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Abstract: Gene-based rare variant association studies (RVASs) have low power due to the infrequency
of rare variants and the large multiple testing burden. To correct for multiple testing, traditional
false discovery rate (FDR) procedures which depend solely on P-values are often used. Recently,
Independent Hypothesis Weighting (IHW) was developed to improve the detection power while
maintaining FDR control by leveraging prior information for each hypothesis. Here, we present a
framework to increase power of gene-based RVASs by incorporating prior information using IHW. We
first build supervised machine learning models to assign each gene a prediction score that measures
its disease risk, using the input of multiple biological features, fed with high-confidence risk genes
and local background genes selected near GWAS significant loci as the training set. Then we use the
prediction scores as covariates to prioritize RVAS results via IHW. We demonstrate the effectiveness
of this framework through applications to RVASs in schizophrenia and autism spectrum disorder.
We found sizeable improvements in the number of significant associations compared to traditional
FDR approaches, and independent evidence supporting the relevance of the genes identified by our
framework but not traditional FDR, demonstrating the potential of our framework to improve power
of gene-based RVASs.

Keywords: rare variant association study; gene prioritization; multiple hypothesis testing; false
discovery rate; GWAS; machine learning; neuropsychiatric disorders

1. Introduction

Rare variant association studies (RVASs) enable the identification of disease-associated
genes with clear functional support [1]. In RVASs, a large number of hypothesis tests are
usually generated from scanning the human genome, and we need effective multiple-testing
correction to limit false positives while maximizing power. False discovery rate (FDR) [2,3]
control has become a popular approach for detecting weak effects by limiting the expected
false discovery proportion (FDP). Of the FDR control procedures, the Benjamini Hochberg
(BH) [2] procedure is one of the most commonly used. While BH is nearly optimal when all
hypotheses are equally likely to be null [4], it suffers from suboptimal power when tests
are heterogeneous [5], which is often the case in modern applications like RVASs.

Different from the BH procedure, hypothesis-weighting FDR control procedures have
been proposed to incorporate prior information to up-weight or down-weight hypothe-
ses [6]. The idea is that more FDR budget can be allocated to hypotheses with greater prior
probability of being non-null, hence there is the potential to increase detection power [4,7].

We reason that hypothesis weighting might help improve detection power in RVASs.
Previous research has shown the effectiveness of hypothesis weighting in multiple genetic
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applications, like differential expression gene discovery [8], GWAS [7,9–12], eQTL discov-
ery [4,8], and trait-associated epigenetic marks discovery [13]. Recently, many hypothesis
weighting methods have been developed, and a detailed comparison of these methods was
reviewed elsewhere [14,15]. Among these methods, independent hypothesis weighting
(IHW) [8] has been recommended due to its powerful, robust, and computationally efficient
nature [13,14]. In addition, under the IHW framework, the relationship between covariates
and p-values is assumed to be not fully known and can be learned as a function of the
covariates from data without overfitting. This enables us to harness prior information that
does not precisely specify but is informative of the likelihood of hypotheses being non-null.
Leveraging these desired properties, we hypothesize that there might be opportunities to
derive gene-level scores reflecting the prior likelihood of genes’ association with traits and
use them as covariates in IHW method to increase detection power in RVASs.

Here, we propose a three-stage framework to improve the power of identifying risk
genes from RVASs. Stage 1 is to identify a training set of risk genes and non-risk genes
and build a prediction model using the training set and gene-level biological features;
stage 2 is to generate gene-level scores for all genes in the genome using the previous built
predictive models; stage 3 is to use the prediction scores as covariates to weight gene-level
p-values from RVASs through the IHW method. Genome-wide association studies (GWASs)
provide opportunities for us to derive gene-level scores to facilitate RVAS discoveries, as
recent findings suggest the convergence of trait-associated genes from common and rare
variants [16]. A key obstacle to leverage GWAS findings to improve the power of gene-
based discovery is that GWAS loci are usually in noncoding regions, and implicating the
risk genes for GWAS loci is a proven challenge [17,18]. As there are no clear sets of risk
genes from GWAS, we employ integrative risk gene selector (iRIGS) [19] to classify genes
near GWAS hits to high-confidence risk genes (HRG) and local background genes (LBG),
and treat HRG and LBG as the positive and negative training sets in model building. We
leverage the rich collection of gene-level annotations to identify patterns that are predictive
of risk genes and use these annotations as biological features for model building and
genome-wide prediction.

