between the 18S and 5.8S
rRNA genes (ITS1) and the 5.8S and 28S rRNA genes (ITS2) [38,41].

Information on the genetic diversity and distribution of R. solani AG associated with
soybean of a particular country is available [1,42–44]. However, there was no attempt to
investigate the global genetic diversity and distribution of R. solani AG associated with
soybean. Considering the genetic diversity and different diseases causing abilities of
R. solani AG on soybean mentioned above, the current study was aimed (1) To determine
most frequently reported and dominant AG associated with soybean; (2) To explore the
genetic diversity of AG based on rDNA ITS1-5.8S-ITS2 sequence analysis; (3) To determine
the relationship between geographical origin and genetic diversity of AG.

2. Materials and Methods
2.1. Data Collection

Soybean (G. max L.) infected by R. solani was targeted in this study. Relevant literature
was searched in Google Scholar (http://scholar.google.com; accessed on 11 November
2021), Web of Science (http://apps.webofknowledge.com; accessed on 12 November 2021),

http://scholar.google.com
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China National Knowledge Infrastructure (CNKI) (https://www.cnki.net; accessed on
12 November 2021), Scholarly, Academic Information Navigator (CiNii) (http://ci.nii.ac.
jp/en; accessed on 13 November 2021), PubMed (https://pubmed.ncbi.nlm.nih.gov/;
accessed on 14 November 2021), and Scopus (https://www.elsevier.com/en-gb/solutions/
scopus; accessed on 15 November 2021) using the main keywords “soybean-R. solani,
” and the “soybean-anastomosis groups (AG)” solely and in combination. The search
for literature was limited from January 2001 to October 2021. To be included in this
study, the literature had to meet the following criteria: (i) Only articles published in peer-
reviewed journals were chosen; (ii) Articles mentioning the accession numbers of AG and
the sequencing data of AG was publicly available in GenBank; (iii) Articles mentioning the
geographical origin, isolates and AG that could cause symptoms on soybean; (iv) Articles
mentioning about pathogen isolation from the soil (e.g., rhizosphere soil, topsoil), root,
and shoot of the symptomatic soybean plants. The articles from the databases mentioned
above were imported into the EndNote X9 software to acquire information of AG, isolate,
geographical origin, and isolation sources. The information on AG, isolates, geographical
origin, isolation sources were compiled as shown in Table S1. The primary isolation sources
included diseased roots, shoots of soybean crop, and soil (e.g., rhizosphere soil, topsoil)
surrounding symptomatic soybean. To create a dataset of all publicly available sequences
from the rDNA ITS1-5.8S-ITS2 region associated with R. solani AG, we queried National
Center for Biotechnology Information (NCBI) GenBank(https://www.ncbi.nlm.nih.gov/
genbank; accessed on 12 November 2021) and downloaded all of the sequences for the
following studies.

2.2. Characterization of the Distribution and Frequency of Anastomosis Groups Assoiated
with Soybean

The frequency of AG with known sequences in GenBank from the published literature
was calculated using the formula with modification for this study; relative frequency
(F) = 100 × (n/N), in which n = the number of each AG/AG subgroup reported in the
published literature and N = the total number of all AG/AG subgroup reported in the
published literature [19,45]. AG showed higher frequency was considered most frequently
reported or highly distributed AG or AG subgroup.

2.3. Sequences Alignments

The nucleotide sequences of the rDNA ITS1-5.8S-ITS2 region, representing AG were
edited and assembled using BioEdit v. 7.2.5 with manual adjustment [46]. The sequences
were aligned using the Clustal W algorithm in the Molecular Evolutionary Genetics Anal-
ysis (MEGA v. 7.0.26) software, and obvious errors were adjusted manually [47]. The
resultant alignments were imported into BioEdit v. 7.2.5 and adjusted manually by visual
examination [46]. A sequence of Atheliarolfsii FSR-052 (GenBank Accession No. AY684917)
(anamorph, Sclerotiumrolfsii ) was used as the outgroup [38,39,41–48].

