
����������
�������

Citation: Shi, Y.; Lee, J.-H.; Kang, H.;

Jiang, H. A Two-Part Mixed Model

for Differential Expression Analysis

in Single-Cell High-Throughput

Gene Expression Data. Genes 2022, 13,

377. https://doi.org/10.3390/

genes13020377

Academic Editor: Stefania Bortoluzzi

Received: 22 December 2021

Accepted: 15 February 2022

Published: 18 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

genes
G C A T

T A C G

G C A T

Article

A Two-Part Mixed Model for Differential Expression Analysis
in Single-Cell High-Throughput Gene Expression Data
Yang Shi 1,2,3, Ji-Hyun Lee 4 , Huining Kang 2,5,* and Hui Jiang 3,6,7,*

1 Division of Biostatistics and Data Science, Department of Population Health Sciences and Department of
Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University,
Augusta, GA 30912, USA; yshi@augusta.edu

2 Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center,
Albuquerque, NM 87102, USA

3 Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
4 Division of Quantitative Sciences, University of Florida Health Cancer Center and Department of Biostatistics,

University of Florida, Gainesville, FL 32610, USA; jihyun.lee@ufl.edu
5 Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA
6 Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
7 University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
* Correspondence: hukang@salud.unm.edu (H.K.); jianghui@umich.edu (H.J.)

Abstract: The high-throughput gene expression data generated from recent single-cell RNA sequenc-
ing (scRNA-seq) and parallel single-cell reverse transcription quantitative real-time PCR (scRT-qPCR)
technologies enable biologists to study the function of transcriptome at the level of individual cells.
Compared with bulk RNA-seq and RT-qPCR gene expression data, single-cell data show notable
distinct features, including excessive zero expression values, high variability, and clustered design.
We propose to model single-cell high-throughput gene expression data using a two-part mixed model,
which not only adequately accounts for the aforementioned features of single-cell expression data
but also provides the flexibility of adjusting for covariates. An efficient computational algorithm,
automatic differentiation, is used for estimating the model parameters. Compared with existing meth-
ods, our approach shows improved power for detecting differential expressed genes in single-cell
high-throughput gene expression data.

Keywords: two-part mixed-model; single-cell RNA-seq; single-cell RT-qPCR; differential expression;
automatic differentiation

1. Introduction

Recently, single-cell high-throughput gene expression profiling technologies, includ-
ing single-cell RNA sequencing (scRNA-seq) and parallel single-cell single-cell reverse
transcription quantitative real-time PCR (scRT-qPCR), have enabled researchers to examine
mRNA expression at the resolution of individual cell level, which provide further bio-
logical insights of the transcriptomes and functional genomics [1–4]. Compared to bulk
RNA-seq and RT-qPCR experiments that are usually performed on animal tissues (i.e., cell
populations) and homogenous cell lines, single-cell high-throughput gene expression data
generated by scRNA-seq and scRT-qPCR have the following distinct features as seen in
recent literature [4–6]:

Excessive zero expression values. The proportions of genes with observed zero expression
values in single-cell gene expression data are much larger than bulk RNA-seq or RT-
qPCR data [4–6]. The reasons for this phenomenon can be either biological, such that
the abundance of mRNA levels of certain transcripts are essentially low in individual
cells, or can be technical, such that the extracted total amount of mRNA is low in a single
cell sample [4,6].
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High variability of expression levels across samples. It has been observed that scRNA-
seq or scRT-qPCR data tend to show higher variability than bulk RNA-seq or RT-qPCR
data [4,6]. This can be explained by the differences in the designs between the two: the
regular bulk RNA-seq or RT-qPCR experiments are performed on the cell populations,
and the gene expression levels from those experiments are averaged across all individual
cells in the population, which dilutes the variability of gene expression levels among
individual cells [6].

Clustering of single-cell samples within subjects. Another notable feature of single-cell
high-throughput gene expression data is that each individual single-cell sample is randomly
sampled from a higher-level cluster unit (e.g., patients, animals) [1,2,7]. Therefore, the
single-cell samples from the same subject are expected to be more homogeneous than
those from different subjects, which has been shown in several single-cell RNA-seq data
published recently [1,2,7]. From a statistical perspective, this feature is called the clustering
effect, which should be adequately adjusted for in the analysis.

To account for the abovementioned issues, we propose to model single-cell high-
throughput gene expression data using a two-part mixed model. This model not only
adequately accounts for the above features of single-cell gene expression data but also
provides flexibility for adjusting for covariates in the study design. The details of this
model and how it can be applied to differential expression analysis of single-cell data
are discussed in the rest of this paper, which is organized as follows. First, we describe
the formulation of the two-part mixed model with a brief literature review. Then we use
an efficient method, named automatic differentiation, to fit the model. We also discuss
how to test for differential expression under this model and describe several methods for
approximating the null distribution of the test statistics for small sample sizes, followed by
simulations for studying the type I error rate and statistical power. Finally, we demonstrate
our approach by applying it to two real-world single-cell high-throughput gene expression
datasets: one from scRT-qPCR and the other from scRNA-seq.

2. Materials and Methods
2.1. The Two-Part Mixed Model for Single-Cell Gene Expression Data

We first introduce the notations for our approach. Assume there are m subjects and
N genes in a scRNA-seq experiment, and ni single-cell samples extracted and sequenced
for subject (i = 1, . . . , m). Let yijk be the normalized expression value (in the unit of
RPKM/FPKM, TPM, or CPM) for gene k (k = 1, . . . , N) in single-cell sample j (j = 1, . . . , ni)
in subject i, then we model the gene expression value yijk using the following two-part
mixed model:

logit[Pr(yijk = 0)] = log(
πijk

1−πijk
) = wT

k αk + uik,

log(yijk + c
∣∣∣yijk > 0) = xT

k βk + vik + eijk,
(1)

where πijk is the proportion of single-cell samples with zero expression values for gene k
(named “zero-proportion” hereafter). In this two-part model, the zero-proportions are mod-
eled by a logistic regression model (logistic or binomial part), and the log-transformed non-
zero expression values are modeled by a linear regression model (Gaussian part), where wT

k
and xT

k are the vectors of covariates for the binomial and Gaussian parts, respectively (e.g., if
there are only two biological conditions and no other covariates to be adjusted, wT

k and xT
k

are simply the vectors of 1/0 indicators for the biological conditions), αk and βk are the
corresponding vectors of regression coefficients associated with the covariates wT

k and xT
k ,

eijk is the random error that is assumed to be distributed as N(0, σ2
e ), uik and vik are the

random effects for subject i that account for the clustering effects, which are assumed to
follow the bivariate normal distribution.(

uik
vik

)
∼ N(0,

(
σ2

u ρσuσv
ρσuσv σ2

v

)
) (2)
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with σ2
u and σ2

v as the variances for the marginal univariate normal distributions of uik and
vik, and ρ as the correlation between them. We note that most scRNA-seq experiments
contain only one level of clusters (i.e., single cells are sampled from subjects). If the study
design is more complicated, such that it may contain multi-level cluster effects, then more
variance components for the random effects can be added into the model. Finally, a small
constant c is added to the non-zero expression levels before taking logarithms to avoid the
left skewness caused by taking logarithms on small-expression values between 0 and 1,
which is often seen in RNA-seq data. In the following analysis of scRNA-seq data, c is set
as 1.