To demonstrate this framework, we propose to identify genes associated with Schizophre-
nia (SCZ) from gene-based p-values in a recent RVAS [16] using predictions informed from
a recent GWAS [20]. As there is significant overlap of risk genes between SCZ and autism
spectrum disorders (ASD) [16], we also propose to use the same predictions as covariates
to adjust gene-based p-values in a recently published ASD RVAS [21].

2. Materials and Methods
2.1. Method Overview

As shown in Figure 1, our approach involves three stages. First, we obtained HRGs
and LBGs in 2 Mb windows centered at SCZ GWAS significant loci using iRIGS [19]. The
two sets of genes (i.e., HRG, LBG) identified via iRIGS served as positive and negative
instances for the subsequent training. Second, we used the positive and negative training
sets and the selected gene-level biological annotations as features to train a Random Forest
model [22], and used the model to generate predictive scores for all known protein-coding
genes in the genome. Third, we used the prediction score as the informative covariate for
each gene, and used IHW to improve gene discovery from RVASs. Details of the three steps
are described below.
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Figure 1. Overview of the workflow. Our approach involves three stages. First, we obtained HRGs
and LRGs predicted by iRIGS as positive and negative instances for subsequent training; second,
we used the positive and negative training sets and the selected gene-level biological annotations as
features to train a Random Forest model, and used the model to generate predictive scores for all
known protein-coding genes in the genome; third, we used the prediction score as the informative
covariate for each gene, and used IHW to improve gene discovery from RVASs.

2.2. Obtain Training Set of Genes

We need a training set of “SCZ-genes” and “non SCZ-genes” to build a supervised
machine learning model. Here, we used iRIGS to obtain these genes. All genes within a
2 Mb region centered at the previously reported SCZ GWAS significant index SNPs are
considered as candidates [20]. The genes with the highest iRIGS posterior probability (i.e.,
HRG) from all the GWAS hits are used as “positive” instances, and the genes with posterior
probabilities less than median of all candidate genes (i.e., LBGs) are used as “negative”
instances.

2.3. Feature Pre-Processing

BRAINSPAN [23] is a dataset with RNA sequencing profiling with different cortical
and subcortical structures across the full course of human brain development. The dataset
includes 524 samples with developmental time points ranging from 5 post-conceptional
weeks (pcw) to over 40 years of age from 26 brain structures. We used the gene expression
values measured across different developmental time points and brain structure as the
feature for training.

DEPICT [24] provides a dataset with 14,461 “reconstituted” gene sets with membership
probability for each gene in each gene set based on co-regulation of gene expression and
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previously annotated gene sets representing a wide specturm of biological annotations. We
used the genes and their membership probabilities across the 14,461 reconstituted gene sets
as the features for training.

FANTOM5 [25] project used cap analysis of gene expression (CAGE) to measure
promoter utilization across 975 human samples. We used the genes’ CAGE expression
values as feature for training.

LAKE [26] dataset includes nuclear transcriptomic data for >60,000 single cells from
human adult visual cortex, frontal cortex, and cerebellum from six different individuals.
For each gene, we take an average of all the expression in all cell types and states (with
labels provided in the dataset) to reduce the dimension of this dataset. We constructed
a matrix with 61 columns, and use this matrix as features for training (dataset is made
available at https://github.com/yingji15/SCZIHW_public/blob/main/data/features/all.
count.region.allcommgeneid, accessed on 1 May 2020).