2.4. Phylogenetic Analysis

Before conducting phylogenetic analysis, best-fit substitution model selection of the
aligned sequences was carried out using the jModelTest v. 2.1.6 package program [49]
with model selection strictly based on the Akaike Information Criterion (AIC) estimateand
Bayesian Information Criterion (BIC) [50,51]. The Tamura-Nei [52] model was suggested
by jModelTest v. 2.1.6. The best-fit substitution model for the phylogenetic trees was
mentioned in Table S2. Phylogenetic trees on the multiple alignments were constructed
using MEGA v. 7.0.26. The phylogenetic trees were built using Maximum Likelihood
(ML) [53], Neighbor-Joining (NJ) [54] and Maximum-parsimony (MP) [55]. Rates among
sites were selected as G (γ distributed) for both ML and NJ. The partial deletion for ML and
NJ was set as gap/missing data treatment with a 95% site coverage cut-off, and Nearest-
neighbor interchange (NNI) was selected for the heuristic method. The MP analysis
was obtained using the Close-Neighbor-Interchange algorithm [55]. Bootstrapping of

https://www.cnki.net
http://ci.nii.ac.jp/en
http://ci.nii.ac.jp/en
https://pubmed.ncbi.nlm.nih.gov/
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1000 random samples from various sequence alignments was used to test each phylogenetic
tree’s robustness. Gaps and missing data were removed from all positions. Only nodes with
bootstrap values of 70% or higher were shown in the phylogenetic trees. Phylogenetic trees
were visualized using the Interactive Tree of Life (iTOLv. 6(http://itol.embl.de/; accessed
on 16 November 2021) [56] and Fig Tree v. 1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/;
accessed on 17 November 2021) and edited in Adobe Illustrator® CS5 v. 15.0.0 (San Jose,
CA, USA).

2.5. Principal Coordinate Analysis (PCoA) and Sequence Similarities

Pairwise percentages of sequence similarities of all the isolates within AG and AG
subgroups and among the AG and AG subgroups were calculated with the MatGAT v. 2.0
program [57]. Principal coordinate analyses (PCoA) were conducted on pairwise sequences
similarity matrix to investigate clustering of AG and AG subgroups using paleontological
statistics software package for education and data analysis (PAST v. 4.03) with Gower
similarity index [58].

3. Results
3.1. Distribution of Anastomosis Groups

Nine anastomosis groups (AG) such as AG-1, AG-2, AG-3, AG-4, AG-5, AG-6, AG-7,
AG-9 and AG-11, were associated with soybean. According to the geographical distribution,
most AG were reported from the United States and Brazil while only a few AG were
reported from Japan, India, Canada and Taiwan (Figure 1). Among the AG, AG-1 was the
most prevalent and frequently reported AG with a relative frequency of 40%, followed
by AG-2 (19.13%), AG-4 (11.30%), AG-7 (10.43%), AG-11 (8.70%), AG-3 (5.22%), AG-5
(3.48%) and AG-6 and AG-9 each with a frequency of 0.87% (Table 1). Similarly, among the
AG subgroups associated with soybean, AG-1-IA was frequently reported AG (33.91%),
followed by AG-2-2IIIB (12.17%) and each of AG-4-HGII and AG-4-HGIII with a frequency
of 4.35%. On soybeans, all of these AG were pathogenic (Table 1). AG-1 caused severe foliar
and web blight of soybean, while the rest of the AG were reported to cause damping-off,
root, and hypocotyl rot of soybean (Table 1).
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Table 1. Frequency of R. solani AG associated with soybean across the geographical origins.