In an scRT-qPCR experiment, the gene expression levels are usually measured by
the expression threshold (et) values, which is defined as et = cmax − ct, where cmax is the
maximum number of amplification cycles used in the scRT-qPCR experiment and ct is the
threshold cycle that the gene is detected by the PCR instrument [5]. The gene expression
level yijk is assumed to have an exponential relationship with et, such that yijk = 2et (for
undetected genes, et is shown as missing values from the PCR machine and can be treated
as −∞, which gives zero expression values) [5]. Therefore Model (1) can also be used to
model gene expression values in scRT-qPCR data, and the definitions of the parameters
are exactly the same as those aforementioned for scRNA-seq data. The only difference is
that adding the small constant c is not necessary for scRT-qPCR data, as the non-zero gene
expression levels in scRT-qPCR experiments do not have many small values between 0 and
1, such as those in scRNA-seq data.

Remark on related literature: The two-part model including the binomial part and
Gaussian part without random effects is first proposed for modeling the medical care
data [8,9], where the dependent variable (medical care expenses) takes the range of any
non-negative value but has a positive probability at zero (these type of data are also called
semicontinuous data) [8–10]. This type of model is later extended for longitudinal or
clustered semicontinuous data by incorporating random effects for both the binomial
part and the Gaussian part [11]. A comprehensive survey for a variety of models with
applications for data taking non-negative values with a substantial proportion of zero
values is given in [10]. Our two-part mixed model essentially follows the model formulation
in [10,11], except for the addition of a small constant c to the non-zero expression values in
RNA-seq data [Equation (1)]. A similar yet different two-part model without random effects
is proposed to model the scRNA-seq data in a recent paper, which is named MAST [12].
Instead of incorporating clustered random effects from subjects, MAST uses an empirical
Bayes method to shrink the gene-specific variance to the global variance of all genes [12].

2.2. Model Fitting

The proposed two-part mixed model (1) will be referred to as TMM hereafter. Since
the TMM is fitted for each gene independently, we will drop the subscript k for simplicity if
there is no ambiguity within the context. Following [11], the fixed-effect parameters of the
TMM model, αk and βk, are estimated by maximizing the following marginal likelihood
function of the model:

L ∝ ∏m
i=1

∫
LBi LGi p(ui, vi)duidvi, (3)

where LBi is the conditional distribution (likelihood) of yijk given the random effect ui from
the binomial (logistic) part that can be written as

LBi = [
ni

∏
j=1,yij=0

exp(wT
j αj + ui)][

ni

∏
j=1

1
1 + exp(wT

j αj + ui)
], (4)
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and LGi is the conditional distribution (likelihood) of yijk given the random effect vi from
the Gaussian part that can be written as

LGi =
ni

∏
j=1,yij>0

σ−1
e φ[

log(yij + 1)− xT
j βj − vi

σe
] (5)

with φ(·) as the standard normal PDF [for scRT-qPCR data, log(yij + 1) becomes log(yij)],
and p(ui, vi) is the joint distribution of the random effects ui and vi, which is the bivariate
normal given in Equation (2).

As discussed in [10,11], maximizing the marginal likelihood function (3) involves
numerical or stochastic approximation of the integrals, followed by maximization of the
approximated likelihood. Several computational methods, including the Markov chain
Monte Carlo, the expectation-maximization (EM) algorithm, the penalized quasi-likelihood
(PQL) method, Gauss-Hermite quadrature, and Laplace approximations are reviewed and
discussed in detail in [11]. Here, we use an efficient computational method, automatic
differentiation, to maximize the likelihood function (3). The automatic differentiation
technique is implemented in the software package automatic differentiation model builder
(ADMB, version 11.4) [13,14]. Given the likelihood function written in the form of (4.2),
ADMB calculates the Hessian matrix of the marginal likelihood function using the auto-
matic differentiation technique, and the maximization of the marginal likelihood function
is performed by first approximating the integrals using Laplace approximations and then
maximizing the approximated likelihood using the quasi-Newton algorithm. Descriptions
of the automatic differentiation technique can be found in [13,14], and the details for imple-
mentation of the algorithm can be found in https://www.admb-project.org/ (accessed on
21 December 2021).

2.3. Testing for Differential Expression

Testing for differential expression of genes across biological conditions under model
(1) is done by testing for the fixed effects. More explicitly, (1) can be written as

logit[Pr(yij = 0)] = log(
πij

1−πij
) = wT

1 α1 + wT
2 α2 + ui,

log(yij + 1
∣∣yij > 0) = xT

1 β1 + xT
2 β2 + vi + eij,

(6)

where wT
1 and xT

1 are the covariates of interest that we want to test for, and wT
2 and xT

2 are
the covariates to be adjusted for in the model. Specifically, we are interested in testing for
the following two effects across biological conditions: (1) whether the zero-proportions
are significantly different across conditions and (2) for genes with non-zero expression
levels, whether the mean expression levels are significantly different across conditions.
The two problems can be formulated as the following two corresponding hypothesis
testing problems:

(1) Testing of the binomial part

HB0 : α1 = 0 versus HB1 : α1 6= 0; (7)

(2) Testing of the Gaussian part

HG0 : β1 = 0 versus HG1 : β1 6= 0; (8)

and the two parts can also be tested jointly, which can improve the statistical power:
(3) Joint testing of the binomial and Gaussian parts

H0 : α1 = 0 and β1 = 0 versus H1 : α1 6= 0 or β1 6= 0. (9)

The individual test for the binomial part or the Gaussian part can be performed using
the Wald test or the likelihood ratio test, and the joint test for the two parts can be performed

https://www.admb-project.org/


Genes 2022, 13, 377 5 of 18

using the likelihood ratio test. Under H0, the asymptotic distributions of the Wald statistic
(W0) and the likelihood ratio statistic (L0) can be approximated by the χ2 distribution with
the degrees of freedom equal to the differences in the numbers of parameters between H0
and H1, which is a widely used approach in practice [15,16]. However, for small sample
sizes, the χ2 distributions are not good approximations to the null distributions of the two
test statistics, which, as noted in the literature [15,17] and as shown in simulations in the
Results part, often show inflated type I error rate. Therefore, we use the following two
methods for reliable estimation of p-values when the sample size is small:

The parametric bootstrap method: this approach estimates the null distribution of the
test statistic by simulating data from the fitted model under H0, which is performed in the
following way [17–19]:

(1) Fit model (4) under H0 and generate N random samples y1, . . . , yN from this model.
(2) Calculate the corresponding test statistics (i.e., Wald or likelihood ratio statistics)

T(y1), . . . , T(yN) using the above-simulated samples y1, . . . , yN .