2.4. Model Training and Genome-Wide Prediction of SCZ Risk

We seek to prioritize SCZ risk genes using machine learning approaches; in this study,
we employed random forest classifier. We used HRGs and LBGs predicted by iRIGS as
positive and negative instances (i.e., genes for training), and gene-level genomic annotations
predictive of SCZ risk genes as features. For genomic features, we used gene expression
data from BRAINSPAN, DEPICT, FANTOM5, and LAKE, as described previously. As
there are usually one HRG and multiple LBGs from each significant locus, the training
set is highly imbalanced. To tackle this issue, we downsampled [27] the negative genes
to create a balanced training set of the same number of positive and negative genes for
each iteration. In each iteration, we performed a three-fold cross-validation [28] to tune the
random forest classifier. That is, we randomly divided the downsampled dataset into three
folds of approximately equal sizes. Each time, we fitted the model using two folds and
then validate its prediction performance in the remaining fold. We chose the best random
forest classifier based on the average performance across three validation folds, and then
used this classifier to make prediction of all genes in the genome. We repeated the process
100 times, and take the average of the prediction scores as the final score for each gene. We
used the R package “randomForest” [29] for the implementation and the only parameter
we set is the number of trees (ntree = 3000).

2.5. Application of IHW for Hypothesis Weighting

IHW is a general method with established type I error control and stability. Intuitively,
individual tests may differ in their statistical properties and a covariate might provide infor-
mation for such properties. For our case of gene-level rare variant association hypotheses,
genes may differ in their relevance to SCZ risk, and the level of their relevance is reflected
by their prediction scores from the random forest model; this relevance can be indexed
by gene-level covariates. Then, instead of using a flat p-value threshold in conventional
methods, we can use an adaptive threshold informed by the covariate: Allocate more FDR
budget to hypotheses with higher covariate values.

To explain the methods, suppose we have m hypotheses to test based on p-values
(p1, . . . , pm) with covariates X1, . . . , Xm. Conventional BH-approach uses this decision rule:

Reject hypothesis i if pi ≤ t̂, (1)

with cutoff t̂ determined at a defined level using only p-values by a multiple testing
procedure family-wise error rate (FWER) control or FDR control, such as Bonferroni correc-
tion [30] or BH [2] respectively, to protect against spurious discoveries.

Instead of using the conventional approach illustrated in Equation (1), we used
“IHW” [8,15], a general and flexible hypothesis weighting approach unique in that it can

https://github.com/yingji15/SCZIHW_public/blob/main/data/features/all.count.region.allcommgeneid
https://github.com/yingji15/SCZIHW_public/blob/main/data/features/all.count.region.allcommgeneid
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learn weights from covariates and p-values without overfitting (i.e., losing type-I error
control) using cross-weighting. Under IHW, a decision rule is:

Reject hypothesis i if pi ≤ t̂Ŵ(X−l
i ) where i ∈ Il , (2)

where Il , l = 1, . . . , k is a partition of the hypotheses into k folds to avoid overfitting.

Ŵ(X−l
i ) are weight functions depend on covariates, with the weight function used for

fold l learned from p-values and covariates X from the k − 1 folds excluding the fold
l. Compare Equation (2) and Equation (1), it is equivalent to using weighted p-values

(pi/Ŵ(X−l
i )) instead of p-values (pi) in multiple hypothesis testing. The genes with large

weights yield smaller weighted p-values, and the associated genes are more likely to be
declared significant. Here, IHW splits the hypotheses into different strata (selected using
the default mode “auto”) based on increasing value of the predicted gene-level risk score.
Within each stratum, IHW randomly split them into folds. IHW learns the weights for each
stratum and fold combination to achieve the highest number of discoveries. Details of IHW
can be found in [8,15].

2.6. The SCZ RVAS Data

Gene-level association p-values for SCZ RVAS were obtained from the Schizophrenia
Exome Sequencing Meta-analysis (SCHEMA) consortium [16] (https://schema.broadinstitute.
org/results, accessed on 1 May 2020). The data contain the meta-analysis of whole-exomes
of 24,248 cases and 97,322 controls from diverse global populations. Three classes of
ultra-rare (defined as minor allele count ≤ 5) variants are included in the meta-analysis:
Protein-truncating variants PTVs (defined as stop-gain/loss, frameshift, essential splice
donor and acceptor variants), missense variants with missense badness, PolyPhen-2, and
constraint (MPC) pathogenicity score > 3, and missense variants with MPC pathogenicity
score = 2 or 3. PTVs and MPC > 3 variants (defined as “class I” variants in [16]) were
analyzed by a burden test to generate gene-level p-values; genes with MPC = 2 or 3 variants
were aggregated and combined with class I p-values using a weighted Z-score method, refer
to Singh et al. [16] for details. We extracted the meta-analysis p-values (column “P_meta”
in the online table) for the analysis.