AG AG Subgroups
Geographical Origin

USA Brazil Canada Taiwan India Japan Total
aF

AG-1

AG-1-IA 1 36 2 39 33.91

40.00

AG-1-IB 1 2 3 2.61
AG-1-IC 1 1 0.87
AG-1-IF 1 1 0.87

1 1 1 0.87
AG-1-ID 1 1 0.87

AG-2

AG-2-1 3 3 2.61

19.13
AG-2-2 1 1 2 1.74
AG-2-3 3 3 2.61

AG-2-2IIIB 12 2 14 12.17
AG-3 6 6 5.22 5.22

AG-4

AG-4 1 1 0.87

11.30
AG-4-HGI 2 2 1.74
AG-4-HGII 5 5 4.35
AG-4-HGIII 5 5 4.35

AG-5 2 2 4 3.48 3.48
AG-6 1 1 0.87 0.87
AG-7 10 2 12 10.43 10.43
AG-9 1 1 0.87 0.87

AG-11 10 10 8.70 8.70
Total 62 39 2 2 3 7

aF (Relative frequency) = 100 × (n /N ), in which n = the number of each AG/AG subgroup and N = the total
number of all AG/AG subgroups.

3.2. Genetic Diversity of Anastomosis Groups

Initially, 115 R. solani AG associated with soybean were collected from published
literature in this study (Table 1). Only 102 AG with known isolate names, pathogenicity
and geographic origins were used to explore genetic diversity and phylogeny (Figures 2–4).
Using NJ, ML and MP methods, sequence analysis clustered AG into two major clades
(Figures 2–4). The 102 AG clustered into two distinct clades, with clade I including 62 AG
and clade II including 40 AG (Figures 2–4). The 62 AG in clade I further clustered into
five distinct subclades (Ia, Ib, Ic, Id, and Ie), with sufficient bootstrap support for each
subclade (Figures 2–4). Clade Ia included isolates of AG-11 (subclade Ia-1) and isolates of
AG-5 (subclade Ia-2), clade Ib included isolates of AG-2, clade Ic included isolates of AG-3,
clade Id included isolates of AG-4, and clade Ie included isolates of AG-7. Subclades Ia-1
(isolates of AG-11) and Ia-2 (AG-5) within Ia were closely spaced subclades in the tree. Even
the subgroups of AG within these subclades clustered separately. For example, subclade
clade Ib was further subdivided into three subclades (Ib-1, Ib-2, and Ib-3). Ib-1 included
isolates of AG-2-1, Ib-2 included AG-2-2 and Ib-3 included isolates of AG-2-2IIIB. Similarly,
clade Id was further subdivided into four subclades, i.e., subclade Id-1 (containing isolates
of AG-4-HGI), subclade Id-2 (isolates of AG-4-HGII), subclade Id-3 (AG-4-HGIII), and
subclade Id-4 (AG-4-4). The 40 AG in clade II also clustered into two distinct subclades (IIa
and IIb). Subclade IIa only included isolates of AG-1-IC and AG-1-IB, while subclade IIb
included 38 isolates of AG-1-IA (Figures 2–4).
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Figure 2. Genetic relatedness among the AG from soybean. Neighbor-Joining (NJ) analysis was
used to build the trees. The accession numbers are followed by isolate, geographical origin and AG.
Different colors show clades and/or subclades associated with AG. Thousands of replications were
used to bootstrap tree branches. Numbers at nodes indicate bootstrap values, and only those ≥70 are
shown. The outgroup, Athelia rolfsii FSR-052 (GenBank Accession No. AY684917), was used to root
the tree. Scale bar indicates a genetic distance of 0.05 for horizontal branch length.
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Figure 3. Genetic relatedness among the AG from soybean. Maximum likelihood (ML) analysis was
used to build the trees. The accession numbers are followed by isolate, geographical origin and AG.
Different colors show clades and/or subclades associated with AG. Thousands of replications were
used to bootstrap tree branches. Numbers at nodes indicate bootstrap values, and only those ≥70 are
shown. The outgroup, Athelia rolfsii FSR-052 (GenBank Accession No. AY684917), was used to root
the tree. Scale bar indicates a genetic distance of 0.2 for horizontal branch length.
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Figure 4. Genetic relatedness among the AG from soybean. Maximum parsimony (MP) analysis was
used to build the trees. The accession numbers are followed by isolate, geographical origin and AG.
Different colors show clades and/or subclades associated with AG. 1000 replications were used to
bootstrap tree branches. Numbers at nodes indicate bootstrap values, and only those ≥70 are shown.
The outgroup, Athelia rolfsii FSR-052 (GenBank Accession No. AY684917), was used to root the tree.
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3.3. Relationship between Genetic Diversity of Anastomosis Groups and Their Geographic Origin