(3) Estimate the p-value as p̂ = 1
N

N
∑

l=1
I{T(yl) ≥ γ}, where γ is the test statistic (Wald

or likelihood ratio) calculated from the observed data (an alternative formula is

p̂ =

N
∑

l=1
I{T(yl)≥γ}+1

N+1 . The two formulas give almost the same results providing N is
large, so we use the former throughout this chapter).

The empirical Satterthwaite method: this method is proposed in [20], and it is a general
approach for approximating the null distribution of the test statistics [17,20–22]. Follow-
ing [20,21], this method is performed in the following two steps:

(1) Approximate the null distribution of test statistics (W0 or L0) by a scaled χ2 dis-
tribution kχ2

v with k as the scale parameter and v as the degrees of freedom. The
parameters k and v can be estimated by matching the first two moments (sample mean
and variance) of test statistics under H0 with those of kχ2

v [20,21]. The sample mean
and variance of test statistics under H0 can be obtained by using the above parametric
bootstrap method with a smaller number of random samples.

(2) Fit a two-component normal mixture distribution π1N(µ1, σ2
1 ) + π2N(µ2, σ2

2 ) on

Φ−1(p(b)
kχ2

v
), where p(b)

kχ2
v

is the p-value obtained from the above-scaled χ2 distribu-

tion kχ2
v for the bth random sample and Φ(·) is the standard normal CDF. The final

p-values are calculated as
p = Pr[Ψ > Φ−1(pkχ2

v
)],

where pkχ2
v

is the p-value obtained from Step (1) and Ψ is the fitted normal mix-
ture distribution π̂1N(µ̂1, σ̂2

1 ) + π̂2N(µ̂2, σ̂2
2 ). The Satterthwaite method can estimate

p-values using a smaller number of random samples than the parametric bootstrap
method [20,21]. However, in our simulations, it also shows an inflated type I error
rate when the sample size is small (see simulations in the next section).

3. Results
3.1. Simulation Studies
3.1.1. Evaluation of Type I Error Rates

In this section, we evaluate type I error rates of the three methods for approximating
the null distribution of the test statistics under H0: the χ2 distribution, the Satterthwaite
method, and the parametric bootstrap method. The simulations are performed based on
the following settings: assuming two biological conditions, each has m/2 subjects, and for
each subject i there are ni single-cell samples. To evaluate type I error rates, we simulate
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gene expression levels yijk from the following model under H0 (i.e., there is no difference
between the two conditions):

lgit[Pr(yijk = 0)] = log(
πijk

1−πijk
) = α1 + ui,

log(yijk + 1
∣∣∣yijk > 0) = β1 + vi + eij,

(10)

with ui ∼ N(0, σ2
u), vi ∼ N(0, σ2

v ) and eijk ∼ N(0, σ2
e ).

In this model, there is only one intercept for the fixed effect in both the binomial and
Gaussian parts, therefore no differences in terms of zero-proportions and mean expression
levels are expected between the two conditions. The values of the parameters are set as
follows: σu = 0.5, σv = 1, σe = 0.5, α1 ∼ N(0.5, 0.252), β1 ∼ N(3, 0.52), ni = 20 for all
i’s (i = 1, . . . , m). We tune the sample sizes by varying m for 3 different values, 4, 10, and
20, respectively, which correspond to a range of increased sample sizes. The simulations
are repeated 1000 times for different m’s. For each run, we calculate the following five
test statistics: Wald statistic for the Gaussian part, Wald statistic for the binomial part,
likelihood ratio statistic for the Gaussian part, likelihood ratio statistic for the binomial
part, likelihood ratio statistic for jointly testing the Gaussian and binomial parts. Then, we
calculate the p-values from each test using the 3 methods as described in Section 2.3.

If the type I error rate is correctly controlled, the p-values from the 1000 repetitions
for each m should be uniformly distributed within 0 to 1, so we examine each method
using the quantile-quantile plots of the above-calculated p-values from the simulated
datasets (observed p-values) and the quantiles of uniform [0, 1] distribution (expected
p-values), which are shown in Appendix A Figures A1–A5. As shown in these results, all
3 methods give well-controlled type I error rates for m = 20. However, for small sample
sizes (m = 10 or m = 4) the performance of controlling type I error rate of the 3 methods
are ranked as (from the best to the worst): parametric bootstrap, Satterthwaite, the χ2

distribution. The inflation of the type I error rate is more severe for the χ2 distribution
with the test for the binomial part (Figures A2 and A4) or the joint test for the two parts
(Figure A5). On the other hand, the parametric bootstrap takes the longest computational
time, which can be overwhelming if we want to accurately estimate small p-values. As a
general rule, if the sample size is large, then the χ2 distribution can be used. If the sample
size is small, then the parametric bootstrap method should be preferred, even with the cost
of longer computational time. The Satterthwaite method can be considered as an alternative
method for a moderate sample size. Another strategy is to first use the p-values from the χ2

distribution or the rankings of the test statistics to identify those top differentially expressed
genes and then use parametric bootstrap to further accurately estimate the p-values for
those top genes.

3.1.2. Evaluation of Statistical Power

In this section, we evaluate the statistical power of the TMM model and compare it
with an existing method, MAST [12], and the two-part model with binomial and Gaussian
parts but without random effects (named TM hereafter). The simulations are performed
based on the following settings: suppose there are two biological conditions, and each
condition has m/2 subjects, and for each subject i there are ni single-cell samples sequenced.
To evaluate the power, we simulate the gene expression levels yijk from the following model
under H1:

logit[Pr(yijk = 0)] = log(
πijk

1−πijk
) = α1 + α2w + ui,

log(yijk + 1
∣∣∣yijk > 0) = β1 + β2x + vi + eij,

(11)

with ui ∼ N(0, σ2
u), vi ∼ N(0, σ2

v ) and eijk ∼ N(0, σ2
e ). In this model, w and x are

0/1 indicators of the conditions, and the effect sizes are represented by the parameters
α2 and β2, which correspond to the log odds of zero proportions and log fold change of
the mean expression values for non-zero genes between the two conditions. The values
of the parameters are set as follows: m = 10, ni = 20 for all i′s (i = 1, . . . , m), σu = 0.5,
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σv = 1, σe = 0.5, α1 ∼ N(0.25, 0.252), β1 ∼ N(3, 0.52). We then tune the effect sizes by
varying (α2, β2) for the following values: (0, 0), (0.25, 0.25), (0.5, 0.5), . . . , (1.5, 1.5). The
simulations are repeated 1000 times for each different pairs of (α2, β2)’s. In each run, we
apply our model TMM with the three methods for calculating p-values (the χ2 distribution,
the Satterthwaite, and parametric bootstrap), MAST, and TM, respectively. The estimated
power for each method is calculated as the proportion of p-values less than 0.05 among the
1000 repetitions.

Figure 1 shows the plots of power curves for each model with different effect sizes.
As expected, the power of each method increases with effect size. The power of TMM is
consistently higher than the other two models, which is also expected since we include
random effects in this simulation setting.