2.7. The ASD RVAS Data

Gene-level association test results for ASD RVAS were obtained from Supplementary
Table S2 of Satterstrom et al. [21]. FDR q-values are transformed to p-values for analysis
(code is available at https://github.com/yingji15/SCZIHW_public/, accessed on 1 May
2020). The data contain the largest exome sequencing study of ASD to date (n = 35,584 total
samples, 11,986 with ASD). Two categories of rare variation (allele frequency ≤ 0.1%),
namely protein-truncating variants (PTVs; i.e., frameshift, stop gain/loss, canonical splice
site disruption) and “probably damaging” missense variants according to PolyPhen-2
(Mis3) [31], are included in the analysis, with association signals from three categories of
sources: De novo mutations, inherited variants in parent-offspring trios, and case-control
association analysis.

3. Results
3.1. Evaluation of Prediction Scores

As shown in Figure 2, we first evaluated our prediction models using cross-validation
and the model achieved an average area under the receiver–operator curve (AUC) of
0.74, 0.86, 0.87, and 0.89 using features obtained from BRAINSPAN, DEPICT, LAKE,
FANTOM5 respectively. Among the selected features, DEPICT, LAKE and FANTOM5
showed comparable performance in terms of AUC, while BRAINSPAN based prediction
showed lower AUC compared to the other three. The AUC values are all higher than 0.5,
demonstrating that they all contain informative signals about SCZ risk.

https://schema.broadinstitute.org/results
https://schema.broadinstitute.org/results
https://github.com/yingji15/SCZIHW_public/
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Figure 2. Distribution of AUC scores across the predictions from different features. The average
AUC of 0.74, 0.86, 0.87, and 0.89 were obtained from BRAINSPAN, DEPICT, LAKE, and FANTOM5,
respectively.

Since different features may characterize SCZ risk genes from different angles, we
generated an “ensemble score” as the final gene prediction by averaging the min-max
normalized predictions from individual features: For each feature, the minimum value of
the prediction gets transformed into a 0, the maximum value gets transformed into a 1, and
every other value gets transformed into a decimal between 0 and 1. Then we performed
a systematic empirical evaluation based on the enrichment of SNP-based heritability by
stratified LD score regression (LDSC) [32,33] according to the ranking of the ensemble score.
As shown in Figure 3, we found that the top ranked genes are significantly enriched for
SNP-based heritability through applying LDSC on a most recent SCZ GWAS [34].
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Figure 3. Enrichment of schizophrenia-SNP heritability with the number of ranked genes (calculated
using LDSC). The most recent SCZ GWAS results published in 2020 [21] was used in the analysis.
Top ranked genes are significantly enriched for SNP-based heritability.
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We further evaluated the ensemble score-based gene ranking using enrichment analy-
ses with gene lists repeatedly implicated in SCZ [19]. As shown in Table 1, we evaluated the
top 1000 predicted genes by ensemble score versus the rest of the genome for enrichment
using one-sided Fisher’s exact tests. We found strong enrichment in FMRP target genes
(p = 6.10× 10−249), which is an RNA-binding protein that regulates translation and needed
at synapses for glutamate receptor signaling and neurogenesis [35,36]. We also found
top predicted genes to be significantly enriched in synaptic genes, including postsynaptic
density (PSD, p = 5.82× 10−126), protein cytoskeleton-associated scaffold protein (ARC,
p = 2.19× 10−8), NMDAR network (p = 3.54× 10−24) , mGluR5 (p = 2× 10−5). We
also observed significant enrichment in RFBOX1 (p = 2.26× 10−140) and miR-137 targets
(p = 2.19× 10−22). A detailed description of the gene lists is in (Appendix A) Table A1.

Table 1. Enrichment of top 1000 predicted genes in gene sets implicated in SCZ.