Besides, closely related AG or AG subgroups associated with soybean were clus-
tered together regardless of the geographical origin from where they had been identified
(Figures 2–4). For example, isolates of AG-1-IA in subclade IIb from Brazil, Japan, and the
USA clustered together (Figures 2–4). Similarly, isolates of AG-5 from the USA and Japan,
in subclade Ia-2, clustered together. Moreover, isolates of AG-2-2 from the USA and Brazil
in the subclade Ib-2 clustered together (Figures 2–4). In conclusion, closely related AG
associated with soybean were clustered together regardless of the geographical origin from
where they had been identified.

3.4. Genetic Relatedness among and within Clades and Subclades Representing Anast
Mosis Groups

ML, MP and NJ phylogenetic trees showed that AG or AG subgroups were clustered
together regardless of the geographical origin. Therefore the percentage of sequence
similarities within and among clades and subclades of 108 AG without their corresponding
geographical origin, was established by direct pairwise comparisons (Table 2). Within the
proposed subclades, all the AG-11 and AG-5 closely related isolates within subclade Ia
had the widest range of sequence similarities of 77 to 99.4%, followed by AG-7 closely
related isolates within subclade Ie which had sequence similarities of 82.1 to 100%, AG-4
closely related isolates within subclade Id which had sequence similarities of 87.4 to 100%
and AG-1 closely related isolates within subclades IIa-1 and IIa-2 which had sequence
similarities of 87.5 to 100% (Table 2). All the AG-5 closely related isolates within subclade
Ia-2, AG-2 closely related isolates within subclade Ib, and AG-3 closely related isolates
within subclade Ic had the sequence similarity greater than 90%. The sequence similarity
of AG-11 (subclade Ia-1), AG-5 (subclade Ia-2), AG-2 (subclade Ib), AG-3 (subclade Ic),
AG-4 (subclade Id), and AG-7 (subclade Ie) of clade I were higher than isolates of AG-1 of
clade II. There were also variations in the percentage of sequence similarities of AG and/or
AG subgroups between the subclades. For example, the sequence similarity between
subclade Ib-1 (isolates of AG-2-1) and subclade Ib-2 (isolates of AG-2-2) and between
subclade Ib-1 (isolates of AG-2-1) and subclade Ib-3 (isolates of AG-2-2IIIB) were 83.7–86%
and 81.5–85.4%, respectively. In contrast, the sequence similarity between subclade Ib-2
(isolates of AG-2-2) and subclade Ib-3 (isolates of AG-2-2IIIB) was 92 to 99%. This suggests
a closer genetic relatedness between the isolates of AG-2-2 and AG-2-2IIIB than between
the isolates of AG-2-1. The AG-4 (Subclade Id) isolates were further sub-clustered into four
subgroups (1, HG-I, -II, and -III). The sequence similarity within AG-4 (Subclade Id) as
a whole rangesfrom 81.7% to 100%; it is considerably lower than within the subgroups:
99.4, 99.6–100, 87.4–99, and 87.2% for HG-I, -II, -III, and 1 respectively. Furthermore, the
percentage of sequence similarity was higher than 87.2% within an AG subgroup (IA, IB, IC,
HG-1, HG-II, HG-III, 2-1, 2-2, 2-IIIB), 81.7 to 100% for different subgroups within an AG, and
69.5 to 92.5% among different AG. The above-mentioned phylogenetic trees were further
explained and supported by PCoA. PCoA grouped AG into two major clades (Figure 5).
Clade I included the isolates of AG-3, 4, 5, 7, and 11, and clade II included isolates of
AG-1. Within the clades, subgroups of AG formed a separate cluster. For example, isolates
of AG-1-IB and AG-1-IC (subclade IIa) formed distinct clusters than isolates of AG-1-1A
(subclade IIb). Similarly, isolates within subclade Id such as AG-4-HGI, AG-4-HGII, and
AG-4-HGIII formed separate clusters (Figure 5).
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Table 2. Percentages of sequence similarities of rDNA-ITS sequences of R. solani AG within and between clades and subclades.