Genes 2022, 13, x FOR PEER REVIEW 7 of 20 
 

 

3.1.2. Evaluation of Statistical Power 

In this section, we evaluate the statistical power of the TMM model and compare it 

with an existing method, MAST [12], and the two-part model with binomial and Gaussian 

parts but without random effects (named TM hereafter). The simulations are performed 

based on the following settings: suppose there are two biological conditions, and each 

condition has / 2m  subjects, and for each subject i  there are 
i

n  single-cell samples se-

quenced. To evaluate the power, we simulate the gene expression levels 
ijk

y  from the 

following model under
1

H : 


 



 

= = = + +
−

+  = + + +

1 2

1 2

logit[Pr( 0)] log( ) ,
1

log( 1| 0) ,

ijk

ijk i

ijk

ijk ijk i ij

y w u

y y x v e

 (11) 

with 2~ (0, )
i u

u N  ,  2~ (0, )
i v

v N  and  2~ (0, )
ijk e

e N . In this model, w  and x  are 0/1 in-

dicators of the conditions, and the effect sizes are represented by the parameters 
2
and


2
, which correspond to the log odds of zero proportions and log fold change of the mean 

expression values for non-zero genes between the two conditions. The values of the pa-

rameters are set as follows: 10m = , 20
i

n =  for all ’si  ( 1, ,i m=  ),  = 0.5
u

,  = 1
v

, 

 = 0.5
e

,  2

1
~ (0.25,0.25 )N ,  2

1
~ (3,0.5 )N . We then tune the effect sizes by varying 

2 2
( , )   for the following values: (0, 0), (0.25, 0.25), (0.5, 0.5), …, (1.5, 1.5). The simulations 

are repeated 1000 times for each different pairs of 
2 2

( , )  ’s. In each run, we apply our 

model TMM with the three methods for calculating p-values (the 2  distribution, the 

Satterthwaite, and parametric bootstrap), MAST, and TM, respectively. The estimated 

power for each method is calculated as the proportion of p-values less than 0.05 among 

the 1000 repetitions. 

Figure 1 shows the plots of power curves for each model with different effect sizes. 

As expected, the power of each method increases with effect size. The power of TMM is 

consistently higher than the other two models, which is also expected since we include 

random effects in this simulation setting. 

 

Figure 1. Comparisons of statistical powers of different methods. (A) Tests for the Gaussian part. 

(B) Tests for the binomial part. (C) Joint tests for the Gaussian and binomial parts. TMM: two-part 

mixed model. “Chi-square”, “Satterthwaite”, and “bootstrap”: the χ2 distribution, the Satterthwaite 

method, and parametric bootstrap method as described in Section 2.3. TM: the two-part model with-

out random effects. The horizontal red dashed line represents the level of the test, which is α = 0.05. 

Figure 1. Comparisons of statistical powers of different methods. (A) Tests for the Gaussian part.
(B) Tests for the binomial part. (C) Joint tests for the Gaussian and binomial parts. TMM: two-part
mixed model. “Chi-square”, “Satterthwaite”, and “bootstrap”: the χ2 distribution, the Satterthwaite
method, and parametric bootstrap method as described in Section 2.3. TM: the two-part model
without random effects. The horizontal red dashed line represents the level of the test, which
is α = 0.05.

4. Application to Real-World Single-Cell Gene Expression Data
4.1. Application to an scRT-qPCR Dataset

First, we apply the TMM model to an scRT-qPCR dataset and compare the results with
MAST. This dataset is described in [23] and is incorporated with the MAST package [12],
where 456 single-cell samples of T cells from 2 patients with human immunodeficiency
virus (HIV) are isolated, and the expression levels of 75 genes related to the immune
system function are measured by scRT-qPCR. The activation of two immune-response
proteins, T cell receptor Vβ (TCR-Vβ) and CD154, are used to categorize those T cells, and
the 456 single cells are divided into the following 4 different groups: TCR-Vβ+/CD154+,
TCR-Vβ+/CD154−, TCR-Vβ−/CD154+, and TCR-Vβ−/CD154−, where the TCR-Vβ+
CD154+ group is the activated T cells with normal immune functions [23]. The goal of the
analysis is to identify differentially expressed genes across the above four groups.

We fit MAST and our TMM model to this dataset. Specifically, the following two
covariates are included in MAST:

X1: a categorical variable indicating which of the above four groups the sample
belongs to, where the TCR-Vβ+/CD154+ is coded as the reference group. This variable is
the one of interest.

X2: a categorical variable indicating which of the two subjects the sample is from.
For our TMM model, X1 is included as a fixed effect in both the binomial part and the

Gaussian part. The two subjects are treated as two clusters, which are included as random
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effects in TMM. The likelihood ratio test is used to test the individual Gaussian part and
binomial part and also to jointly test the two parts, and the χ2 distribution approximation
is used to calculate p-values for saving the computational time.

The results from MAST and TMM for the 75 genes are shown in Table A1, and Figure 2
is a graphical comparison of the p-values from the two methods. We can see that the
results from the two methods agree with each other in general, though some genes show
different p-values from the tests for the zero-proportions (binomial part) (Figure 2). This is
expected as there are only two clusters in this dataset, and the clustering effects do not play
a significant role in this example. In fact, there should be a reasonable number of clusters
included in a mixed effect model to make it useful in practice [15]. Therefore, MAST should
be preferred for this dataset rather than TMM, and the application of TMM here is for
the purpose of demonstration. On the other hand, these results show that TMM is not
essentially worse than MAST, even if the clustering effects are not significant.

4.2. Application to scRNA-seq Datasets

A recent study compared various methods for differential expression analysis in
scRNA-seq using a number of scRNA-seq datasets with matched bulk RNA-seq in the same
purified cell types as reference [24]. This study showed that pseudobulk methods, which
first aggregates reads across samples (i.e., biological replicates), transform a genes-by-cells
matrix to a genes-by-samples matrix, and then uses methods for bulk RNA-seq such as
DESeq [25], edgeR [26], and limma [27] for the following differential expression analysis,
achieved the highest concordance with matched bulk RNA-seq results when the number of
cells obtained from each sample is large (>500), while a negative binomial mixed model
(NBMM) won when the number of cells per sample is not large (<200). Here we used one of
those datasets containing both scRNA-seq and matched RNA-seq datasets made publicly
available in [24], which was originally published in [28] to study the gene expression
profile changes between five different types of CD4+ T cells stimulated by cytokines and
unstimulated CD4+ T cells (control), to compare the performance of TMM with p-value
evaluated by the empirical Satterthwaite method, an NBMM with the library size as an
offset term implemented in [24] and a pseudobulk method using the likelihood ratio test in
edgeR (referred as edgeR below).