Gene Set a OR b p-Value c

FMRP-Darnel (832) 14.23 6.10× 10−249

RBFOX1 (556) 11.14 2.2× 10−140

PSD (1444) 5.15 5.82× 10−126

ECG (998) 5.38 2.28× 10−99

PRP (336) 5.06 4.53× 10−34

PRAZ (209) 5.87 6.90× 10−27

NMDAR (59) 18.17 3.54× 10−24

miR-137 targets (281) 4.32 2.19× 10−22

GABA (18) 46.06 1.07× 10−11

SYV (107) 4.32 7.38× 10−09

ARC (25) 13.82 2.19× 10−08

CRF (56) 5.54 6.81× 10−07

mGluR5 (37) 6.28 2.00× 10−05

CCS (73) 3.72 1.06× 10−04

a The numbers of genes in the corresponding gene sets are in parentheses. The source and short description of
these gene sets is included in Table A1. b Odds ratio from one-sided Fisher’s exact test. c p-value from one-sided
Fisher’s exact test after Bonferroni correction.

3.2. Leverage Prediction as Covariates to Identify SCZ Risk Genes

Having evaluated our predicted scores using different evidence, we sought to examine
the utility of the predictions for the identification of risk genes from RVAS results. Here, we
extracted the gene-based association p-values from SCZ RVAS [16] and investigated the
ensemble scores as covariates to conduct hypothesis weighting in IHW.

As an exploratory analysis, we first checked whether the ensemble score as a covariate
is informative about power under the alternative. We started with SCZ RVAS results by
partitioning all hypotheses into three equally sized groups: “Low score” group with the
ensemble score less than its 33% quantile, “medium score” group with the ensemble score
between its 33% and 67% quantile, and “high score” group with the ensemble score larger
than its 67% quantile. As shown in Figure 4, we observe a successive increase of the number
of hypotheses with p-values near zero for increasing scores, indicating that the proportion
of non-null effects vary across different groups.
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Figure 4. Histograms of SCHEMA reported [16] p-values after splitting the hypotheses into three
groups by the prediction score. A successive increase of the number of hypotheses with p-values near
zero is observed for increasing scores, indicating that the proportion of non-null effects varies across
different groups.

Since the ensemble scores are informative of the prior probability of each individual
test, to maximize power for discovery, all gene-level tests should not be treated exchange-
ably. Thus, we used the ensemble scores as covariates to adjust RVAS gene-level p-values
under different target FDR levels (α = 0.05, 0.1, 0.2, 0.3) using IHW. The range of α is chosen
to reflect the FDR control level commonly used in practice. We also included the prediction
scores from individual feature sets (i.e., BRAINSPAN, DEPICT, LAKE, FANTOM5) as
covariates for comparison purpose. As shown in Table 2, when using the ensemble score as
the covariate to adjust SCZ p-values, although we did not find an increase of significant
genes when α = 0.05 potentially due to insufficient power, we did observe 22%, 28% and
109% increase of significant genes for higher target FDR levels at α = 0.1, 0.2, 0.3 respec-
tively. For the single feature based scores, we observe more improvement from DEPICT
and LAKE data, and less improvement from BRAINSPAN and FANTOM5 (Table 2). It
is evident that the ensemble score-based approach is able to identify more genes than
individual features-derived scores (Table 2).

One might doubt whether the power gain is just by chance. To check this, we randomly
shuffled the ensemble scores (i.e., “IHW-shuffled ensemble” in Table 2), and used the
shuffled scores as the covariate for adjustment. The number of rejections is similar to that
using the BH approach, providing evidence that a mis-specified covariate would not cause
power increase or decrease. This result is in line with the previous findings that hypothesis
weighting can lead to power improvements with informative weights and cause little
power loss with uninformative weights [6,25,37].

Table 2. Number of discoveries from SCZ dataset, by different methods and covariates a.