Clades and Subclades
Ia (AG-11 and AG-5) Ib (AG-2) Ic (AG-3) Id (AG-4) Ie (AG-7) IIa (AG-1) Outgroup
Ia-1 Ia-2 Ib-1 Ib-2 Ib-3 Id-1 Id-2 Id-3 Id-4 IIa-1 IIa-2

Ia (AG-11
and AG-5)

Ia-1 77–99.6
Ia-2 85.8–93 93–99.4

Ib (AG-2)
Ic-1 84.6–89.18 81.9–89 97.2–99.4
Ib-2 80.7–85.1 76.1–84.6 83.7–86 90.9–96.5
Ib-3 79.4–85.7 74–85.1 81.5–85.4 92–99.1 91.6–100

Ic (AG-3) 82.3–88.3 83.8–84.9 91.4–92.5 82.7–85.2 79.3–85.7 97.7–99.4

Id (AG-4)

Ie-1 80.7–84.6 80.1–80.2 85.1–85.9 82–82.8 77.2–83.8 81.8–84.9 99.4 *
Id-2 79.3–80.8 79.4–84.2 80.7–81.9 78.3–80.5 75.8–82.5 78.3–80.6 91.1–94 99.6–100
Id-3 79.5–84.1 76–84.5 82.5–86 74.6–83.3 76.2–84.3 81.7–83.89 87.1–96.4 81.7–94.4 87.4–99.1
Id-4 79.1–82.8 79.6–83.6 81.8–83.3 75.5–77.1 72.5–77.1 81.9–82.2 82.6–82.9 86.1–86.4 82.6–83.6 87.2 *

Ie (AG-7) 77.2–83.8 76–84.6 83.3–86.3 79.9–85.9 74.7–82.3 78.4–85.9 81.5–87.9 80–83.7 84.4–87.5 83.1–84.6 82.1–99.1
IIa (AG-1) IIa-1 72.5–79.8 74–80.5 74.7–77.8 69.6–75.2 69.5–77.5 73.3–76.5 76.2–77.9 81.7–83.4 74.4–78.5 79.4–81.6 74.3–85.5 87.9–100

IIa-2 72.8–79.4 73–83.7 75.8–80.6 69.5–80.5 70.4–80.2 73–79.8 77.9–82.9 81.9–88.8 75.7–83.3 81.7–82.8 74.7–83.6 76.3–92.2 89.5–100
Outgroup 47.4–51.3 46.2–49.1 50–51 47.3–52.7 48.4–52.5 51.5–52.5 51.5–51.9 46.6–48 51.1–53.1 48.3 * 48.8–49.3 39.1–42.3 40.9–46 100 *

* Range could not be calculated for one isolate having one sequence.
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4. Discussion

R. solani is a soil borne pathogen that affects soybean worldwide and has a significant
economic impact in all soybean growing countries [1,7,11,19,21,59–61]. All AG associated
with soybean reported in this study belonged to R. solani. The frequency of AG varied
substantially geographically. Most of the AG were reported from the diseased soybean
plants in the USA and Brazil. More AG discoveries associated with soybean in the USA may
imply an expansion of the host range and genetic diversity of R. solani [4]. Furthermore, AG
associated with soybean might have been studied more intensively in the USA than other
countries because of their greater relative importance as plant pathogen of soybean. In the
USA, foliar blight caused by AG-1 and, hypocotyl and root rot caused by AG-2-2IIIB, AG-4,
AG-5, AG-3, AG-7, and AG-11 caused as high as 45% soybean yield losses [4,21,61–63]. In
this study, the reports of a few AG from Japan, Canada, Taiwan, Japan, and India were
probably due to a lack of sampling or isolation methods. In Brazil, foliar blight, damping-
off, and root rot caused by AG-1 and AG-2 resulted in an estimated 31 to 60% soybean yield
loss [8,32,64]. In Canada, root rot ranked fourth among 22 diseases causing severe losses
in soybean [65,66]. In India, foliar blight caused by AG-1 caused an average yield loss of
40% to 50% [1,43,67,68]. Besides, AG-2 and AG-5 have been reported to cause hypocotyl
rot of soybean in Japan [44]. AG-7 is responsible for the damping-off of soybean seedlings
in Taiwan [42]. In recent years, the frequency of legumes in crop rotations has increased,
and also the intensive cultivation of soybean might be another reason for increasing the
frequency of R. solani AG [4,5,21,42,61–63].