Following [24], we first obtain the lists of differentially expressed genes in the matched
bulk data, and next apply the 3 aforementioned approaches for a series of downsampled
scRNA-seq datasets, containing between 25 and 500 cells per sample from the original
scRNA-seq datasets [28], and then calculate the area under the concordance curve (AUCC,
ranges from 0 to 1 with 1 as perfect concordance and 0 as complete dissonance). The reason
that we have to use the downsampled datasets is that the running time of NBMM is very
long (see [24] and below), which prevents us from comparing these approaches to the full
datasets. The results are shown in Figure 3, where we can see NBMM and TMM show
higher concordance with matched bulk RNA-seq than edgeR when the number of cells
per sample is not large (number of cells ≤ 200, Figure 3), while edgeR gives the highest
concordance when the number of cells per sample is large (number of cells = 500, Figure 3).
Regarding the running time: edgeR is the fastest with an average time of 1.7 min (including
the time of the aggregating reads across samples); TMM has an average time of 53.2 min;
NBMM is the slowest with an average time of 1174.3 min. These comparisons imply that
TMM is more suitable for situations where the number of cells per sample is not large. We
elaborate on these comparisons and the strengths of different approaches in the Section 5.

Next, we apply the TMM model to another scRNA-seq dataset and compare it with
MAST and TM. This dataset is published in [7], which contains 466 single-cell samples
from the human brain tissues of 8 adults (aged from 21 to 63 years) and 4 fetuses (all aged
16 to 18 weeks), and the expression levels of 22,088 genes in these samples are measured by
scRNA-seq [7]. The dataset is available in NCBI Gene Expression Omnibus under accession
number GSE67835.
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The goal of our analysis is to identify differentially expressed genes between the adult
and fetal brains. We fit TMM with the following two covariates as fixed effects:

X1: a 0/1 indicator of biological conditions (adult versus fetus), which is the variable
of interest;

X2: the gender of the subjects: male and female for adults. The gender of the fetuses is
coded as a third category, “undeveloped”.

The 12 subjects are treated as clusters, which are included as random effects in the
model. The likelihood ratio test is used to test the individual Gaussian part and binomial
part and also to jointly test the two parts, and the χ2 distribution approximation is used to
calculate p-values for saving the computational time. We also fit the MAST and TM models,
where X1 and X2 are included as covariates in these two models. Multiple comparison
adjustment is performed using the Benjamini–Hochberg FDR procedure [29].

Figure 4 shows the number of differentially expressed genes identified by each method
with FDR < 0.01, and Table A2 shows the p-values and FDR for the top 20 differentially
expressed genes (ranked by the p-values from the joint test for both the Gaussian and
binomial parts under the TMM model). We can see the results from the three models
show considerable overlaps (Figure 4), and the top differentially expressed genes all
show very significant p-values and FDR from all methods. Notably, the total number of
differentially expressed genes detected by TMM with FDR < 0.01 is much larger than the
other two methods.
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5. Discussion

In summary, we present a two-part mixed model (TMM) for differential expression
analysis with single-cell gene expression data. This model not only adequately accounts for
the distinct features of single-cell expression data, including extra zero expression values,
high variability, and clustered design, but also provides the flexibility of adjusting for
covariates. Since scRNA-seq is still a developing and growing technology, it brings more
challenges in data analysis than bulk RNA-seq. These challenges can be technical (e.g., the
number of samples in scRNA-seq is large, and the sequencing experiments are performed
in different batches [30]), and also can be biological (e.g., the distinct features of the single-
cell gene expression data, as discussed in the Introduction). Several more recent studies
show that several confounding factors often present in scRNA-seq experiments, which can
lead to biased results. These factors can also be categorized as technical factors that are
related to the design of experiments, such as batch effects [30], or biological factors such as
the detection rate of genes [12,30], gene lengths, and GC percent[30]. These confounding
factors can be adjusted in TMM; however, planning a good study design for scRNA-seq
experiments to reduce the confounding factors is a more fundamental task [30].

More recently, several new models and approaches have been proposed for the DE
analysis on scRNA-seq data. As studied in [24] and Section 4.2, the pseudobulk method,
which mimics the data format in bulk RNA-seq by aggregating reads across samples
and generating a genes-by-samples matrix, enables the usage of well-maintained tools
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developed for bulk RNA-seq such as DESeq [25], edgeR [26], and limma [27] for the analysis
in scRNAseq, and those methods are faster and show higher concordance with the DE
results from bulk RNA-seq when the number of cells per sample is large, which can be
achieved with current sequencing platforms. Alternatively, our approach, TMM, has the
strength of being reliable when the number of cells per sample is not large (e.g., scRT-qPCR
data and scRNA-seq data with smaller sample sizes and less cost) and providing a test for
checking if the proportions of zero or lowly expressed genes are different between biological
conditions. As future work, the computational speed and p-value estimation of TMM
should be further optimized, which is also common for many mixed-effect models [24].
On a separate note, in [24] and Section 4.2, the DE genes in the matched bulk RNA-seq
datasets that were used to check the consistency of those methods for scRNA-seq were also
identified using DESeq, edgeR, and limma, which may lead to the bias towards the higher
concordance given by those pseudobulk methods using the same three packages.
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conditions. The p-values are plotted on -log10 scale. The gray areas represent the 95% confidence
interval bands of the expected p-values under H0.

https://github.com/shilab2017/two_part_mixed_model


Genes 2022, 13, 377 12 of 18
Genes 2022, 13, x FOR PEER REVIEW 14 of 20 
 

 

 

Figure A2. Results from 3.1.1 Evaluation of type I error rates. Plots of the observed versus the ex-

pected p-values for the Wald test for the binomial part under H0: no significant difference between 

the two conditions. The p-values are plotted on -log10 scale. The gray areas represent the 95% con-

fidence interval bands of the expected p-values under H0. 
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p-values for the Wald test for the binomial part under H0: no significant difference between the two
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Figure A3. Results from 3.1.1 Evaluation of type I error rates. Plots of the observed versus the
expected p-values for the likelihood ratio test for the Gaussian part under H0: no significant difference
between the two conditions. The p-values are plotted on -log10 scale. The gray areas represent the
95% confidence interval bands of the expected p-values under H0.
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Figure A4. Results from 3.1.1 Evaluation of type I error rates. Plots of the observed versus the
expected p-values for the likelihood ratio test for the binomial part under H0: no significant difference
between the two conditions. The p-values are plotted on -log10 scale. The gray areas represent the
95% confidence interval bands of the expected p-values under H0.

Genes 2022, 13, x FOR PEER REVIEW 17 of 20 
 

 

 

Figure A5. Results from 3.1.1 Evaluation of type I error rates. Plots of the observed versus the ex-

pected p-values for jointly testing the Gaussian and binomial parts under H0: no significant differ-

ence between the two conditions. The p-values are plotted on -log10 scale. The gray areas represent 

the 95% confidence interval bands of the expected p-values under H0. 

Table A1. Results of the gene differential expression analysis for the HIV scRT-qPCR dataset. The 

top gene CD40LG that codes CD154 protein is highlighted. 