Method b 0.05 c 0.1 0.2 0.3

IHW-
BRAINSPAN 29 34 51 63

IHW-FANTOM5 30 37 54 64
IHW-DEPICT 30 36 57 93
IHW-LAKE 30 35 55 97

IHW-ensemble 30 38 59 134
IHW-shuffled

ensemble d 31 31 48 57

BH 31 33 46 64
a At a range of target FDR levels α from 0.05 to 0.3. b Methods used for p-value adjustment. IHW-
BRAINSPAN/DEPICT/FANTOM5/LAKE/ensemble: Predictions from single data sources (BRAINSPAN, DE-
PICT, FANTOM5, and LAKE) and ensemble score; BH: Conventional BH-approach. c α = 0.05. d Shuffled
ensemble: Randomly shuffled the ensemble scores (i.e., “IHW-ensemble”), and used the shuffled scores as the
covariate for adjustment.
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Using the expanded set of significant genes identified, we next sought to gain more
biological insights. We applied gene ontology (GO) enrichment analysis to the 84 genes
that are insignificant using BH-adjustment but significant after IHW-adjustement at FDR
level α = 0.3. As shown in Figure 5, we discovered enrichmed biological processes at
FDR = 0.1 including synapse assembly (OR = 5.90), neuron projection guidance (OR = 5.84),
consistent with current knowledge on SCZ [38]. We also evaluated the 64 genes that are
significant under the conventional BH-adjustment at α = 0.3 for GO term enrichment and
observed none of the GO terms are significant at FDR = 0.1 level.
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Figure 5. SCZ gene ontology(GO) enrichement analysis results for top biological processes with
FDR ≤ 0.1. Enrichmed biological processes including synapse assembly (OR = 5.90) and neuron
projection guidance (OR = 5.84) were discovered at FDR = 0.1, consistent with previous knowledge
on SCZ.

Then we further investigated genes not significant using BH-adjustment but “boosted”
to significance after adjustment using the ensemble score in IHW (referred to as IHW
adjustment). The FDR level α = 0.1 is chosen since that’s the significance level at which
the adjustment leads to improvements. Since the RVAS study we used is comprehensive
and included most available RVAS studies, we were not able to conduct replication studies.
Instead, we looked for literature support for genes “boosted”. CACNA2D1 is one example,
not significant under traditional BH-adjustment (p = 0.23) but significant after IHW
adjustment (multiple-testing adjusted p = 0.065). A deletion in CACNA2D1 has been
observed in one Japanese SCZ patient from in an independent study [39]. There is also
support for CACNA2D1 in other psychiatric disorders that are correlated with SCZ, e.g.,
epilepsy and intellectual disability [40], and CACNA2D1 has been identified as a potential
drug target in MDD from GWAS [41]. Another example is FABP7, not significant under
traditional BH-adjustment (p = 0.21) but significant after IHW adjustment (p = 0.065), in
which non-synonymous variants have been identified associated with SCZ and ASD [42].
FYN not significant under traditional BH-adjustment (p = 0.17) but significant after IHW
adjustment (p = 0.045), harbors an excess of disruptive and damaging variants among SCZ
patients [43]. For all these genes, the ensemble score derived in our framework reflects true
association signals and its use as the covariate in IHW provides extra confidence that these
genes are likely be SCZ risk genes.

3.3. Leverage Prediction as Covariates to Identify ASD Risk Genes

As another application, we sought to evaluate whether our ensemble score can serve
as covariates for the detection of risk genes from RVAS in ASD. While the prediction scores
were derived using SCZ risk genes, multiple lines of evidence have suggested that SCZ and
ASD share underlying genetic mechanisms: SCZ and ASD are genetically correlated [44];
up to 30% of individuals diagnosed with ASD during childhood will develop SCZ in
adulthood [45]; CNVs and rare alleles show overlap between ASD and SCZ in synaptic
related genes [46,47]. Thus, we used the same SCZ derived scores as covariates in IHW to
adjust p-values from the largest RVAS of ASD [21]. Exploratory plots in Figure 6 suggest
that our ensemble score is also informative in stratifying ASD test results.
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As shown in Table 3, when using the ensemble score as the covariate, we observe
47%, 77%, 125% and 230% increase of significant genes for α = 0.05, 0.1, 0.2, 0.3 respectively,
showing a similar trend of increased association detection after adjustment as in SCZ. For
the single feature based scores, we observe more improvement from BRAINSPAN, DEPICT
and LAKE data, and less improvement from FANTOM5 (Table 3). These findings are
consistent with the overlapping genetic basis in SCZ and ASD.
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Figure 6. Histograms of ASD p-values after splitting the hypotheses into three groups by the predic-
tion score. A successive increase of the number of hypotheses with p-values near zero is observed for
increasing scores, indicating that the proportion of non-null effects varies across different groups.