Besides, our study also revealed the most frequently reported AG from soybean. AG-1
was the most frequently reported AG from soybean, followed by AG-2, AG-4, AG-11,
AG-7, AG-3, and AG-5. Frequently reported AG doesn’t indicate whether it is highly
pathogenic or not pathogenic on soybean. For example, AG-1-1A is highly pathogenic
on soybean in Brazil; however, AG-2-2IIIB, AG-4, and AG-5 are highly pathogenic on
soybean in the USA [5,19–22]. Hence, AG diversity, frequency, and distribution could be
influenced by the dynamics of the host-pathogen relationship, genetic flexibility, and degree
of adaptation [69]. Furthermore, crop rotation, soil types, soybean cultivars, cropping
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patterns, and climatic conditions of the particular region may encourage the presence
of specific AG over others [70]. In addition, root-associated microbial communities also
influence AG distribution [32].

The most reliable approach for phylogenetic analysis and genetic diversity of AG
and AG subgroups of R. solani is the molecular characterization utilizing the sequences
of the rDNA ITS1-5.8S-ITS2 region [5,37,38]. We were able to make conclusions about the
phylogenetic relationships among AG and AG subgroups using the sequences of the rDNA
ITS1-5.8S-ITS2 region from the NCBI GenBank. In this study, phylogenetic analysis based
on MP, NJ and ML showed AG forms two distinct clades. Clade I included isolates of AG-2,
AG-3, AG-4, AG-5, AG-7, and AG-11, whereas clade II included isolates of AG-1. Each AG
forms a distinct subclade within the clades except AG-5 and AG-11, which form a distinct
subclade (Ia).This suggests that isolates of AG-5 and AG-11 may be more closely related to
each other. Previous studies have shown that even isolates of AG-5 of soybean clustered
with the isolates of AG-11 of other legumes such as lupins [37]. Besides, our study showed
that even AG subgroups form distinct subclades. For example, isolates of AG-1C and IB
form a sister subclade with isolates of AG-1A within clade IIa (AG-1 isolates). Sequence
analysis in previous studies revealed that AG-1-B was genetically distinct from AG-1 IA
and IB [69]. Likewise, within the sub clade Ib (AG-2 isolates), isolates of AG-2-1 form a
sister subclade with isolates of AG-2-2 and AG-2-IIIB. Previous studies considered AG-2 a
polyphyletic with subgroups consistently forming different clades or subclades [71].