Gene Name 
MAST TMM 

Gaussian Binomial Combine Gaussian Binomial Combine 

CD40LG 2.33 × 10−46 9.87 × 10−18 2.82 × 10−61 3.73 × 10−48 3.53 × 10−17 1.72 × 10−62 

GAPDH 6.60 × 10−27 8.44 × 10−10 4.04 × 10−34 1.78 × 10−27 2.30 × 10−10 2.82 × 10−35 

TNF 1.60 × 10−03 7.70 × 10−22 1.13 × 10−22 3.48 × 10−03 1.89 × 10−22 7.94 × 10−23 

TGFB1 6.08 × 10−18 2.73 × 10−04 9.61 × 10−20 1.75 × 10−16 4.31 × 10−04 5.01 × 10−18 

IL2 1.46 × 10−03 4.53 × 10−18 3.06 × 10−19 2.39 × 10−03 3.90 × 10−18 2.05 × 10−19 

IL16 2.21 × 10−01 9.21×10−18 2.93 × 10−16 4.90 × 10−02 4.74 × 10−18 2.42 × 10−17 

IL2Rg 6.80×10−08 1.97 × 10−10 3.72 × 10−16 3.11 × 10−09 2.08 × 10−11 2.06 × 10−18 

CXCR4 7.89 × 10−04 3.94 × 10−14 1.33 × 10−15 5.20 × 10−04 1.71 × 10−14 3.51 × 10−16 

CCR7 3.60 × 10−01 8.61 × 10−17 4.88 × 10−15 4.20 × 10−01 8.38 × 10−17 3.54 × 10−15 

CD3d 3.69 × 10−06 1.67 × 10−10 1.65 × 10−14 7.22 × 10−07 2.33 × 10−10 3.61 × 10−15 

IL2Ra 9.09 × 10−03 5.14 × 10−13 2.08 × 10−13 1.18 × 10−03 1.09 × 10−12 6.11 × 10−14 

CD69 7.99 × 10−06 2.06 × 10−09 4.00 × 10−13 3.34 × 10−06 1.89 × 10−09 1.80 × 10−13 

IL10 1.75 × 10−01 3.88 × 10−14 5.74 × 10−13 3.25 × 10−02 5.85 × 10−14 1.44 × 10−13 

FASLG 6.47 × 10−02 1.60 × 10−12 3.73 × 10−12 3.06 × 10−02 1.33 × 10−12 3.32 × 10−12 

IL7R 1.23 × 10−06 2.18 × 10−06 5.23 × 10−11 9.05 × 10−08 1.68 × 10−06 4.57 × 10−12 

IL6ST 1.13 × 10−03 4.49 × 10−09 1.21 × 10−10 1.14 × 10−04 4.45 × 10−08 1.12 × 10−10 

Figure A5. Results from 3.1.1 Evaluation of type I error rates. Plots of the observed versus the
expected p-values for jointly testing the Gaussian and binomial parts under H0: no significant
difference between the two conditions. The p-values are plotted on -log10 scale. The gray areas
represent the 95% confidence interval bands of the expected p-values under H0.
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Table A1. Results of the gene differential expression analysis for the HIV scRT-qPCR dataset. The top
gene CD40LG that codes CD154 protein is highlighted.

Gene Name
MAST TMM

Gaussian Binomial Combine Gaussian Binomial Combine

CD40LG 2.33 × 10−46 9.87 × 10−18 2.82 × 10−61 3.73 × 10−48 3.53 × 10−17 1.72 × 10−62

GAPDH 6.60 × 10−27 8.44 × 10−10 4.04 × 10−34 1.78 × 10−27 2.30 × 10−10 2.82 × 10−35

TNF 1.60 × 10−03 7.70 × 10−22 1.13 × 10−22 3.48 × 10−03 1.89 × 10−22 7.94 × 10−23

TGFB1 6.08 × 10−18 2.73 × 10−04 9.61 × 10−20 1.75 × 10−16 4.31 × 10−04 5.01 × 10−18

IL2 1.46 × 10−03 4.53 × 10−18 3.06 × 10−19 2.39 × 10−03 3.90 × 10−18 2.05 × 10−19

IL16 2.21 × 10−01 9.21×10−18 2.93 × 10−16 4.90 × 10−02 4.74 × 10−18 2.42 × 10−17

IL2Rg 6.80×10−08 1.97 × 10−10 3.72 × 10−16 3.11 × 10−09 2.08 × 10−11 2.06 × 10−18

CXCR4 7.89 × 10−04 3.94 × 10−14 1.33 × 10−15 5.20 × 10−04 1.71 × 10−14 3.51 × 10−16

CCR7 3.60 × 10−01 8.61 × 10−17 4.88 × 10−15 4.20 × 10−01 8.38 × 10−17 3.54 × 10−15

CD3d 3.69 × 10−06 1.67 × 10−10 1.65 × 10−14 7.22 × 10−07 2.33 × 10−10 3.61 × 10−15

IL2Ra 9.09 × 10−03 5.14 × 10−13 2.08 × 10−13 1.18 × 10−03 1.09 × 10−12 6.11 × 10−14

CD69 7.99 × 10−06 2.06 × 10−09 4.00 × 10−13 3.34 × 10−06 1.89 × 10−09 1.80 × 10−13

IL10 1.75 × 10−01 3.88 × 10−14 5.74 × 10−13 3.25 × 10−02 5.85 × 10−14 1.44 × 10−13

FASLG 6.47 × 10−02 1.60 × 10−12 3.73 × 10−12 3.06 × 10−02 1.33 × 10−12 3.32 × 10−12

IL7R 1.23 × 10−06 2.18 × 10−06 5.23 × 10−11 9.05 × 10−08 1.68 × 10−06 4.57 × 10−12

IL6ST 1.13 × 10−03 4.49 × 10−09 1.21 × 10−10 1.14 × 10−04 4.45 × 10−08 1.12 × 10−10

SLAMF1 3.45 × 10−02 4.78 × 10−10 5.56 × 10−10 1.05 × 10−02 2.95 × 10−10 9.47 × 10−11

IFNg 2.66 × 10−05 1.47 × 10−06 7.06 × 10−10 2.39 × 10−05 1.85 × 10−06 5.83 × 10−10