Table 3. Number of discoveries from ASD dataset, by different methods and covariates a.

Method b 0.05 c 0.1 0.2 0.3

IHW-BRAINSPAN 89 142 294 477
IHW-FANTOM5 98 119 207 363

IHW-DEPICT 107 158 329 495
IHW-LAKE 105 149 287 439

IHW-ensemble 112 176 323 658
IHW-shuffled ensemble d 79 95 151 201

BH 76 99 143 199
a At a range of target FDR levels α from 0.05 to 0.3. b Methods used for p-value adjustment. IHW-
BRAINSPAN/DEPICT/FANTOM5/LAKE/ensemble: Predictions from single data sources (BRAINSPAN, DE-
PICT, FANTOM5, and LAKE) and ensemble score; BH: Conventional BH-approach. c α = 0.05. d Shuffled
ensemble: Randomly shuffled the ensemble (i.e., “IHW-ensemble”), and used the shuffled scores as the covariate
for adjustment.

Similar to previous analysis on SCZ, using the expanded set of significant genes
identified, we next sought biological insights. We applied gene ontology enrichment
analysis to the 488 genes that are insignificant using BH-adjustment but significant after
IHW-adjustement at FDR level α = 0.3. As shown in Figure 7, we discovered the enrich-
ment of biological processes like cell part morphogenesis (OR = 3.56), neuron projection
development (OR = 3.29), and neuron differentiation (OR = 2.86), consistent with previous
knowledge on ASD [48].

Then we further investigated genes not significant using BH-adjustment but “boosted”
to significance after adjustment using the ensemble score in IHW (referred to as IHW
adjustment). At FDR level α = 0.1, 84 genes are “boosted” by IHW adjustment. For the
same reason as SCZ, we were not able to find independent RVAS studies for replication. We
looked for literature support for genes “boosted”. COBL is not significant under traditional
BH-adjustment (p-value = 0.37) but significant after IHW adjustment (p-value = 0.095). It
has been shown that deletions of COBL cause defects in neuronal cytoskeleton morphogen-
esis in model vertebrates [49]. It has also been supported by case-unique CNVs in autism
case-control studies [50]. GABRA1 is not significant under traditional BH-adjustment
(p = 0.34) but significant after IHW adjustment (p = 0.086). Previous studies have found
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significant reductions of GABRA1 expression in several brain regions for subjects with
ASD [51].
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Figure 7. ASD gene ontology(GO) enrichement analysis results for top 10 biological processes with
FDR ≤ 0.05. Enrichment of biological processes including cell part morphogenesis (OR = 3.56),
neuron projection development (OR = 3.29), and neuron differentiation (OR = 2.86) were discovered
at FDR = 0.1, consistent with current knowledge on ASD.

4. Discussion

In this study, we explored the use of IHW in analyzing RVAS results with gene-level
predicted scores as covariates, and investigated the implicated risk genes in biology of SCZ
and ASD. The covariate is the predicted gene-level susceptibility to SCZ obtained through
supervised learning using biological features from BRAINSPAN, FANTOM5, DEPICT
and LAKE as inputs. An ensemble score, which is the average of all single-feature-based
predictions, is derived to capture support from all features. Applications of the ensemble
score in IHW to gene-level p-values in SCZ and ASD RVASs lead to more significant genes
than traditional methods, suggesting the benefits of integrating diverse biological evidence.
This is consistent with previous findings that integrating multiomics covariates improves
power in identifying SNPs from GWAS analysis and eGenes from eQTL analysis [11]. In
particular, when using the ensemble scores as covariates, we observed 22%, 28% and 109%
more significant genes for target FDR levels at α = 0.1, 0.2, 0.3 respectively for SCZ RVAS
analysis; and 47%, 77%, 125% and 230% more significant genes for α = 0.05, 0.1, 0.2, 0.3
respectively for ASD RVAS analysis. We have identified genes not significant using BH-
adjustment but “boosted” to significance after adjustment using the ensemble score in IHW
in both SCZ and ASD with literature support, demonstrating the power of the proposed
approach.