AG-2 is a highly heterogeneous AG with substantial genetic diversity and is further
divided into nine subgroups such as 1, 2, t, Nt, 2IIIB, 2IV, 2LP, 3, 4 that cause rots and
damping-off disease in soybean [37]. Moreover, within subclade Id (AG-4 isolates), few
AG-4-HGIII isolates form a sister clade with isolates of AG-4-HGII and AG-4-HGI. Besides,
most of the isolates of AG-4-HGII and AG-4-I were clustered together. This indicated
that subgroups HGI and HGII were found to be more closely related than subgroup
HGIII [15,17,32]. Furthermore, our study also revealed that AG did not have preferences
for geographical origin. Most clades or subclades with high bootstrap support indices
include AG and AG subgroups from USA, Brazil, and other countries. In a previous study,
the authors of the reference [34] analyzed sequences of AG from Europe, North America,
Australia and Asia associated with legumes, cereals and vegetables and found that AG did
not have a preference for a geographic origin; however, some AG were found to be host-
specific [72]. The authors of the reference [73–78] showed that isolates of AG from different
countries are categorized under the same AG or AG subgroups. Furthermore, the pairwise
distance matrix based on sequence similarities revealed that the isolates of AG within the
clades and subclades shared high sequence similarities. In contrast, isolates of AG from
different clades and subclades showed less similarity. Furthermore, the sequence similarity
was higher than 87.2% within an AG subgroup, 81.7 to 100% for different subgroups within
an AG, and 69.5 to 92.5% among different AG. These results are consistent with previous
studies that assessed the sequence similarities of ITS sequences [15]. They found that
sequence similarity was above 96% for the same AG subgroup, 66–100% for different
subgroups within an AG, and 55–96% for AG. In addition, PCoA revealed that AG and/or
AG subgroups form a separate group from each other. Previous reports showed that
the sequence homology in the ITS regions was higher for isolates of the same subgroup
than isolates of different subgroups within an AG and isolates of different AG [38]. Our
study revealed that the rDNA-ITS sequences were clustered consistently according to their
known AG and not according to geographical origin. Cluster analyses based on rDNA-ITS
on sequences of R. solani AG and AG subgroups associated with a soybean of a specific
geographical origin have already been reported [1,7,19,21,61].

5. Conclusions, Limitations and Future Directions

In conclusion, this study provides the first documentation regarding the global genetic
diversity and distribution of R. solani AG associated with soybean. AG-1, AG-2, and AG-4
were the most prevalent and widely documented AG in soybean. AG-1 was responsible for
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foliar and web blight of soybean, whereas the remaining AG were causing damping-off,
root and hypocotyl rot. Across geographical origin, most of the AG were reported from
the USA, followed by Brazil. Phylogenetic and genetic diversity analysis revealed that
AG and/or AG subgroups formed distinct clades and subclades without corresponding
to geographical origin. Pairwise percentages of sequence similarities within AG and
subgroups and principal coordinate analysis also support the phylogenetic and genetic
diversity analysis. The rDNA ITS1-5.8S-ITS2 region has been successfully sequenced and
phylogenetically analyzed to reliably separate R. solani isolates into several groups and
subgroups that correspond to the various AG [5,15,17,18,35]. However, sequence analysis
of the rDNA ITS1-5.8S-ITS2 region is not without its attendant limitations. Though the
differences in the rDNA ITS1-5.8S-ITS2region are sufficiently large to differentiate the AG
reliably, they could not differentiate isolates of the same AG [75]. Furthermore, researchers
do not verify or validate sequences deposited in databases and repositories; depositing
an incorrectly named AG is almost inevitable. Complete information about isolate name,
host, or geographical origin may not be included. Besides, the rDNA ITS1-5.8S-ITS2
region would not always be ideal because of high mutation rates. Furthermore, R. solani
is multinucleate; therefore, there is the possibility of numerous nucleotide variations in
this region even in the single strain of R. solani [76–78]. Hence, the genetic diversity and
phylogeny of AG must be augmented with additional sequences such as large-subunit
rRNA (LSU) region, ß-tubulin, the largest (RPB1) and the second-largest (RPB2) subunits of
RNA polymerase, translation elongation factor (tef-1α), the mini-chromosome maintenance
protein (mcm7), calmodulin (CaM), and topoisomerase I (top1) gene. Furthermore, studies
involving genomic, transcriptomic, proteomic and mitogenomic analysis may provide
insights into the phylogeny and genetic diversity of R. solani AG.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes13122417/s1, Table S1. GenBank accession numbers of DNA sequences from the
rDNA ITS1-5.8S-ITS2 region of R. solani AG were used to determine AG’s phylogenetic relationships
and genetic diversity associated with soybean, Table S2. The best models used for ML and NJ analysis
in this study.
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