CD109 8.97 × 10−01 8.36 × 10−10 8.06 × 10−09 7.76 × 10−01 7.10 × 10−10 7.65 × 10−09

TNFRSF9 3.20 × 10−01 2.38 × 10−09 1.44 × 10−08 2.13 × 10−01 1.45 × 10−09 8.35 × 10−09

DPP4 2.96 × 10−01 1.35 × 10−09 1.91 × 10−08 4.66 × 10−02 2.03 × 10−08 2.38 × 10−08

ICOS 2.41 × 10−05 6.80 × 10−05 2.53 × 10−08 8.93 × 10−05 5.14 × 10−04 4.77 × 10−07

CD28 2.14 × 10−01 3.34 × 10−07 1.88 × 10−06 3.67 × 10−01 1.17 × 10−06 9.26 × 10−06

CD4 1.06 × 10−01 1.47 × 10−05 2.46 × 10−05 1.04 × 10−01 3.88 × 10−05 6.66 × 10−05

CD27 1.94 × 10−01 2.86 × 10−05 8.73 × 10−05 1.01 × 10−01 5.68 × 10−06 1.20 × 10−05

CD48 4.55 × 10−01 1.69 × 10−05 1.59 × 10−04 3.52 × 10−01 1.46 × 10−06 2.14 × 10−05

SLAMF5 5.39 × 10−02 3.28 × 10−04 1.89 × 10−04 3.34 × 10−02 4.43 × 10−04 1.14 × 10−04

CTSD 3.11 × 10−03 7.58 × 10−03 2.14 × 10−04 3.59 × 10−04 8.01 × 10−03 2.68 × 10−05

CD5 5.47 × 10−01 3.30 × 10−05 3.65 × 10−04 3.80 × 10−01 7.13 × 10−06 4.89 × 10−05

TBX21 1.71 × 10−01 1.97 × 10−04 4.06 × 10−04 1.17 × 10−01 8.15 × 10−05 1.10 × 10−04

CSF2 6.55 × 10−01 2.46 × 10−04 5.40 × 10−04 1.00 2.09 × 10−04 5.13 × 10−04

CD3g 9.95 × 10−01 1.17 × 10−05 6.03 × 10−04 8.13 × 10−01 7.87 × 10−07 3.11 × 10−05

TIA1 1.70 × 10−02 1.29 × 10−02 1.64 × 10−03 9.89 × 10−03 4.89 × 10−03 3.84 × 10−04

CD45 2.94 × 10−01 8.41 × 10−04 2.56 × 10−03 1.72 × 10−01 2.48 × 10−03 3.63 × 10−03

PECAM1 3.68 × 10−02 1.21 × 10−02 3.14 × 10−03 7.98 × 10−03 9.12 × 10−03 5.55 × 10−04

NT5E 5.96 × 10−01 2.21 × 10−03 6.24 × 10−03 3.77 × 10−01 1.28 × 10−03 3.82 × 10−03

LIF 7.70 × 10−01 3.60 × 10−03 1.17 × 10−02 6.83 × 10−01 1.00 7.22 × 10−01
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Table A1. Cont.

Gene Name
MAST TMM

Gaussian Binomial Combine Gaussian Binomial Combine

FOXP3 8.77 × 10−03 2.03 × 10−01 1.21 × 10−02 3.65 × 10−03 2.02 × 10−01 6.33 × 10−03

TIMP1 2.18 × 10−02 1.26 × 10−01 1.62 × 10−02 4.23 × 10−02 7.55 × 10−02 2.13 × 10−02

CTLA4 3.26 × 10−01 8.50 × 10−03 1.92 × 10−02 4.15 × 10−02 1.70 × 10−02 5.31 × 10−03

FAS 7.88 × 10−01 4.45 × 10−03 3.49 × 10−02 4.21 × 10−01 4.76 × 10−03 1.21 × 10−02

RORC 8.99 × 10−01 1.13 × 10−02 3.61 × 10−02 9.52 × 10−01 7.71 × 10−03 2.06 × 10−02

CCR2 3.11 × 10−02 2.07 × 10−01 3.73 × 10−02 1.42 × 10−04 5.63 × 10−01 9.61 × 10−04

BCL2 2.34 × 10−01 3.77 × 10−02 4.15 × 10−02 1.56 × 10−01 1.00 1.51 × 10−01

PRDM1 1.36 × 10−02 5.71 × 10−01 5.18 × 10−02 2.11 × 10−03 7.40 × 10−01 1.85 × 10−02

CCL3 1.48 × 10−01 1.01 × 10−01 6.68 × 10−02 4.16 × 10−01 1.00 3.36 × 10−01

CCL2 8.07 × 10−02 1.00 8.07 × 10−02 2.14 × 10−01 1.00 3.05 × 10−01

IL8 1.03 × 10−01 2.06 × 10−01 9.36 × 10−02 4.31 × 10−01 1.07 × 10−01 1.67 × 10−01

CCL5 8.38 × 10−02 2.80 × 10−01 9.98 × 10−02 3.18 × 10−01 3.17 × 10−01 2.20 × 10−01

TNFSF10 3.27 × 10−01 1.49 × 10−01 1.76 × 10−01 3.88 × 10−01 2.06 × 10−02 5.12 × 10−02

CSF1 1.79 × 10−01 4.38 × 10−01 2.57 × 10−01 1.23 × 10−01 2.20 × 10−01 9.77 × 10−02

CCR4 4.57 × 10−01 1.79 × 10−01 2.66 × 10−01 4.10 × 10−01 1.59 × 10−01 1.48 × 10−01

HLADRA 1.61 × 10−01 5.11 × 10−01 2.73 × 10−01 4.78 × 10−01 1.21 × 10−01 2.16 × 10−01

BAX 9.26 × 10−01 5.98 × 10−02 2.86 × 10−01 9.97 × 10−01 2.79 × 10−02 1.94 × 10−01

CD38 4.60 × 10−01 3.35 × 10−01 4.09 × 10−01 7.37 × 10−01 2.11 × 10−01 4.97 × 10−01

SLAMF7 5.01 × 10−01 1.00 5.01 × 10−01 1.00 1.00 1.00

GATA3 1.36 × 10−01 9.75 × 10−01 5.11 × 10−01 1.29 × 10−01 8.29 × 10−01 4.44 × 10−01

PCNA 8.92 × 10−01 3.40 × 10−01 5.52 × 10−01 8.19 × 10−01 1.00 1.00

MMP9 6.35 × 10−01 1.00 6.35 × 10−01 1.00 1.00 1.00

ENTPD1 6.50 × 10−01 1.00 6.50 × 10−01 2.97 × 10−02 1.00 3.10 × 10−02

CCL4 6.79 × 10−01 6.22 × 10−01 7.55 × 10−01 1.00 1.00 1.00

PRF1 9.51 × 10−01 4.12 × 10−01 7.67 × 10−01 7.96 × 10−01 1.00 1.00

EOMES 7.68 × 10−01 5.98 × 10−01 7.89 × 10−01 5.52 × 10−01 1.00 7.63 × 10−01

IL6R 6.31 × 10−01 7.39 × 10−01 7.98 × 10−01 2.22 × 10−01 5.60 × 10−01 5.96 × 10−01

CCR5 4.52 × 10−01 9.28 × 10−01 8.09 × 10−01 1.33 × 10−01 5.54 × 10−01 3.07 × 10−01

GZMA 4.02 × 10−01 9.95 × 10−01 8.52 × 10−01 2.78 × 10−01 8.78 × 10−01 7.79 × 10−01

CD8a 9.58 × 10−01 1.00 9.58 × 10−01 6.68 × 10−01 1.00 9.00 × 10−01

B3GAT1 1.00 1.00 1.00 1.00 1.00 1.00

CXCL13 1.00 1.00 1.00 1.00 1.00 1.00

IL12RbII 1.00 1.00 1.00 1.00 1.00 1.00

IL13 1.00 1.00 1.00 1.00 1.00 1.00

IL22 1.00 1.00 1.00 1.00 1.00 1.00

IL3 1.00 1.00 1.00 1.00 1.00 1.00

IL4 1.00 1.00 1.00 1.00 1.00 1.00

MKI67 1.00 1.00 1.00 1.00 1.00 1.00
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Table A2. p-values and FDR for the top 20 differentially expressed genes. The list of genes is ranked by the p-values from the combined test for both the Gaussian
and binomial parts under the TMM model.