Previous studies have shown that the hypothesis weighting adjustment mostly has
an impact on the genes with “borderline significance”. Genes with very small p-values
already have high power, and conversely, genes with very large p-values have extremely
low power and benefit little by weighting. Therefore, the weighting approach is most
useful for genes with a marginal effect [6]. Here, for SCZ, we observe more improvement at
FDR > 0.1, and the reason might be that there are more genes at the borderline at FDR > 0.1
yet very few genes are at the borderline when FDR = 0.05. On the other hand, for ASD, we
observe improvements across different FDR levels, suggesting there are more borderline
genes at each FDR level. This might come from the larger power of rare-variant gene-level
tests in ASD.

There are a few limitations in our framework. First, the training set in the prediction
scoring process is from genes inferred by iRIGS near GWAS hits, and there might be false
positives and false negatives in this set. Therefore, the candidate genes we identified still
require thorough experimentation. Second, as with most supervised learning methods, our
framework depends on existing patterns of labelled genes, and therefore are less powerful
in identifying disease genes with characteristics not well represented in the training set.

Opportunities for future expansion of this strategy include exploring diverse and
relevant features and applying better approaches to integrate signals from multiple fea-
tures. Currently, we chose features from gene expression and biological processes in the
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prediction. There are other data resources such as cell-type specific gene expression, pro-
teomics and epigenomics data. Using single-cell RNA-sequencing data, it was found that
synaptic signaling of upper-layer excitatory neurons and the molecular state of microglia
are preferentially affected in ASD [52]. Epigenetics have also been reported to play a role in
predisposition to ASD [53]. These data sources could be used in the future expansion of our
approach. As IHW takes a single covariate, we took an average of the single feature based
predictions to derive an ensemble score for hypothesis weighting for simplicity. We ex-
plored other methods that could include multiple dimensions of covariates like AdaFDR [4]
and AdaPT [54]. However, our application of AdaFDR did not yield improvements and
tend to be less stable; AdaPT takes many iterations of optimization and is computation-
ally expensive as it uses a p-value masking procedure. There might be room for further
improvement in the way of integrating multiple covariates, which is worthy of future
explorations.

5. Conclusions

In this paper, we present a three-stage framework to identify risk genes from both
GWASs and RVASs: We first obtain training genes in GWAS significant loci via iRIGS, then
build machine-learning prediction models to predict each gene’s probability to associate
with SCZ using training genes and biological features; and finally we use the prediction
scores as informative covariates for hypothesis weighting to improve gene detection power
using IHW. We applied the framework to SCZ and ASD gene-based RVASs and observed
sizeable improvements on the number of genes discovered. As an increasing volume of
contextual information is being generated, we believe that our approach that leverages
prediction as covariates in hypothesis weighting provides a valuable contribution to boost
statistical significance in RVASs. This approach requires little investment and can be easily
applied to the analysis of existing and future studies beyond RVASs.
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Abbreviations
The following abbreviations are used in this manuscript:

RVAS rare variant association study
iRIGS integrative risk gene selector
GWAS genome-wide associations study
SCZ schizophrenia
ASD autism spectrum disorder
FDR false discovery rate
FWER family-wise error rate
PTV protein-truncating variants
MPC missense badness, PolyPhen-2, and constraint
AUC area under the receiver-operating characteristic (ROC) curve
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Appendix A

Table A1. Gene sets implicated in SCZ.

Gene Set Short Description

FMRP-Darnel [55] Fragile X mental retardation (FMRP) protein targets
RBFOX1 [56] targets of RNA binding protein, fox-1 homolog 1

PSD [57] post synaptic genes
ECG [58] evolutionary constrained genes
PRP [59] genes related to presynaptic proteins

PRAZ [59] genes in the presynaptic active zone
NMDAR [35] components of the N-methyl-D-aspartate (NMDA) network

miR-137 targets [60] miRNA-137 targets
GABA [61] components of the GABA receptor complex

SYV [59] synaptic vesicles
ARC neuronal activity-regulated cytoskeleton-associated proteins

CRF [62] chromatin remodeling factors
mGluR5 [46] components of the metabotropic glutamate receptor 5 complex

CCS [63] calcium channel and signaling genes
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