Gene Name

TMM MAST

Gaussian Binomial Combine Gaussian Binomial Combine

p-Value FDR p-Value FDR p-Value FDR p-Value FDR p-Value FDR p-Value FDR

TMSB15A 2.14 × 10−12 5.31 × 10−10 1.60 × 10−55 3.33 × 10−51 1.57 × 10−55 3.27 × 10−51 4.50 × 10−09 4.66 × 10−07 1.42 × 10−44 3.01 × 10−40 1.35 × 10−44 2.86 × 10−40

MEX3A 2.01 × 10−10 2.66 × 10−08 1.55 × 10−50 1.62 × 10−46 1.34 × 10−50 1.39 × 10−46 3.73 × 10−08 2.79 × 10−06 1.57 × 10−42 1.67 × 10−38 1.57 × 10−42 1.67 × 10−38

SPARCL1 2.31 × 10−15 1.42 × 10−12 1.53 × 10−49 1.07 × 10−45 1.29 × 10−49 8.94 × 10−46 1.22 × 10−13 6.46 × 10−11 7.91 × 10−38 5.60 × 10−34 7.32 × 10−38 5.18 × 10−34

CLU 3.86 × 10−14 1.75 × 10−11 7.64 × 10−43 3.98 × 10−39 7.54 × 10−43 3.93 × 10−39 3.24 × 10−12 1.11 × 10−09 1.36 × 10−33 5.78 × 10−30 1.26 × 10−33 5.23 × 10−30

IL6ST 2.78 × 10−06 8.37 × 10−05 5.91 × 10−42 2.46 × 10−38 5.24 × 10−42 2.19 × 10−38 5.82 × 10−04 7.40 × 10−03 3.49 × 10−33 1.06 × 10−29 3.17 × 10−33 9.61 × 10−30

CRYAB 1.90 × 10−13 6.51 × 10−11 4.47 × 10−39 1.55 × 10−35 4.06 × 10−39 1.41 × 10−35 2.62 × 10−11 6.78 × 10−09 1.66 × 10−34 8.82 × 10−31 1.43 × 10−34 7.60 × 10−31

ALDOC 1.30 × 10−16 9.72 × 10−14 2.84 × 10−36 8.46 × 10−33 2.28 × 10−36 6.79 × 10−33 2.50 × 10−14 1.87 × 10−11 2.93 × 10−29 5.66 × 10−26 2.65 × 10−29 5.11 × 10−26

OSBPL1A 3.47 × 10−20 6.03 × 10−17 1.09 × 10−35 2.76 × 10−32 9.29 × 10−36 2.35 × 10−32 4.44 × 10−20 1.35 × 10−16 1.71 × 10−33 6.07 × 10−30 1.48 × 10−33 5.23 × 10−30

HTRA1 1.77 × 10−13 6.16 × 10−11 1.19 × 10−35 2.76 × 10−32 1.01 × 10−35 2.35 × 10−32 3.43 × 10−11 8.68 × 10−09 1.73 × 10−27 2.45 × 10−24 1.46 × 10−27 2.07 × 10−24

PRNP 6.70 × 10−24 3.50 × 10−20 2.33 × 10−35 4.87 × 10−32 2.24 × 10−35 4.66 × 10−32 5.61 × 10−19 1.32 × 10−15 4.92 × 10−30 1.16 × 10−26 4.04 × 10−30 9.53 × 10−27

TSPYL2 1.46 × 10−19 2.03 × 10−16 8.68 × 10−35 1.65 × 10−31 8.53 × 10−35 1.62 × 10−31 8.81 × 10−19 1.87 × 10−15 6.39 × 10−29 1.13 × 10−25 6.17 × 10−29 1.09 × 10−25

BHLHE41 3.97 × 10−12 9.01 × 10−10 1.08 × 10−34 1.88 × 10−31 9.52 × 10−35 1.66 × 10−31 3.60 × 10−08 2.70 × 10−06 6.76 × 10−28 1.03 × 10−24 6.45 × 10−28 9.79 × 10−25

CD24 4.01 × 10−15 2.39 × 10−12 1.51 × 10−34 2.43 × 10−31 1.37 × 10−34 2.19 × 10−31 9.82 × 10−14 5.35 × 10−11 1.09 × 10−29 2.32 × 10−26 9.27 × 10−30 1.97 × 10−26

NEUROD6 1.46 × 10−12 3.80 × 10−10 1.62 × 10−32 2.42 × 10−29 1.53 × 10−32 2.28 × 10−29 1.41 × 10−10 3.03 × 10−08 2.14 × 10−30 5.69 × 10−27 1.73 × 10−30 4.59 × 10−27

ADD3 7.02 × 10−14 2.87 × 10−11 1.18 × 10−31 1.64 × 10−28 9.83 × 10−32 1.37 × 10−28 5.81 × 10−10 9.23 × 10−08 2.65 × 10−22 1.94 × 10−19 2.37 × 10−22 1.68 × 10−19

BCL11A 5.72 × 10−14 2.44 × 10−11 2.92 × 10−31 3.81 × 10−28 2.42 × 10−31 3.16 × 10−28 1.32 × 10−10 2.90 × 10−08 1.44 × 10−26 1.80 × 10−23 1.16 × 10−26 1.45 × 10−23

SLC6A1 2.85 × 10−17 2.58 × 10−14 1.04 × 10−30 1.27 × 10−27 8.63 × 10−31 1.06 × 10−27 5.76 × 10−14 3.42 × 10−11 1.35 × 10−21 8.43 × 10−19 1.34 × 10−21 7.50 × 10−19

NR3C1 5.03 × 10−07 1.93 × 10−05 5.15 × 10−30 5.66 × 10−27 4.30 × 10−30 4.89 × 10−27 1.20 × 10−09 1.68 × 10−07 3.01 × 10−27 4.00 × 10−24 3.06 × 10−27 4.06 × 10−24

NEUROD2 2.34 × 10−06 7.27 × 10−05 4.56 × 10−30 5.29 × 10−27 4.45 × 10−30 4.89 × 10−27 7.12 × 10−06 2.22 × 10−04 3.74 × 10−28 6.11 × 10−25 3.68 × 10−28 6.01 × 10−25

ALCAM 5.90 × 10−15 3.33 × 10−12 6.98 × 10−30 7.28 × 10−27 5.98 × 10−30 6.24 × 10−27 1.80 × 10−16 2.25 × 10−13 2.25 × 10−23 1.99 × 10−20 2.13 × 10−23 1.81 × 10−20
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